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Abstract— Pose estimation and 3D environment reconstruc-
tion are crucial for autonomous navigation in mobile robotics.
Robust dense visual odometry based on a RGB-D sensor uses
all pixels to estimate frame-to-frame motion by minimizing
the photometric and geometric error. 3D coordinates of each
pixel are calculated necessarily with its corresponding depth.
However, depths of some pixels near object boundaries from
RGB-D sensors are not accurate. The general robust dense
visual odometry does not consider depth noise impact for pho-
tometric error and geometric error. In this paper, we construct
uncertainties of photometric error and geometric error with
depth noise and point out depth noise near object boundaries
can significantly affect the result of motion estimation. We
present a modified robust dense visual odometry with boundary
pixel suppression. Publicly available benchmark datasets are
employed to evaluate our system, and results showed that our
method achieves higher accuracy compared with the state-of-
the-art Dense Visual Odometry (DVO).

I. INTRODUCTION

Pose estimation and 3D environment reconstruction are
popular for researchers and very important for autonomous
mobile robot applications. A visual odometry can estimate
the trajectory for the robot with onboard cameras. Recently,
some significant relevant approaches have been proposed
[1], [2], in which a single RGB camera are employed to
estimate the rigid body motion and create a sparse map
in the environment. However, they compute the pose and
environment structure up to a scale factor instead of the true
metric [3].

To tackle the scale problem, multi-source systems, such
as monocular vision system combined with Inertial Mea-
surement Units (IMUs) [4], or stereo visual system [5]
can be concerned. We can get absolute scale factors in
systems above, while depths in poorly textured areas are still
unmeasurable.

RGB-D sensors, typically, such as Asus Xtion Pro Live,
can simultaneously provide dense depths and color in-
formation in the environment. Benefit from this, recently
RGB-D sensors have been widely used in visual odometry
[6], [7], [8]. Two mainstream methods exist for motion
estimation with RGB-D sensors: feature-based method and
dense method. The feature-based method aligns sparse visual
features to calculate the rigid body motion between frames
[9]. However, it only uses a few points in an image and
excludes a set of available environment information. In
contrast, many dense tracking and mapping methods based
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on RGB-D sensors have emerged recently. Newcombe et al.
[10] proposed a variant of the Iterative Closest Points (ICP)
approach only using depth values to estimate the camera
pose and build 3D dense map. Instead of aligning 3D point
clouds, reference [7] minimized the photometric error among
consecutive RGB-D frames to align intensity images. To
deal with outliers in the photometric error, Kerl et al. [8]
compared several different weight functions and further im-
proved the system accuracy using the student’s t-distribution
to weight the photometric error. However, photometric error
based methods are unavailable on poorly textured areas, and
geometric error based methods perform poorly on struc-
tureless scenes. Therefore, only the geometric error among
3D points or the photometric error among intensity images
limits previous relevant works. Several approaches based on
joint photometric and geometric error minimization over all
pixels were proposed [11], [12]. To balance these two error
cost terms, heuristical scale parameters are used to weight
photometric and geometric cost functions. Kerl et al. [13]
use an automatically adapted covariance matrix based on
the two error terms to scale photometric and geometric cost
functions. Minimization of the joint cost function achieved
better generalization performance than both photometric er-
ror based methods and geometric error based methods in
different type of scenes [13].

Iterative optimization for the rigid body motion is em-
ployed to minimize cost functions in all the dense visual
odometry methods described above. Most researchers model
the cost function only related to the rigid body motion while
ignoring the depth noise. Unfortunately, as shown in Fig.
1, the depth noise can directly affect the photometric error.
Engel et al. [14] considered the depth noise and compute
variance-normalized photometric error by taking into account
the inverse depth variance in their monocular SLAM system.
Although depth noise from RGB-D sensor is usually small
than those estimated by monocular SLAM, the depth noise
near the object edges cannot be neglected [15]. Fig. 2
shows a RGB image and its corresponding depth map. Depth
measurement noise nearby object boundaries is displayed in
Fig. 2(b), where edges of the computer monitor and door
are very uneven. Some pixels near these edges get wrong
depth values. Nguyen et al. [16] derived a noise model for
the RGB-D sensor and improved tracking resluts by using
filter to smooth depth maps, but they did not analyze how the
depth noise affect the geometric error and the photometric
error.

