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ABSTRACT Fiducial markers are images or landmarks placed in real environment, typically used for pose
estimation and camera tracking. Reliable fiducials are strongly desired for many augmented reality (AR)
applications, but currently there is no systematic method to design highly reliable fiducials. In this paper,
we present fiducial marker optimizer (FMO), a tool to optimize the design attributes of ARToolKit markers,
including black to white (B:W) ratio, edge sharpness, and information complexity, and to reduce inter-marker
confusion. For these operations, the FMO provides a user friendly interface at the front-end and specialized
image processing algorithms at the back-end. We tested manually designed markers and FMO optimized
markers in ARToolKit and found that the latter were more robust. The FMO will be used for designing
highly reliable fiducials in easy to use fashion. It will improve the application’s performance, where it is
used.

INDEX TERMS Fiducial markers, ARToolKit, augmented reality, marker tracking, robust recognition.

I. INTRODUCTION
Augmented Reality (AR) is a type of mixed reality where
computer generated information is superimposed over the
real environment to enrich visual information and/or enhance
visibility to user [1]–[3]. AR aims to be widely utilized in
various applications. For example, AR-based teaching and
learning [4], [5], robot path planning [6], and live confer-
ences [7]. Similarly, AR is used inmedical treatments, games,
military training, maintenance, manufacturing, repair, and
engineering applications [8].

Fiducial markers are real objects or images in a physical
scene that are traced and recognized through a video cam-
era and compared with existing markers in a library [9].
These markers are used for camera tracking and pose estima-
tion [10]. A number of indoor computer vision applications
are equipped with marker tracking [3]. It is a low-cost method
for pose estimation as several AR systems generally use video
cameras.

ARToolKit is open sourced, with simple configuration
and easy documentation and mostly used in a number of
AR applications. It is comparatively faster in execution than
ARToolKitPlus and ARTag [11], [12]. Figure 1 shows certain
ARToolKit markers with virtual overlying objects.

FIGURE 1. Examples of ARToolKit markers. Virtual teapots are overlaid
(far left).

Issues remain regarding ARToolKit in terms of user guide-
lines to improve marker quality and tracking. A few patterns
for fiducial markers are given with ARToolKit. However,
clearly defined constraints for designing high quality markers
are not in place.
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Several alternative design decisions are available.
However, a user may become confused on which design to
use (for example, the quantitative width of the outer border
of amarker and number of internal black objects in themarker
body). Quantifying how objects are desired is not simple.
Furthermore, a challenging decision for a user is ensuring that
the newmarker has a certain degree of dissimilarity with each
existing marker in the library. To the best of our knowledge,
such a marker designing tool that ensures marker distinctions
in the library is not available.

In a previous research [13], we experimentally evalu-
ated eleven factors and analyzed their effect on marker
recognition. We tested these factors in different values and
identified their optimal value(s) [13]. Subsequently, we pro-
posed simple algorithms for distinct and sharp-edged
markers [14] and a marker classification system to minimize
inter-marker confusion [15]. Similarly, we proposed an algo-
rithm for marker complexity computation and border control
in a previous study [16]. However, the study has certain
limitations, such as lack of detailed experiments. Further-
more, we used simple methods which may fail at a certain
point. End users experienced difficulty because the codes lack
proper implementation. Furthermore, an easy-to-use GUI
tool is unavailable for end users. Lastly, a number of thresh-
old values were used without experimental proof of their
optimality.

In this paper, we further studied three factors related to
marker design (i.e., sharpness of edges, black to white ratio,
and complexity of interior information) and designed an easy-
to-use GUI tool called fiducial marker optimizer (FMO).
The FMO has an algorithm to ensure marker distinction
and reduce inter-marker confusion. Furthermore, it also has
a marker classifier module, which helps in reducing inter-
marker confusion.

The FMO is developed for designing high quality markers
with minimal inter-marker confusion and fast and accurate
detection. It is a GUI based tool that enables users to upload
each marker to the library and pass it through a step by
step procedure. This process optimizes the attributes related
to marker design, such as B:W ratio, sharpness of edges,
and complexity of information, and reduces inter-marker
confusion. The FMO could be used by ARToolKit users to
design highly reliable and robust fiducial markers for accurate
recognition. In this regard, we will provide online access to
the FMO.

The remainder of the paper is structured as follows.
Section II describes existing work on ARToolKit and fiducial
markers, section. Section III presents the FMO in detail and
section. Section IV describes the experimental study and
results. In section V, the paper is concluded with limitations
and future plans.

