
Protecting Your Faces: MeshFaces Generation and Removal via High-order
Relation-preserving CycleGAN

Zhihang Li1,2,3, Yibo Hu1,2,3, Man Zhang1,2,3, Min Xu4, Ran He1,2,3

1National Laboratory of Pattern Recognition, CASIA
2Center for Research on Intelligent Perception and Computing, CASIA
3University of Chinese Academy of Sciences, Beijing, 100049, China

4College of Information Engineering, Capital Normal University, Beijing 100048, China

{zhihang.li, zhangman, rhe}@nlpr.ia.ac.cn, yibo.hu@cripac.ia.ac.cn, xumin@cnu.edu.cn

Abstract—Protecting person’s face photos from being mis-
used has been an important issue as the rapid development
of ubiquitous face sensors. MeshFaces provide a simple yet
inexpensive way to protect facial photos and have been widely
used in China. This paper treats MeshFace generation and
removal as a dual learning problem and proposes a high-
order relation-preserving CycleGAN framework to solve this
problem. First, dual transformations between the distributions
of MeshFaces and clean faces in pixel space are learned
under the CycleGAN framework, which can efficiently utilize
unpaired data. Then, a novel High-order Relation-preserving
(HR) loss is imposed on CycleGAN to recover the finer texture
details and generate much sharper images. Different from the
L1 and L2 losses that result in image smoothness and blurry,
the HR loss can better capture the appearance variation of
MeshFaces and hence facilitates removal. Moreover, Identity
Preserving loss is proposed to preserve both global and local
identity information. Experimental results on three databases
demonstrate that our approach is highly effective for MeshFace
generation and removal.

Keywords-MeshFaces; High-order; CycleGAN; de-mesh; de-
noise;

I. INTRODUCTION

Blind image inpainting, as a common image restoration

problem, aims to restore the original image from a signal

corrupted by noise, which is essential for many visual tasks

including face alignment, face verification, etc. In real-world

scenarios, due to faulty imaging sensors, environment and

other human purposes, images are usually corrupted by

noise. Learning directly from corrupted images will severely

deteriorate the performance of a model [25]. However, most

existing algorithms assume that training and testing data are

noise-free, where there is still a gap in practice. Therefore,

blind image inpainting catches amount of attention in com-

puter vision community.

In real world application, ID photos provided by Chinese

business organizations are corrupted by random wavy lines

to protect private information from abusing or being illegally

distributed. [26] denotes this type of corrupted photos as

MeshFaces, as shown in Figure 1. Face verification using

MeshFaces directly results in poor performance, because

the identity of face has changed greatly in feature space.

Figure 1. MeshFaces (Middle) refer to the images corrupted by randomly
generated mesh-like lines or watermarks. Restored Photo (Right) is gener-
ated from MeshFace by our method.

Furthermore, experiments [3], [16] have demonstrated that

slight perturbations lead to significant deterioration in per-

formance for several machine learning models. Thus, how to

recover the clean face photos from the corrupted ones so as

to improve the recognition performance remains challenging.

Some efforts [25], [26], [19], [13] have been devoted to

addressing this problem. [25] proposes a multi-task architec-

ture to restore the clean face photos where detecting and re-

constructing corrupted pixels are conducted simultaneously.

They take blind face inpainting as an image reconstruction

problem. In addition to removing mesh, Zhang et al. [26]

constrain the pixel level similarity and the feature level sim-

ilarity jointly to improve the face verification performance.

However, we argue that different from the common image

restoration problems, MeshFaces contain some important

identity information. Therefore, the blind face inpainting

cannot be treated as a single low-level vision problem. Mesh

removing and identity preserving play an equally important

role.

On the other hand, most of the blind inpainting methods

[25], [26] need paired training data. However, for many

tasks, collecting massive paired data is labor-intensive or

even unavailable. Moreover, although some research efforts

have been devoted to blind face inpainting which restores

the clean face from MeshFaces, few attention is payed to

the inverse problem, i.e. adding random patterns to images,

which is useful for information security in many cases, e.g.

