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Abstract. Top-down feedback mechanism is an important module of visual
attention for weakly supervised learning. Previous top-down feedback convolu‐
tional neural networks often perform local perception during feedback. Inspired
by the fact that the visual system is sensitive to global topological properties [1],
we propose a global perception feedback convolutional neural network that
considers the global structure of visual response during feedback inference. The
global perception eliminates “Visual illusions” that are produced in the process
of visual attention. It is achieved by simply imposing the trace norm on hidden
neuron activations. Particularly, when updating the status of hidden neuron acti‐
vations during gradient backpropagation, we get rid of some minor constituent in
the SVD decomposition, which both ensures the global low-rank structure of
feedback information and the elimination of local noise. Experimental results on
the ImageNet dataset corroborate our claims and demonstrate the effectiveness
of our global perception model.
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1 Introduction

In recent years, although deep convolutional neural networks (CNNs) have achieved
great performance in computer vision and pattern recognition, these successful algo‐
rithms are mainly based on feedforward neural networks and neglect the top-down
feedback mechanism that is important for the visual processing [2–5], especially for
weakly-supervised or semi-supervised learning.

The top-down feedback mechanism of CNNs has attracted some research attentions
recently, which focus on utilizing the top-down feedback mechanism to further increase
generalization ability of CNNs. Zeiler et al. [6] proposed a deconvolution technique that
projects feature responses back to the input pixel space for visualizing and understanding
CNNs. Simonyan et al. [7] obtained a class saliency map by a single back-propagation
pass with a given label. Springenberg et al. [8] got a clearer class saliency map by
preventing the forward and backward pass of negative gradients. Cao et al. [9] inspired
by “Biased Competition Theory” [10–12] and proposed an original feedback model to
simulate visual attention by inferring the status of hidden neuron activations. Other top-
down feedback methods that realize visualization or localization include [13–15].
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Although these top-down feedback methods have got encouraging achievements,
current methods only perform local perception and ignore the global structure during
feedback. In the process of top-down local perception, neurons cannot be completely
suppressed or activated because of the complex relationship between neurons. The status
of a neuron is not only decided by external stimuli but also influenced by surrounding
neurons. Cognitive neuroscientists explain this phenomenon as the “Visual illusions”
[16], which increases the chance of recognition and detection being interfered with
distractive patterns.

Considering the global topological properties of human visual system [1] and some
works of global view [17, 18] or structural constraint [19–21], we present a novel
framework towards a feedback CNNs to eliminate “Visual illusions” in this paper. Our
key innovation lies in introducing a Global Perception (GP) algorithm, which explicitly
constrains the structure of inter-layers in a global way. By combining the global percep‐
tion with local perception, the distribution of active neurons in hidden layers is compul‐
sively constrained and the phenomenon of “Visual illusions” almost disappeared, as
shown in Fig. 1.

Fig. 1. An illustration of global perception feedback convolutional neural networks. First, we
compare the image gradient after the GP process against the Feedback [9], by using the same pre-
trained GoogleNet trained on ImageNet 2012 classification dataset. Column (a) shows the input
images. Column (b) and (c) show the Feedback results and GP results, respectively. Comparing
against Feedback, the GP method filters out more local noise. Then, we demonstrate the more
powerful discrimination of ResNet. Column (d) shows the GP results based on pre-trained ResNet.
Comparing to GoogleNet, the ResNet has better results.
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In practice, we maximize the score of the target class to suppress non-relevant
neurons and minimize the trace norm of hidden neuron activations to maintain the low-
rank structure of hidden layers. Subsequently, we use the gradient algorithm via back-
propagation to update the status of hidden neuron activations.

The proposed method is evaluated on the ImageNet object localization dataset, with
two widely used CNNs, i.e., GoogleNet [22] and ResNet [23]. We have demonstrated
that our model can get better performance compared with previous feedback models.

2 Model

Current feedforward CNNs [24] mainly consist of convolutional layers, activation func‐
tions (such as ReLU) and pooling layers. Among them, ReLU and pooling layers play
the role of “gates” [9], which filter out signals with minor contributions to final classi‐
fication during the bottom-up propagation of input images. However, because these
gates serve for all classes in the final fully-connected classification layer instead of a
specific category, the activated neurons involve too many noises for a specific category.

In order to merely let the information of the target class pass through, [9] introduced
a “feedback layer”, which is stacked upon each ReLU layer and consists of binary neuron
activation variables z ∈ {0, 1}. The output of the feedback layer y is equal to the Hada‐
mard product of the input x and binary variables z. The activation of these variables z
are decided by top-down information passed from the target class label. However, this
method just performs local perception during feedback and ignores the global properties.
Our model adds an extra global perception on the foundation of [9], as shown in Fig. 2.