II. RELATED WORK
A number of studies on reliability of marker recognition,
and their application and use are available. This section will
review a few existing studies on reliability, usage, and issues

in fiducial markers.Wewill also discuss ARToolKit and other
systems for marker tracking.

A. RATING A FIDUCIAL MARKER’S QUALITY
A marker which is recognized in an easy and reliable way
under various circumstances should be rated as a good
marker [17]. Various applications have different require-
ments. Hence, the marker used in each application has its
parameters for quality rating [17]. In either case, a systematic
designing method to devise a robust fiducial marker is desir-
able [9]. High quality and reliable markers must meet the fol-
lowing criteria. The marker must be distinct from the context
background, a unique entity in themarker library, passive (not
covered with electronic materials), fast in detection, robust
in low and high light, and detectable in noisy environments
using certain robust algorithms for image processing [9].
Meeting these criteria is a challenging task in AR application
for fast and accurate recognition with reasonable cost and
minor changes to the desired applications [3].

The quality of markers can be rated in terms of high
true detection rate and minimal false detection rate. In addi-
tion, increasing the library size without inter-marker confu-
sion is also considerable. For example, in a previous work,
Sun et al. [2] proposed QMarkers and compared its per-
formance with ARToolKit markers. For comparisons they
used marker recognition rate and its reliability in tracking.
They have improved the detection rate as shown in their
experimental study [2]. Similarly, diagonally connected com-
ponent markers introduced in another study [18], are recog-
nized without unwrapping for fast detection. Neto et al. [19]
used multi-color markers to develop up to 65,000 distinct
markers with considerable accuracy. They mentioned that
low-quality cameras may cause miss-detection of the mark-
ers. Furthermore, they concluded that marker size should be
increased with the increase in library size to ensure their
distinction [19]. However they gave no proof experimentally.

Fiala [9] proposed eleven terms for evaluating a marker
tracking system. These terms are given as follows. 1. The
rate at which a marker is reported as present where it is,
in fact, non-existent (false positive rate), 2. the rate of inter-
marker confusion (ratio of wrong ID’s reported to the total
number of ID’s reported), 3. the rate at which the system
misses the detection of a marker which present in front of
camera (the false negative rate), 4. the marker minimal size
(the possible minimal size of the marker which is reasonable
for detection) 5. the characteristics of vertex jitter (i.e. noise
ratio in marker) 6. the library space (the total number of
fiducial stored as templates in the library), 7. handling the
change in lighting conditions, 8. handling occlusion, 9. the
performance speed, 10. perspective support and 11. handling
photometric calibration.

B. SOME MARKER TRACKING SYSTEMS
Several systems are available for marker tracking,
such as CyberCode [20], Cantag [21], ARTag [12],
Vuforia [22], AprilTag [23], AprilCal [24], ArUco [25],
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ARToolKit [26], [27] and ARToolKitPlus [28]. ARToolKit
was demonstrated publicly for the first time at SIGGRAPH
in 1999 [27]. CyberCode [20] was available before
ARToolKit, whereas ARTag and ARToolKitPlus were later
introduced [29].

The main advantages with ARTag are low rate of
inter-marker confusion, low rate of false negativity, and
robustness in various lighting and partial occlusion [29].
The disadvantage with ARTag is computational complexity
which making it incompatible with mobile phones and mini
devices [17]. Compared to ARTag, ARToolKit is faster in
terms of marker recognition [12]. ARToolKitPlus suffers
from slow processing [11].Meanwhile, the ARToolKit source
code is freely available. Although other toolkits provide free
access (to executables), they are not open source [11]. Olson
presented an efficient digital coding system called AprilTag
which can work robustly in occlusion, warping, and lens
distortion. Although it is also open source like ARToolKit,
AprilTag remains comparatively expensive in terms of
computation [23].

ARToolKit is widely used in several AR and other interac-
tive applications due to its source code availability [9]. It is
compatible with various operating systems, such as PCLinux,
SGI IRIX, Windows, Alao Mac, Android, and iOS [26].
Furthermore, ARToolKit is fast in processing. Hence, it is
feasible for real-time interaction [11]. Although other toolkits
also came into existence and may have their advantages,
ARToolKit remains a wide-spread system. Recent research
on ARToolKit markers [13], [30]–[34] and their use in dif-
ferent AR applications [35]–[39] highlights the ARToolKit’s
significance.