ID photo.
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Figure 2. The framework of our proposed HRCycleGAN. Generating and removing MashFace simultaneously using unpaired data, HRCycleGAN relies
on CycleGAN to learning the translation between the distributions of MeshFaces and clean faces. A high-order relation loss is further introduced to prevent
image smoothness and blurry. Moreover, an identity preserving loss is leveraged to preserve global and local identity information in feature space. Best
viewed in color.

To address the aforementioned problems, we propose a

High-order Relation-preserving CycleGAN (HRCycleGAN)

for generating and removing MeshFaces simultaneously (as

shown in Figure 2). Specifically, we treat the MeshFaces

generation and removal as two opposite tasks and unify them

into a framework by dual learning [5]. First, due to lack of

paired data, we rely on CycleGAN [27] to learning a transla-

tion between the distributions of MeshFaces and clean faces

in pixel space. Second, as the commonly used L1 and L2
loss usually lead to smoothness and blurry [8], a High-order

Relation-preserving loss is developed to enhance image and

recover the finer texture details. Finally, Identity Preserving

loss is proposed to preserve both global and local identity

information. Extensive experimental results demonstrate the

effectiveness of the proposed HRCycleGAN.

The contributions of this paper are summarized as follows:

1) We address the blind face inpainting problem with

unpaired data from a view of generative model and develop

a novel approach for simultaneously MeshFaces generation

and removal.

2) We propose a High-order Relation-preserving loss to

handle the problem of image smoothness and blurry. It pays

more attention to the saliency information, e.g. edge, which

derives finer texture details and generates much sharper

images.

3) To preserve high level identity information of face im-

ages, an Identity Preserving loss is developed. Experimental

results show that our HRCycleGAN can remove MeshFaces

with identity maintained.

II. RELATED WORK

A. Blind Inpainting

Blind inpainting refers to an image reconstruction process

where some missing or corrupted areas on images need to

be restored and their locations are not known in advance.

Compared with conventional non-blind inpainting where

exact positions of missing or damaged pixels are provided,

blind inpainting is more difficult because local adjancency

information is not available with no position prior. There

are some works to handle this problem in recent years. Xie

et al. [22] proposed a sparse auto-encoder model to move

the imposed texts on images. Authors in [18] introduced
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translation variant interpolation into convolutional neural

networks (CNNs) for blind inpainting. Yang et al. [23] and

Fu et al. [1] focus on image de-rain, which is a special blind

inpainting problem. Zhang et al. [25] presented a multi-

task CNN arthitecture for blind face inpainting with paired

MeshFaces and clean faces. In this paper, we concentrate on

the same issue with [25], but our approach is a generative

model with adversarial property and addresses unpaired

blind face inpainting problem with identity preserving where

the MeshFaces are not paired with clean faces.

B. Generative Adversarial Network

Generative Adversarial Network (GAN) [2] was first

proposed by Goodfellow et al. in 2014. It originally aims

at generating realistic images through a zero-sum game

between a generator and a discriminator. The generator

produces realistic image samples to fool the discriminator,

while the adversarial discriminator tries its best to distingush

the generative samples from those real image samples. Mirza

et al. [15] introduced the conditional version of GAN, which

can generate images under a certain condition such as an

image or a class label. Isola et al. [9] used conditional GAN

for image-to-image translation in which source images (such

as Aerial) are transformed to target images (such as Map).

Their model requires paired images to learn such trans-

formtion mapping. However, collecting paired samples is

time and labor consuming in pratical application. To address

it, Zhu et al. [27] designed a new GAN framework with

cycle constraint, named CycleGAN, for unpaired image-to-

image translation. Our approach takes CycleGAN as the base

model, and transforms between MeshFaces and clean faces

in an identity preserving manner, which goes beyond the

originally CycleGAN.