Fig. 2. Framework of our global perception feedback convolutional neural networks. First, given
an input image with cluttered background and multiple objects, our networks perform in a bottom-
up manner. Then, via a global perception, our networks inversely propagate the given label
information and updates the status of hidden neuron activations in a top-down manner. Finally,
we get a saliency map that includes class and location information corresponding to the given
label.
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2.1 Image-Specific Class Saliency Visualization

Given an image I, a class k and the hidden neuron activation status z, the class score of
final fully-connected layer Sk(I,Z) is a highly non-linear function of I. Yet, by computing
the first-order Taylor expansion, we can approximate Sk(I, z) in the neighborhood of I0:

Sk(I, z) ≈ Gk(z)
TI + b (1)

where b is the bias term and Gk(z) is the derivative of Sk(I, z) with respect to the image
at the point of I0 and z:

Gk(z) =
!Sk(I, z)

"I

||||I0 ,z
(2)

The size of Gk(z) represents the relevancy between input pixels and relevant cate‐
gories. Meanwhile, by the backpropagation method, the Gk(z) can be calculated and
passed to pixel space to realize the visualization of Gk(z). We also adopt the guided
backpropagation method, which was proposed in [8]. The guided backpropagation
method makes the visual images clearer by masking out the values corresponding to
negative entries of the top gradient that prevents backward pass of negative gradients.

2.2 Optimization of Feedback Layers

The phenomenon of “Visual illusions” seriously affects the effect of top-down suppres‐
sion. In consideration of the low-rank structure of attention map, we introduce a global
perception method for the optimization of feedback layers.

Given image I, a pre-trained classification CNN trained on ImageNet dataset and a
class k, we define activation variables z as zl

i,j,c
 at every neuron (i, j) of channel c, on

feedback layer l. Then we can define an optimization function in the following form:

!(z) = Sk(I, z)
s.t. 0 < zl

i,j,c
< 1,∀l, i, c (3)

where Sk(I, z) is the score of the class k.
Since the core of top-down suppression is to eliminate the irrelevant background,

we impose a global perception method to the optimization function:

!(z) = Sk(I, z) − #‖z‖ *
s.t. 0 < zl

i,j,c
< 1,∀l, i, c (4)

where ‖z‖∗ is the trace norm of z, which is used to enforce the low-rank of the feedback
information.

Since the trace norm is difficult to directly optimize, we introduce an iterative mini‐
mization method for the trace norm [25].
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Let z ∈ Ri×j in the channel c of feedback layer l. The trace norm of z can be shown
as

‖z‖ * =
∑min(i,j)

n=1
$n

(5)

Where $n denotes the n-th singular value of z. The trace norm can also be represented
as

‖z‖ * =
1
2 infg≥0 tr

(
zTg−1z

)
+ tr(g) (6)

The infimum is attained for g =
(
zzT

)1∕2.
By using this lemma, the previous optimization function Eq. (4) can be reformulated

as

!(z) = Sk(I, z) −
1
2#tr

(
zTg−1z

)
−

1
2#tr(g)

s.t. 0 < zl
i,j,c

< 1,∀l, i, c
(7)

According to [25], the infimum over g is then attained for

g =
(
zzT + %I

)1∕2 (8)

In order to optimize the Eq. (7) in CNN, we use an alternating optimization method
to update the parameters z and g. For the Sk(I, z), we can calculate !Sk∕!z by pre-trained
CNN and back-propagation method, while the weights are fixed and parameters z are
updated. For the matrix g, we update it via Eq. (8). For the trace norm, according to the
Eq. (6), the derivation of z is equal to

!‖z‖ *
!z

= g−1z +
(
g−1)Tz (9)

Hence, the gradient of the Eq. (4) is

!!(z)
!z

=
!Sk
!z

−
1
2#g

−1z −
1
2#

(
g−1)Tz (10)

The singular value decomposition of z is UDiag
(
&k
)
VT. We get rid of minor constit‐

uent of &k and get & ′

k
. Hence, the inverse of matrix g is

S−1 = VDiag

(
1

√
& ′
k
+ %

)

UT (11)

We use the gradient ascent algorithm to update parameters z with the learning rate
":
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zt+1 = zt + "
!!(z)

!z

||||zt
(12)

3 Experiment

In this section, we evaluate the effectiveness of our GP feedback model. First, we
compare the visualization results against the previous one [9] from qualitative perspec‐
tive. Then, we conducted experiments of weakly supervised object localization on the
ImageNet 2014 validation dataset from quantitative perspective. Every picture needs
10–50 iterations of suppression process, which is the same as [9]. Implementation details
are included in our subsequent introduction.