The main contribution of our work is that we analyze how
the depth noise affects the photometric and geometric error,
point out the two error of pixels near object boundaries are
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Fig. 1. In order to calculate the photometric error, we need to reconstruct
a space point P from the image point p in image Ir through inverse
projection. Then we project P to a point p′ in image Ic. The photometric
error is related to the intensity values of the two points p and p′ and may
be sensitve to the depth noise σd.

senstived to depth noise, and we present a modified robust
dense visual odometry with boundary pixel suppression. The
Dense Visual Odeomtry (DVO) method proposed by Kerl et
al. [13] is adopted in our system as comparison, since it
demonstrates high accuracy and robustness. We implement
our system on TUM benchmark datasets [17]. Experimental
results show that our system have a better performance than
the DVO method.

II. ROBUST DENSE VISUAL ODOMETRY

In this section, we introduce a general robust dense method
whose main idea is to optimize a photometric cost function
or a geometric cost function to calculate the camera pose.

As show in Fig. 1, assuming that we know the camera
intrinsic matrix K, given an image point p in the reference
frame image plane Ir and the correct rigid body transfor-
mation Tc,r from the reference frame to the current frame,
we can predict its corresponding pixel coordinates p′ in the
current frame image plane Ic. The two image points should
have the same brightness based on the photo-consistency
assumption, i.e. Ir(p) = Ic(p

′). However, the rigid boy
transformation is unknown and our goal is to estimate the
correct motion Tc,r. It can be solved by minimizing the
photometric cost function:

Tc,r = argmin
Tc,r

n∑
i

wir
2
I,i (1)

rI,i = Ic(p
′
i)− Ir(pi) (2)

where rI,i is the photometric error for the pixel pi and wi

is the scale factor computed by M-estimator based on the
photometric error. An image point p in the reference frame
image plane Ir can be transformed to the current frame Ic
with a warp function p′ =W (Tc,r, p, d). The warp function
is constructed as follows:

(a) Rgb image

(b) Corresponding depth map

Fig. 2. A RGB-D frame. The depth measurements of object edges
highlighted by color (red, green) squares are uneven.

Firstly, an image point p = (u, v)T projects back to a 3D
space defined by the reference frame using inverse projection
function π−1:

Pr = π−1(p, d)

= (
u− cx
fx

d,
v − cy
fy

d, d)T
(3)

where fx, fy are the focal lengths on x axis and y axis, and
(cx, cy)

T is the camera center coordinate. d is the depth value
of pixel p read from depth map.

Then, transform the 3D point Pr = (Xr, Yr, Zr)
T into the

current frame with the rigid body motion Tc,r, i.e.

Pc = Rc,rPr + tc,r (4)

Tc,r =

[
Rc,r tc,r

0 1

]
(5)

with Rc,r is a 3× 3 rotation matrix and tc,r = (tx, ty, tz)
T

is a 3×1 vector represent a translation from reference frame
to current frame.

Lastly, project the 3D point Pc = (Xc, Yc, Zc)
T to the
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image plane Ic using project function π:

p′ = π(Pc)

= (
Xcfx
Zc

+ cx,
Ycfy
Zc

+ cy)
T

(6)

We get the warp function by (3), (4), (5), (6):

W (Tc,r, p, d) = π(Rc,rπ
−1(p, d) + tc,r) (7)

Similarly, the geometric error between pixels projected by
a same 3D point should be zero. We can estimate the camera
motion by minimizing the geometric cost function [13], i.e.

Tc,r = argmin
Tc,r

n∑
i

wir
2
d,i (8)

rd,i = Dc(p
′
i)− bRc,rπ

−1(pi, di) + tc,rc3 (9)

where Dc is the depth map provided by the current frame
and b·c3 is the Z component of a 3D point.

Obviously, minimizing the joint photometric and geomet-
ric cost function is another way to estimate camera motion.
DVO method provide a formulation of the joint cost function
[13]:

Tc,r = argmin
Tc,r

n∑
i

wir
T
i Σ−1ri (10)

where ri = (rI,i, rd,i)
T is a vector combining photometric

error and geometric error. The covariance matrix Σ is used
to balance the photometric cost term and the geometric cost
term. The weights wi is a M-estimator, and Kerl et.al [13]
uses a t-distribution:

wi =
v + 1

v + rTi Σ−1ri
(11)

Since (10) is nonlinear, we can tackle the problem using
Gauss-Newton or Levenberg-Marquard algorithms. However,
the rotation components of rigid body motion are non-
Euclidean and the transformation matrix Tc,r is an over-
parameterized representation of rigid body motion. To avoid
this problem, we use twist coordinates ξ in Lie algebra se(3)
during the iterative optimization. The transformation matrix
Tc,r can be represented with the exponential map:

Tc,r = exp(ξ̂) (12)

with ξ = (w,v)T ∈ R6, where w is angular velocity and v
is linear velocity. ξ̂ is skew symmetric matrix of ξ. Therefore,
to calculate the optimal estimation according (10), we can
obtain the normal equation [13]:

n∑
i

wiJ
T
i Σ−1Jiδξ = −

n∑
i

wiJ
T
i Σ−1ri (13)

with
Ji = (

∂rI,i
∂ξ

,
∂rd,i
∂ξ

)T (14)