III. THE PROPOSED METHOD

In this section, we describe our proposed method. Specifi-

cally, the Cycle-Consistent Generative Adversarial Network

(CycleGAN) [27] is introduced firstly. Then we detail the

formulation of our proposed method. The architecture of

our method is shown in Figure 2.

A. CycleGAN

Generative Adversarial Network (GAN) [2] consists of

two networks: a generator G and a discriminator D, which

are alternatively trained in a two-player min-max game

manner. Generator G is optimized to generate samples as

real as possible to fool discriminator D while D is trained to

distinguish between the real sample x and the generated one

x̂. Overall, the objective function of GAN can be formulated

as follow:

LGAN (G,D) = min
G

max
D

Ey∼Pdata(y)[logD(y)]

+Ex∼Pdata(x)[log(1−D(G(x))]
(1)

CycleGAN [27] is an extension of GAN [2] for unpaired

data, which contains two generators GXY , GY X and two

discriminators DX , DY for two domains X,Y respectively.

GXY and GY X are X → Y and Y → X mappings. The

task of CycleGAN is to learn two mappings from domain

X to domain Y and from domain Y to domain X simul-

taneously. Therefore, Cycle Consistency loss is proposed to

enforce forward-backward consistency. Mathematically, the

objective function of CycleGAN is written as:

LCycleGAN = LGAN (GXY , DY ) + LGAN (GY X , DX)
+λLcyc(GXY , GY X)

(2)

Where Lcyc is the Cycle Consistency loss, defined as below

Lcyc = Ex∼Pdata(x)[||GY X(GXY (x))− x||1]
+Ey∼Pdata(y)[||GXY (GY X(y))− y||1] (3)

B. High-order Relation-preserving CycleGAN

We regard the MeshFaces domain and clean face domain

as domain X and domain Y respectively. It is noted that data

in domain X and domain Y are unpaired. Given a MeshFace

image x in domain X , the goal of our model is to generate

a clean face image and preserve the identity, and vice versa.

1) High-order Relation-preserving Loss: For each sample

x from domain X , CycleGAN restrains that x should be

brought back to original domain X through transformation

cycle with L1 loss to measure the similarity of these two

images. However, it is well known that L1 and L2 loss

produce blurry results on image generation problems [9],

which are also inconsistent with human visual system [17],

[11]. We argue that there exist two main problems in L1 and

L2 loss. First, each pixel intensity in the image is processed

separately, but few attention is paid to the relations between

pixel intensities. Second, in fact, natural image contains

abundant structures (e.g. texture, color, brightness, etc), but

such high-order structural relationship between two images

is not utilized. In addition, according to the research in [17],

[11], human visual system is robust to the subtle variation of

pixel and noise. When image changes slightly or is corrupted

by noise, human visual neurons are firstly activated by some

salient parts (e.g. edge) of objects. Then, based on structural

relationship of the image, the changing or corrupted parts are

filled through a neuronal filling-in mechanism [17], [11].

For MeshFaces generation and removal, the random pat-

terns in MeshFaces are salient parts, where the corrupted

pixels can be restored by comparing them to other pixels

in the image that have similar neighborhoods. Therefore,

we propose a novel high-order relation-preserving loss,

which models the structural relationship between two images

rather than each pixel intensity within a single image. It is

formulated as follows:

Lhr =
1

n

∑
i,j

∣∣∣HR(Zi,j)−HR(Ẑi,j)
∣∣∣ (4)

Where Z is the ground truth image, Ẑ is the generated image

by generator, n is the number of pixels in images and Zi,j
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is the pixel value of the image in position (i,j), which is

easy to extend to patches. HR(·) is a high-order relation

extractor, which can be defined based on different tasks. In

our experiment, the high-order relation extractor is defined

as follow:

HR(Zi,j) =
1

2n

[∣∣∣∣∣
n∑

k=0

(
n

k

)
(−1)kZi+n−k−1,j

∣∣∣∣∣
+

∣∣∣∣∣
n∑

k=0

(
n

k

)
(−1)kZi,j+n−k−1

∣∣∣∣∣
] (5)

Where n is the order of the relation. Our high-order loss

considers the neighboring spatial dependencies, which is

effective to infer the corrupted pixels.
2) Identity Preserving Loss: Although the CycleGAN

and the high-order relation loss can generate very realistic

and clean face images from MeshFaces in visual perceptual,

they cannot ensure that the synthesized image is close to

the real data in high-level semantic space. Therefore, we

develop an Identity Preserving loss which considers the

global and local identity information. We formulate the

identity perserving loss as the sum of a global and a local

identity perserving loss components as:

Lip = Lg−ip + Ll−ip (6)

In the following, the global identity perserving loss Lg−ip

and the local identity perserving loss Ll−ip are described in

detail.
A face recognition model maps face images to an embed-

ding space where the L2 distance is used to compare the

similarity of these images. Our model not only maintains the

simialrity in pixel space, but also preserves identity. While

achieving particularly high PSNR, CycleGAN based model

cannot preserve the identity information. Thus, we propose

the global identity preserving loss in high-level semantic

space to improve the performance of face recognition and

verification, which is described as follows:

Lg−ip(Ẑ, Z) = ||F (Ẑ)− F (Z)||1 (7)

Where F denotes the feature extractor network and projects

a image to the embedding space. We hope the restored image

Ẑ is closer to the original input Z in the feature space of

F .
As the global identity preserving loss mainly focuses on

abstract semantic information, we extend the upper-level

feature map constraint proposed in [12] to the finer identity

preserving. Introducing an additional supervised constraint

is beneficial to improving the convergence speed and the

final performance. Therefore, we define the local identity

preserving loss as:

Ll−ip(Ẑ, Z) = ||φ(Ẑ)− φ(Z)||1 (8)

Where φ maps images to the upper-level feature maps. This

loss can guarantee the finer identity information is close

between restored images and the original ones.

3) Overall Objective Function: To keep the balance and

stability of training on two domains, a weighted sum of all

the losses defined above is added to both domains X,Y .

The final objective function is:

LHRCycleGAN = LGAN (GXY , DY ) + LGAN (GY X , DX)

+λLcyc(GXY , GY X) + λ1Lhr + λ2Lg−ip + λ3Ll−ip

(9)

where λ, λ1, λ2 and λ3 are the trade-off parame-

ters. LGAN (GXY , DY ) and LGAN (GY X , DX) are used

to learn X → Y and Y → X mappings. The aim of

Lcyc(GXY , GY X) is to enforce forward-backward consis-

tency. Instead of measuring the pixel-to-pixel distance of two

images, we develop the high-level relation-preserving loss

Lhr by considering the structural relationship between two

images. Except for maintaining the relationship of samples

in pixel space, the identity preserving loss Lip including

global Lg−ip and local Ll−ip is introduced to preserve

identity in the embedding space.

IV. EXPERIMENTS

In this section, we evaluate the proposed method on

three datasets. These datasets and test protocols are briefly

introduced firstly. Then, we present the baseline methods

and implementation details. At last, a comprehensive exper-

imental analysis is conducted on qualitative synthesis results

and quantitative face verification results.

A. Datasets and Protocols

The AR face database [14]. This dataset consists of over

4,000 color images of 126 people. Each people includes

frontal view faces of different facial expressions, lighting

conditions and occlusions. Moreover, AR provides 130 land-

marks for frontal faces with different expressions. In our

experiments, we only use the face images with landmark

points to obtain normalized face images via landmarks as in

[21]. Finally, 112 people with 895 normalized face images

are obtained including 56 people with 448 face images for

training and the remaining 56 people with 447 face images

for testing. 30 random corrupted images are synthesized

for each face image on training and test dataset as in

[25], resulting in 13,440 MeshFaces for training and 13,410

MeshFaces for testing.