Various attempts have been made to design robust markers.
In this regard, Vuforia [22] provided 512 frame markers
which allowed users to scale the markers according to the
desired application. Similarly, ARToolKit gives a number
of sample patterns for marker designers [26]. In addition,
online marker generating tools [40]–[42], are available. How-
ever, they cannot enhance tracking reliability. In a previous
study [40], users were able to store the pattern of the printed
markers using a camera. Similarly, [41] and [42] provided
limited editing in marker images, web-based text areas, and
submit buttons. Recently, Rabbi et al. [43] proposed amethod
to automatically create layered markers. The generated lay-
ered markers extended the marker tracking range to long
range AR applications. However, their method is limited
to layered markers only. To reduce inter-marker confusion,
classifyingmarkers is also helpful. For example, Badeche and
Benmohammed classified Latin characters for ARToolKit
markers to reduce inter-marker confusion [31]. However, they
did not propose a generalized classification algorithm.

C. EXISTING PROBLEMS WITH MARKER DESIGNING
Although ARToolKit is easy to use and has proper docu-
mentation, the design and recognition of markers continue
to hold a number of issues and challenges. Making deci-
sions while designing a marker lacks a certain level of

assistance. For example, the size of an outside border can
be thick or thin or black objects in the marker body can be
increased or decreased. These decisions alter themarker com-
plexity (see Figure 2), which creates difficulty in designing
high quality markers. A key challenge for a user in marker
designing is to ensure that the newmarker has a shape distinct
from all existing markers in the library. Handling this issue is
very challenging without any automatic module. To the best
of our knowledge, a mechanism to ensure marker distinction
in the library and reduce possible inter-marker confusion does
not currently exist.

FIGURE 2. Example of markers with varying black border sizes.

Similarly, there are very limited guidelines [26] without
any quantitative measurements for designing reliable mark-
ers. The ARToolKit suffers from inter-marker confusion,
false positivity, and false negativity due to these issues.
The reliability of the ARToolKit marker tracking varies
from application to application and depends on various fac-
tors (such as the design of markers, library size, and light
intensity) [13].

III. FIDUCIAL MARKER OPTIMIZER (FMO)
The FMO is a GUI-based tool developed in MATLAB to
optimize the design attributes of markers, increase detection
rate, and reduce inter-marker confusion. Its design attributes
are as follows: black to white ratio, which is the ratio of the
number of black pixels in the border to that of the interior
white region (Sec. III-A); information complexity, which
represents the complexity of black objects in the interior
white region (Sec. III-B); and edge sharpness, which is the
abruptness of the intensity of edge changes (Sec. III-C). The
FMO also removes noise from the marker and checks for
similarity among the markers of the library to predict inter-
marker confusion. Figure 3 shows amodel of the FMO,which
represents the overall procedure of marker quality enhance-
ment and its submodules.

First, when a marker is uploaded, the FMO checks the
optimality of the marker’s design attributes and performs
the necessary editing operations, such as border optimization
(B:W ratio), edge sharpness, and information complexity.
The three operations may be performed in any order. Before a
marker is added to the library, its similarity is checked against
all existing markers to predict inter-marker confusion. Image
correlation is used to provide a quantitative measure of the
similarity between any two markers. This module assigns a
degree of similarity to IMC (inter-marker confusion) variable
ranging from [0, 1], where 0 means no similarity and 1 means
exactly the same marker. If the IMC is greater than or equal
to a given threshold, then conflict with a similar marker
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FIGURE 3. FMO model representing the overall procedure of marker quality enhancement and its submodules.

is prompted. These steps comprise the prediction of inter-
marker confusion (Sec. III-D). Consequently, the marker
shape must be changed to ensure that it is distinct from all
existing markers. In the case of no confusion (IMC < T),
the user is allowed to add the marker into the library, where it
is ready to be used by ARToolKit. These steps are discussed
in more detail in the following subsections.

A. BORDER OPTIMIZER
The border optimizer is used to optimize the black to white
ratio. The B:W ratio is the number of black area pixels to that
of the white area of the marker. For a marker having length
of one side S and border b, the B:W ratio can be calculated
as in equation 1.

B
W
=

4b(S − b)

(S − 2b)2
, (1)

By default, the ARToolKit assumes the border size to be 25%
of its width (Figure 4) [27]. However, variation in border
size affects tracking [13]. The optimal size for borders should
range from 17% to 34% as identified in a previous study [13].

FIGURE 4. Structure of an ARToolKit marker, an example of the 25%
default border [27].