The estimation Tc,r can be updated by iteratively solve the
normal equation (13):

T t
c,r = exp(δ̂ξ)T t−1

c,r (15)

As the robust dense visual odometry method described
above, when calculating the error using pixels with valid
depths, the photometric cost function and the geometric cost
function are thought only related to the rigid body motion.
However, it is worth noting that the depth noise especially
the depth outlier may directly affect the photometric and
geometric error. The cost term for some pixels with depth
noise may not decrease by iterative optimizing the camera
pose.

III. ROBUST DENSE VISUAL ODOMETRY WITH
BOUNDARY PIXEL SUPPRESSION

Although depth noise can affect the photometric and
geometric error, the influence can be different from different
pixels with same depth noise. In this section, firstly, we
analyze how the depth noise affect the photometric and
geometric error. Then, we point out which pixels their
depth noise can significantly affect optimization. At last, we
propose DVO with boundary pixel suppression.

A. Impact of Depth Noise on Photometric and Geometric
Error

Photometric error can be seen as a function about depth
measurements based on (2) and (7), i.e., rI,i = f(di).
As depth noise fit Gaussian distributions nd ∈ N (0, σ2

d)
[16], the uncertainty of the photometric error contributed by
depth measurements uncertainty σd can be computed using
covariance propagation:

σ2
rI,i,di

= (JrI,i,di
)2σ2

di
(16)

where JrI,i,di is the Jacobian value ∂rI,i
∂di

. It can be calculated
by the chain rule as

JrI,i,di =
∂(Ic(p

′)− Ir(p))
∂di

(17)

=
∂Ic(p

′)

∂p′

∣∣∣∣
p′=W (Tc,r,pi,di)

∂W (Tc,r, pi, di)

∂di
(18)

The first part of (18) is the derivative of the current image Ic
at the warped position p′. The second part is the derivative
of the warped pixel point at the depth measurement. The
Jacobian (18) can be evaluated as:

JrI,i,di =
1

ZrZ2
c

(5Ic,u · fx · (Xctz − Zctx)

+5 Ic,v · fy · (Yctz − Zcty)) (19)

Similarly, from (9), the uncertainty of the geometric error
σ2
rd,i,di

contributed by depth measurements uncertainty σ2
di

can be computed as

σ2
rd,i,di

= (Jrd,i,di
)2σ2

di
(20)

with

JrI,i,di
=

1

ZrZ2
c

(5Dc,u · fx · (Xctz − Zctx)

+5Dc,v · fy · (Yctz − Zcty)) +
1

Zr
(tz − Zc) (21)
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Algorithm 1 Boundary Pixel Detection
Input: reference depth map D
Output: indicator vector I

1: for each depth image pixel u ∈ D do
2: if D(u) 6= 0 then
3: 4dx ← the derivative x of depth map at pixel u
4: 4dy ← the derivative y of depth map at pixel u
5: G←

√
(4d2x +4d2y)

6: end if
7: if G > threshold then
8: Iu ← 1
9: else

10: Iu ← 0
11: end if
12: end for

From (16) and (20), we model the uncertainty of the pho-
tometric error and the geometric error with the uncertainty
of depth measurement. From (19) and (21), variances of the
photometric error and the geometric one are not only related
to the depth variance, but also related to the image gradi-
ents. It means that the same depth measurement with same
noise may influent cost function quite differently. If depth
noise remarkably affects the photometric and geometric cost
function, then we need to remove it during the optimization.

B. DVO With Boundary Pixel Suppression

Due to the gradients of RGB image and depth image
near their edges are large than those in smooth regions.
Variances of photometric and geometric error near the object
edges affect by depth noise may be large. Jacobians for
depth values d are shown in Fig. 3(e) and Fig. 3(f), the
absolute Jacobian value of pixels near edges are larger than
the value of smooth regions. These errors resulted from depth
noise will reduce the precision of the rigid transformation
estimated by DVO. However, in the smooth region of image,
gradients are close to zero and depth noise are also small,
their influence to cost function can be neglected. As a
result, we can suppress pixels near object boundaries where
depth may have large noise. For every pixel with a valid
depth, we use an indicator function to decide whether it
should be suppressed or not during optimization. To suppress
pixels near object boundaries that significantly affect the cost
function in (10), we add the indication factor Ii in the cost
function :

Tc,r = argmin
Tc,r

n∑
i

Iiwir
T
i Σ−1ri (22)

The (22) indicates that instead of using all pixels to compute
the rigid transformation, we only use the pixels less affected
by depth noise.