The CMU MultiPIE face database [4]. It contains

750,000 images of 337 people. Each people has multiple im-

ages under 15 view points, 19 illumination conditions and 6

different facial expressions. The corresponding 68 landmark

points for each image are provided. In our experiments, we

select images with frontal view and balanced illumination

from MultiPIE. Following the same preprocessing as the AR

dataset, frontal face images with landmark annotation are

chosen and normalized as in [21], resulting in 337 subjects

with 2,403 images. We split it into a training set of 237

subjects with 1,541 images and a testing set of 100 subjects
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Method
TPR@FPR=1% TPR@FPR=0.1% TPR@FPR=0.01% PSNR SSIM
AR MultiPIE AR MultiPIE AR MultiPIE AR MultiPIE AR MultiPIE

Corrupted 82.51 60.87 63.48 34.30 41.89 18.87 14.04 15.14 0.7331 0.6973
Clean 97.44 90.94 90.54 83.60 85.68 72.05 - - - -

CycleGAN 87.37 80.58 74.27 61.10 49.77 38.69 21.95 22.88 0.6763 0.8286
RPCycleGAN 90.90 81.92 80.46 63.25 61.89 42.28 24.83 23.47 0.9221 0.8857
IPCycleGAN 93.55 83.31 82.92 66.48 72.48 42.34 25.25 22.59 0.9246 0.8484

HRCycleGAN 95.35 87.95 87.01 75.62 74.32 59.62 26.89 24.44 0.9453 0.8771

Table I
VERIFICATION PERFORMANCE ON AR AND MULTIPIE DATASETS AND INPAINTING RESULTS ON THE TESTING SET

with 862 images. Similar to [25], each clear face image is

used to synthesize 30 totally different and random mesh face

images. As a result, 46,230 mesh face images are used as

training and 25,860 mesh face images for testing.

The LFW face database [7]. Besides face images under

constrained conditions, we also conduct an experiment in

the wild. LFW dataset is a standard test set for verification

in unconstrained conditions, which contains 13,233 images

of 5,749 people. Firstly, 5 facial points are extracted by

MTCNN [24], then faces are normalized to two eyes points

being horizontal as in [21]. Following the verification proto-

col [7], 6,000 face pairs with 3,000 positive pairs and 3,000

negative pairs are provided to evaluate our model. It is worth

noting that our model is not trained on the LFW dataset. That

is to say, LFW dataset is only used as the test set.

In the testing phase, the frontal view and neutral expres-

sion face image of each individual is chosen as the gallery

set and the remaining face images are randomly corrupted

as the probe set on AR and MultiPIE dataset. For each pair

of images on LFW, one image of them is randomly selected

and corrupted as a MeshFace. The face verification perfor-

mance between the gallery set and recovered clean faces is

compared through qualitative and quantitative analysis. The

TPR@FPR=1% (true positive rate when false positive rate is

1%), TPR@FPR=0.1% and TPR@FPR=0.01% are used as

evaluation criteria of face verification. The PSNR [dB] and

SSIM [20] are reported to evaluate generated image quality.

B. Baselines and Implementation Details

To the best of our knowledge, this work makes the first

attempt to remove mesh and generate mesh simultaneously

using unpaired data. Although [25], [26] propose their

methods to recover a clear face image from a corrupted one,

their methods need to be trained on paired data. Therefore,

our method cannot compare with them. In our work, we will

evaluate each part of the proposed model through designing

various configurations including CycleGAN (CycleGAN),

CycleGAN with the high-order relation-preserving loss (RP-

CycleGAN), CycleGAN with the identity preserving loss

(IPCycleGAN). All three variable configurations are based

on CycleGAN for blind face inpainting task.