The border is changed via a slider in the FMO. Translating
the slider toward the left or right causes changes in the border
length. When a border is set using the slider, the user presses
the Confirm Border button of the FMO to apply the changes
along the length of the marker (see Figure 5). To optimize
border setting, Algorithm 1 is implemented at the back-end
of the FMO which will be discussed below.

FIGURE 5. Front-end GUI of the FMO. The red color of the interior region
of the marker indicates that the current width of the border is not optimal.

Initialization takes place in the first step, where the slider
position is mapped into the border length. The marker is
stored in binary version and the color for the interior region
of the marker is set. A white color denotes an optimal bor-
der while red shows a non-optimal one. The border length
is temporarily applied to the marker in the second step.
Similarly, the marker preview is shown in the third step.
Figure 5 presents a preview of the marker (with no optimal
border). In this case, the user will change the border to
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Algorithm 1 Optimizeborder(CM, slidervalue)
1: Initialization :

(i) Lborder ← b slidervalue100 ∗ CM ’s lengthc
(ii) m0 ← Convert2binary(CM )
(iii) if(slidervalue ∈ [17 34])

Set font color: White
else

Set font color: Red
end if

2: m0 ← setborder(m0,Lborder )
3: Preview(m0, color)
4: if (Pressed confirm)

(i) if (color is red)
Show message : ‘‘Your border is not optimal’’

else
Show message : ‘‘Your border is optimal’’

end if
(ii) CM ← m0
end if

5: End

reach an optimal border, and apply the border permanently
by pressing the FMO Confirm Border button. In the fourth
step, a checker is used to validate whether the black to white
ratio is optimal or not and show a corresponding message.
Furthermore warning/guiding messages come in three types:
(1) border width is smaller than threshold, (2) border width is
optimal, and (3) border width is greater than threshold.

B. INFORMATION COMPLEXITY CONTROL
The interior objects in the marker body can vary in num-
ber or size (see Figure 6). With less information, creating
distinct markers becomes difficult if the library size is large.
Meanwhile, complex information may cause slow detection.
To solve this problem, the FMO can check for information
complexity. For this purpose, we developed and implemented
a threshold-based algorithm (i.e., algorithm 2), which works
as described below.

FIGURE 6. Example markers of information complexity. Information
complexity is increasing from left to right.

First, the white region of the current marker (interior
region) is stored in A variable. Then, the number of zeros
and ones of the binary marker are counted which shows
black and white pixels respectively. In the fourth step, marker
complexity is computed as the ratio of pixels, i.e., number
of zeros (black) to the total number of pixels in the interior
region. In the fifth step, the number of intensity changes is
counted because certain markers may have less black pixels
but are considered complex because of the large number of
small objects in the interior white region. In intensity changes,

Algorithm 2 ComplexityChecker(CM, T0, T1)
1: A← RemoveBorder(CM)
2: black area← No-of-zeros(A)
3: white area← No-of-ones(A)
4: complexity← black area

total area
5: intensitychanges← CountIntensitychanges(A)
6: if ((complexity ≥ T0) OR (intensitychanges ≥ T1)) then

Print ‘‘Marker complexity is greater than optimal’’
else

Print ‘‘The marker complexity is optimal’’
end if

7: End

we count the occasions when adjacent pixels change from
1 to 0 or 0 to 1. We divided the number of changes by the
total number of pixels in the interior region of the marker
(excluding the border). The process is repeated row-wise as
well as column-wise. Lastly, the maximum value is selected.
In the next step, these computed values are checked with
the given thresholds. A warning message is displayed if the
complexity of the marker is not optimal, which prompts the
user that it may cause problems in detection. The threshold
values are identified in Section IV.

C. EDGE SHARPNESS AND NOISE REMOVAL
Edge sharpness and noise removal are two of the important
operations of the FMO. Noise refers to the small white spot(s)
in the black area or small black object(s) in the white area
of a marker. It may be caused by marker editing in the
FMO or during a prior design of the marker. In this step,
the current marker is first converted into a binary version.
Then, we use morphological operators (as used in another
study [44]) to remove small objects from the binary image.
For this purpose, we used algorithm 3.