3.1 Qualitative Experiments

In this section, we compare the image gradient after the GP process against the previous
one [9] on a set of images with multiple objects. Both of methods are given the same
pre-trained GoogleNet with ground truth class labels. We also compare different visu‐
alization results between GoogleNet and ResNet. All results are shown in Fig. 1.

Comparison of visualization methods. We compare our global perception feedback
method with the local perception feedback method [9] on a set of images with multiple
objects. Both of methods are given the same pre-trained GoogleNet [22] with ground
truth class labels. Without global perception, the status of hidden neurons are only
suppressed by local perception and the visualization results are seriously disturbed by
irrelevant background or objects, as shown in Fig. 1, column (b). Compared with local
perception approach, our global perception effectively eliminates local noise, as shown
in Fig. 1, column (c).

Comparison of CNN classifiers. Since [9] has demonstrated that GoogleNet has better
feature extraction ability than AlexNet [26] and VggNet [24], we just consider these two
popular CNN architectures: GoogleNet [22] and ResNet [23]. Both of them are down‐
loaded from the Caffe Model Zoo [27]. We evaluate our GP feedback method on
GoogleNet and ResNet respectively. The visualizing results are shown in Fig. 1. From
visualizations, we find that ResNet better captures the salient map of target label than
GoogleNet, suggesting that deeper networks have more powerful discrimination.

3.2 Quantitative Experiments

In this section, we demonstrate the effectiveness of our GP feedback model on the
ImageNet 2014 validation dataset, which contains ~50,000 images and corresponding
class and position information. As shown in Fig. 1, given an image, our GP feedback
model has the ability to determine the positions of the target objects. In the localization
task, we get the category of an input image by bottom-up manner and get the bounding

70 C. Fu et al.



boxes of the identified category by top-down manner. A bounding box is considered as
correct if its overlap with the ground truth bounding box is over 50%.

Given an image and its corresponding salience map, [9] merely calculates a tightest
bounding box by simply thresholding to let the foreground area cover 95% energy out
of the whole salience map. This localization method will fail when there are multiple
same objects, as shown in Fig. 3, column (c). Different from [9], we get every target
object position by external contour detection and calculate every accurate bounding box,
as shown in Fig. 3, column (d), which respectively identifies the position of two pandas.

Fig. 3. We select an example to demonstrate the effectiveness of our localization method. Column
(a) shows the original image with two pandas. Column (b) shows the visualization result of GP.
Because Feedback [9] merely calculates a tightest bounding box by simply thresholding to let the
foreground area cover 95% energy out of the whole salience map, the bounding box covers all
pandas, as shown in column (c). We get every target object position by external contour detection
and respectively calculate every accurate bounding box, as shown in column (d).

Comparison of visualization methods. We compare our global perception feedback
method against the original gradient (GT) [7] and the guided backpropagation (GB) [8]
and the local perception feedback method (FB) [9] on the ImageNet 2014 validation
dataset. We first respectively use our external contour detection method and the locali‐
zation method of [9] to conduct FB experiment. Our localization method obtains 61.2%
localization error and outperforms the localization method of [9] (62.6%), suggesting
that our localization method is better. Hence, all methods in Table 1 use our localization
method instead of localization method of [9]. The results in Table 1 show that our global
perception feedback method significantly outperforms other visualization methods, all
on the GoogleNet architecture.

Table 1. Comparison of visualization methods.
GT [7] GB [8] FB [9] GP

Localization error (%) 65.9 64.8 61.2 59.6

Comparison of CNN classifiers. We also compare the weakly supervised localization
accuracies of GoogleNet and ResNet in Table 2, based on our localization method. The
results suggest that ResNet significantly outperforms GoogleNet, which agrees with the
visualization results in Fig. 1.
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Table 2. Comparison of CNN models.
GoogleNet [22] ResNet [23]

Localization error (%) 59.6 58.8

4 Conclusion

In this paper, we proposed a global perception model for feedback convolutional neural
networks, which further eliminates irrelevant information by forcing the low-rank struc‐
ture of the responses for hidden layer neurons during the feedback inference. Using GP,
we get more discriminative saliency maps correspond to high level semantic labels.
Good performance of the method has been demonstrated experimentally on the
ImageNet 2014 object localization challenge with weakly supervised information.
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