The feature extraction network is pre-trained on the MS-

Celeb-1M dataset followed by the instructions in [21]. All

the face images are rotated to two eye points to be horizontal

to overcome the pose variations [21], and then resized to

148x148. Finally, they are randomly cropped into 128x128

and mirrored with 0.5 probability for data augmentation. For

all experiments, all networks are trained using ADAM solver

[10] with batch size 16 and an initial learning rate of 0.0002

for the first 50 epochs. The learning rate is linearly decayed

over the next 50 epochs. The trade-off parameters λ, λ1,

λ2 and λ3 are assigned to 1.0. The order of the relation in

HR(·) is set to 1. Following the way of generating random

patterns in [25], we add a random mask to the clean photo

to generate a MeshFace.

Our generative networks take the architecture of ResNet

[6] with 3 residual blocks and discriminator contains 4
convolutional layers. In the identity preserving module, we

employ the light CNN-29 [21] as feature extractor with

weights fixed during training, which includes 29 convolution

layers, 4 max-pooling and one fully-connected layer. The

output of the fully-connected layer is chosen as the global

identity information with 256 dimensions. We select the

ouput of the last pool layer as the local identity. All the

experiments are conducted with PyTorch framework on a

single GTX Titan X GPU.

C. Evaluation of Verification Results

We evaluate our approach on three datasets, i.e., AR

dataset, MultiPIE dataset and LFW dataset. The recovered

face photos are employed on face verification task according

to the aforementioned test protocol. Moreover, the veri-

fication performances of clean faces and MeshFaces are

presented for fair comparison.

From Table I, we can observe that using MeshFaces

for verification directly declines sharply in performance

on all datasets owing to random mesh. Obviously, when

MeshFaces are processed by blind face inpainting model,

the face verification performance on recovered faces is

significantly improved. This is because HRCycleGAN pulls

the distribution of recovered face images into clear face

images by adversarial learning procedure.

Experiments on AR dataset and MultiPIE dataset are

under constrained condition. From Table I, it is obvious
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Method TPR@FPR=1% TPR@FPR=0.1% TPR@FPR=0.01% PSNR SSIM
Corrupted 59.93 28.40 7.47 14.02 0.4131

Clean 93.73 92.53 89.67 - -

CycleGAN 73.57 58.63 29.20 15.82 0.4470
RPCycleGAN 77.53 63.47 35.87 16.54 0.4690
IPCycleGAN 80.87 61.50 39.57 17.04 0.5152

HRCycleGAN 81.90 64.73 48.03 17.14 0.6831

Table II
VERIFICATION PERFORMANCE ON LFW DATASETS AND INPAINTING RESULTS ON THE TESTING SET. NOTE THAT OUR MODEL IS TRAINED ON

MULTIPIE DATASET, BUT DIRECTLY TESTED ON LFW DATASET.

(a) AR dataset (b) MultiPIE dataset

Figure 3. A visual comparison of the inpainting results on the test set of AR and MultiPIE dataset.

that CycleGAN based mothods earn big advantages over

the corrupted one on two datasets. Especially on MultiPIE,

CycleGAN has improvement about 20% at TPR@FPR=1%,

30% at TPR@FPR=0.1% and 20% at TPR@FPR=0.01%,

but is inferior to RPCycleGAN and IPCycleGAN. The

reason is that RPCycleGAN considers the contextual simi-

larity instead of pixel-to-pixel similarity. For random wavy

lines in MeshFaces, contextual information is useful to

recover clean faces. While IPCycleGAN can grasp more

discriminative identity information than CycleGAN, which

makes recovered face images by IPCycleGAN closer to

the clean faces in a low-dimensional feature space. Our

proposed HRCycleGAN achieves state-of-the-art result on

both datasets, almost doubling the TPR@FPR=0.1% and

even three times at TPR@FPR=0.01% on MultiPIE. Com-

pared with CycleGAN, HRCycleGAN surpasses about 8%
at TPR@FPR=1%, 13% at TPR@FPR=0.1% and 25% at

TPR@FPR=0.01%. That means our proposed HRCycleGAN

not only restores clean face images, but also preserves

identity.