The boundary pixel detection process described in Al-
gorithm 1. At each iteration, a gradient of the pixel in
depth map (if the depth value is non-zero) is computed
using Sobel operator. If the gradient is larger than a certain

(a) reference image Ir (b) reference depth map Dr

(c) current image Ic (d) current depth map Dc

(e) Jacobian
∂rI,i
∂di

(f) Jacobian
∂rd,i
∂di

Fig. 3. We compute the photometric error and the geometric error between
two frames (a-d). (e), (f) is Jacobians for depth values d. The medium gray
in (e) and (f) means the pixel value is 0, the brighter the greater value and
the darker the smaller value. Black represents pixels depth value are invalid.

Fig. 4. Examples of pixels suppression (red) in the fr2/desk dataset.

threshold, then this pixel will be identified as a bad pixel to
be suppressed during optimization. In our implementation,
we take threshold = 0.2m. As shown in Fig. 4, the pixels
(red) near the object boundaries with large depth changes
are should suppressed during optimization, and other pixels
such as the keyboard and the mouse are saved to estimate
the rigid body motion.

IV. EXPERIMENTAL EVALUATION
In this section, we implement the dense visual odometry

with boundary pixel suppression, and compare its accuracies
with those of the dense visual odometry (DVO) [13] on the
TUM RGB-D datasets [17]. Every dataset contains RGB-
D images with 640 × 480 resolution and a ground truth
trajectory.
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TABLE I
SOME IMPORTANT PARAMETERS FOR DVO ALGOITHM

Parameters Values
coarsest level 3
finest level 1
max iterations 100
precision 0.0000005
use weighting true
weight method t-distribution

TABLE II
RMSE OF TRANSLATIONAL DRIFT (PRE) IN METERS PER

SECONDE USING DIFFERENT METHODS

Dataset DVO DVO with boundary pixel suppression
fr1/desk 0.055296 0.041487
fr1/desk2 0.068586 0.051055
fr1/floor 0.096211 0.078101
fr1/plant 0.042330 0.028905
fr1/360 0.124606 0.094262
fr1/xyz 0.029056 0.020573
fr2/desk 0.031591 0.016062

In order to get a satisfactory performance, parameters of
the DVO algorithm are adopted from [8]. DVO and DVO
with boundary pixel suppression share parameters which are
in detail shown in Table I. Specifically, values of finest level
and coarset level mean that we use three levels of the image
pyramid to estimate the rigid body motion, and the finest
level image resolution is 320×240, The precision parameter
is a threshold used to determine whether the iteration con-
verges during the optimization. As t-distribution is a good
choice for the weight calculation than Tukey function and
Huber function [8], we compute the weight function based on
the t-distribution according (11). We measure the drift using
the relative pose error for pose pairs and calculate the RMSE
of translation drift in meters per second (m/s). Table II
shows the results for the two dense visual odometry system.
The DVO with boundary pixel suppression works better
on the all five benchmark datasets than DVO algorithm.
These results indicate that depth values of pixels near object
boundaries can directly affect the dense visual odometry
system.

To display more intuitively the improvement by DVO with
boundary pixel suppression, we select the experiment results
on fr2/desk dataset for a detailed analysis. In this dataset, the
intensity of image changes slightly, so it becomes suitable
to calculate the photometric error, while the corresponding
valid depth measurements are less [18]. Fig. 5 shows the
translation drift of the relative pose error and Fig. 6 shows
the estimated trajectory with the ground truth. In Fig. 5 there
are some time steps can not find the overlap between the
estimated pose and the ground truth, such as t ∈ (23, 46)s.
However, the error can be calculated from measurements at
other time steps, we can find that the DVO algorithm with
boundary pixel suppression have a smaller translation drift
at almost all the time steps with fewer exceptions. In Fig.
5 near the time t = 20s and t = 50s our algorithm get
larger errors than the DVO, which means that when using
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Fig. 5. Translation drift.
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Fig. 6. Camera trajectory.

our boundary pixel detection algorithm, some useful pixels
are falsely removed.

V. CONCLUSION

In this paper, we propose the dense visual odometry with
boundary pixel suppression system. We analyze how the
depth noise affects the photometric and geometric error for
the rigid body motion estimation, and point out that pixels
near object boundaries should be removed if their corre-
sponding depth values reveal large uncertainty. Experimental
results evaluated on the TUM benchmark datasets demon-
strate that our system significantly improves the accuracy
compared with the DVO algorithm. However, we remove
pixels roughly so that some good pixels are falsely removed.
In the near future, we plan to improve the boundary pixel
removing process more reasonably and accurately.
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