Algorithm 3 SmallObjectsRemoval(CM)
1: m0 ← im2bw(CM )
2: m0 ← bwareaopen(m0, 300, 4c)
3: m0 ← bwareaopen(∼ m0, 300, 4c)
4: m0 ← bwareaopen(m0, 600, 8c)
5: CM ← bwareaopen(∼ m0, 600, 8c)
6: End

In the first step, the gray pixels are removed by convert-
ing the current marker CM into binary (black and white).
It also make the edges sharper as it makes abrupt change in
intensities. In 2nd step, all spots of with pixel count ≤ 30 in
4-connected are removed. Then, the marker is inverted pixel-
wise (i.e., pixels are converted from 0 to 1 and from 1 to 0).
Noise is extracted again in the same manner (regions with
≤ 30 pixels 4-connected). In the next step, regions with a
pixel count ≤ 60 in 8-connected are also removed. are also
removed. In the fifth step, the marker’s pixels are inverted
again to retain their original shape, whereas regions with pix-
els ≤ 60 in 8-connected are removed again. The second and
fifth steps remove white objects in black areas of the marker,
whereas the third and fourth steps remove black objects from
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the white region. Figure 7 illustrates the procedure step-by-
step. To better understand the steps, we passed a noisy marker
to the algorithm.

FIGURE 7. Steps in the edge sharpness and noise removal algorithm.
(a) Input marker. (b) Edge sharpness. (c) Noise removal from border
(4-connected pixels). (d) Noise Removal from interior region (4-connected
pixels). (e) Noise removal from interior region (8-connected pixels).
(f) Noise removal from border (8-connected pixels). Note: in (d) and (e),
the light colored borders have no meaning. They are used only for
visibility in the paper.

D. CHECKING INTER-MARKER CONFUSION
Ensuring that the current marker is unique in shape and
distinct from other markers in the library is a very challenging
task. The FMO has an algorithm that computes the degree of
similarity between the current and individual existing mark-
ers.When the similarity (with eachmarker) is smaller than the
given threshold (T = 0.46), a message with no confusion is
printed. Otherwise, if similarity is above or equal to the given
threshold, then themost similarmarker (MSM) alongwith the
computed value for similarity is printed (see algorithm 4).

Algorithm 4 InterMarkerConfusion(CM, Lib(n), T)
1: Initialize variables :

(i) key1← Convert2binary(CM )
(ii) Corrmax ← 0
(iii)MSM ← NULL

2: for i← 1 to |n| do
CR← CheckConfusion(key1,Lib(i))

// Call to algorithm 5
if (CR > Corrmax) then

Corrmax ← CR
end if
if(CR ≥ T) then

MSM ← Lib(i)
end if

end for loop
3: if(Corrmax ≥ T) then

(i) Showmarker(MSM)
(ii) Print ‘‘Degree of similarity =’’. Corrmax
end if

4: End

Current marker CM, marker library Lib(n), and the rec-
ommended similarity threshold T are given as input to the
algorithm. The current marker is checked against each exist-
ing marker in the library, then the MSM is displayed (if it
exists). In the first step, the variables key,MSM , and Corrmax
(maximum correlation) are initialized with the binary version
of the marker, NULL value, and 0, respectively. In the second
step, the key marker (i.e. current marker in binary version)

is checked and compared against each existing marker (in
the library) via CheckConfusion() algorithm (i.e. algorithm 5,
which will be described in detail). Here Lib(i) means the ith

marker in library, whereas CR shows the similarity (corre-
lation) between two markers. Here, a marker having a high
similarity with the current marker is found and its degree of
similarity, i.e., maximum correlation, is stored in Corrmax .
In the third step, if the condition (Corrmax ≥ T ) is true, then
the most similar marker with corresponding value of Corrmax
are printed. In other words, the algorithm will prompt that
the current marker (key) has the most similar marker in the
existing library with a value of degree of similarity equal
to Corrmax . For example, adding the two markers shown
in Figure 8 causes inter-marker confusion in the library.
Therefore, the FMOwill show both markers with their degree
of similarity (0.64533) to prompt the user and avoid inter-
marker confusion.

Algorithm 5 CheckConfusion(key, marker)
1: Rotating the marker:

(i) A← marker
(ii) B← Rotate(marker, 900) // Rotated by 90o

(iii) C ← Rotate(marker, 1800) // Rotated by 1800

(iv) D← Rotate(marker, 2700) // Rotated by 2700

2: Similarity computation:
(i) cr1← corr2(key,A)
(ii) cr2← corr2(key,B)
(iii) cr3← corr2(key,C)
(iv) cr4← corr2(key,D)
(v) cr ← max(cr1, cr2, cr3, cr4)

3: Return cr
4: Theend

FIGURE 8. Example of two similar markers having a 0.64533 degree of
similarity with each other (as calculated in FMO). If one of these markers
already exists in the library, the FMO will not allow user to add
the second one.