To evaluate the generalization capability of our approach,

we directly perform blind face inpainting task on LFW

dataset under unconstrained condition using model trained

on MultiPIE dataset. From Table II, we can observe that the

performance on LFW dataset is a little lower than on Mul-

tiPIE dataset, about 22% improvement at TPR@FPR=1%,

doubling improvement at TPR@FPR=0.1% and seven times

improvement at TPR@FPR=0.01%. The underlying reasons

may be the cross-database test. Additionally, low-resolution

and large-pose variances further make it harder to recovery

clean face images.

In addition, the corresponding ROC curves for three

datasets are also plotted in Figure 4. It is worth noting

that the performance on clean face images is an upper limit
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(a) AR dataset (b) MultiPIE dataset (c) LFW dataset

Figure 4. ROC curves for AR, MultiPIE and LFW dataset.

for face verification. From Table I, although we train our

model on unpaired data, the gap between our model and

clear face image at TPR@FPR=1% is very small (about 3%
for MultiPIE dataset, 2% for AR dataset), which validates

the effectiveness of the proposed method.

D. Evaluation of MeshFace Generation and Removal

In this section, we conduct extensive quantitative and

qualitative evaluations on AR [14], MultiPIE [4] and LFW

[7] dataset. For MeshFaces removal, Figure 3 presents some

visual results of the compared models. It is observed that

CycleGAN based models can generally recover most of the

corrupted areas. Because CycleGAN based models rely on

adversarial learning to push the distribution of recovered face

images to the real distribution. In comparison, RPCygleGAN

generates much cleaner and sharper images than simple

CycleGAN. It suggests that just using CycleGAN cannot

recover all corrupted areas completely, while RPCycleGAN

with the high-order preserving loss can handle all the

corrupted areas well because it measures the similarity

between neighboring pixels instead of single pixel. However,

as IPCycleGAN with identity preserving loss in feature

space focuses on high level semantic information, it is so

robust to pixel level changes that contain more artifacts

than HRCycleGAN. As a whole, our model can recover

more clean and photorealistic images than other compared

methods due to considering identity and high-order relation

information jointly.

Furthermore, we use the metrics PSNR and SSIM [20]

to quantitatively evaluate the recovered face image quality,

where higher values of PSNR and SSIM indicate better

results. As is showed in Table I, the quantitative results are

consistent to our visual perception.

Generating random meshes is equally important in par-

ticular field (e.g. information proctection), which is also a

method to measure whether model has learnt the random

patterns. Figure 5 shows some visual results of the proposed

method. It can be observed that our model can generate more

random patterns without undermining the subject informa-

tion of image, which has never occurred in training set. It

Figure 5. Visual inspection of MeshFace generation on the test set of AR
dataset.

Figure 6. Some failure examples.

demonstrates that our model learns the distribution of the

random patterns instead of just remembering those patterns

in training set.

Failure Case. Although our method has achieved com-
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pelling results, there exist several failure cases shown in

Figure 6. In the top row, the corrupted areas on clothes and

beard are not recovered. One possible reason is that because

of the color of mesh is similar to the beard, our method

hardly detects the corrupted regions. The bottom row shows

the color deviation, which may result from inconsistency of

color distribution among MultiPIE and LFW dataset.

V. CONCLUSION

In this paper, we have proposed a novel method for

generating and removing MeshFaces simultaneously using

unpaired data. CycleGAN is employed to learn a transfor-

mation between the distributions of MeshFaces and clean

faces. To generate finer texture details and much sharper

images, a high-order relation-preserving loss is introduced to

prevent image smoothness and blurry. Moreover, an identity

preserving loss is developed to preserve global and local

identity information. Experimental results on three datasets

have demonstrated the effectiveness of the proposed method

for unpaired data.
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