The algorithm for computing the confusion between mark-
ers is given as algorithm 5, which is described below.

First, the marker (from library) is stored in variable A.
Then the marker is rotated with 900, 1800 and 2700 (see
Figure 9) and stored in variables B, C and D respectively.

FIGURE 9. Marker from the library is rotated in different angles to
compute its similarity with the current marker.

22426 VOLUME 6, 2018



D. Khan et al.: Robust Tracking Through the Design of High Quality Fiducial Markers: Optimization Tool for ARToolKit

Then, we use image correlation to explore the similarity of
the key (i.e., binary version of the current marker) with the
abovementioned rotations of a marker. Finally, the algorithm
displays the computed maximum similarity

E. ARToolKit MARKERS CLASSIFIER
Marker classification also helps to minimize inter-marker
confusion [31]. The ARToolKit marker classifier is an addi-
tional capability in the FMO to ensure marker distinction and
minimize the rate of confusion which occurs in the library.

In FMO, we implemented an algorithm which can be used
to group the markers of the library into a specific number
of distinct groups (i.e., classes). Each group will contain
markers that have similar shapes, whereas markers from two
different groups will be sufficiently distinct from each other.
Each marker in the library is individually compared with all
markers. The quantitative value for the similarity between
two markers is stored. These quantitative values are stored in
anN×N table (see Table 4). Then the markers in the table are
grouped into k distinct groups by calling the k-means algo-
rithm. We recommend picking markers from different groups
to minimize the rate of expected confusion. A marker from a
small-sized group is comparatively distinct in the library.

1) CLASSIFICATION ALGORITHM
The classification algorithm can be used to classify the
markers of the ARToolKit into a given number of groups (see
algorithm 6).

Algorithm 6 Classify (Library[n], k)
1: N ← CountMarkers(Library[n])
2: for i← 1 to N1 do

(i) key.marker ← Library[a]
(ii) for j← i to N do

(*) marker2← Library[j]
(*) cr ← CheckConfusion(key, marker2)
(*) Results[i][j]← cr
(*) Results[j][i]← cr

end inner for loop
end outer for loop

3: List ← k-means(Results, k)
4: return List
5: end

This algorithm takes all the markers in the library
(Library[n]) and the k value (i.e. number of classes) as input.
IIn the initial step, the algorithm counts the total number
of markers in the ARToolKit library. In the second step,
all markers along with their numerical values for similarity
between any two markers are added to the N × N Table i.e.
Results (see example in Table 4). Here similarity is computed
by calling algorithm 5), i.e. CheckConfusion() algorithm.
In the third step, the markers are grouped into a given num-
ber (k) of distinct groups. Lastly, the groupedmarkers are sent
as output in step 4.

Table 4 depicts the results for the classification of seven
markers into four groups. The marker names are listed in the

top row as well as in the left column, whereas the number of
groups is placed in the bottom row. The remaining cells of
the table are filled with the numerical values of similarities
between each pair of markers. For every (i, j) and (j, i) cell,
the numeric values of the similarity between the ith and jth

marker are added.

IV. EXPERIMENTAL STUDY
We evaluated several aspects of the FMO in seven sets of
experiments. During the experiments, the frame rate, light
intensity, and other factors which affect tracking were kept
constant in their optimal ranges as identified in our previous
study [13]. The marker has to be moved continuously in front
of the camera during the experiments (see Figure 10). In a left
to right motion, one complete cycle (i.e., left to right and back
to left from right) was 1m in lengthwith 45 cycles permin (the
average marker speed) [13]. Meanwhile, one complete cycle
in to and fromotionwas 0.2m. For each 5-minute experiment,
the left to right motion lasted 4 min, while the to and fro
motion lasted 1 min. The same time ratio (4:1) for both types
of movement was used in all experiments.

FIGURE 10. Experimental setup. The marker is in a continuous movement
in front of the camera and the results (i.e., number of identifications and
CF values) are continuously being stored in a text file.

(1) First, we manually designed three markers and passed
them through the FMO for quality enhancement and obtained
the output. We individually tested the original and optimized
markers in the ARToolKit.

Figure 11 shows the three markers, where the first row
represents manually designed markers while the second row
represents the FMO optimized markers. Marker 2 has been
edited further to optimize its complexity of information.
During the experiments we noted the marker’s true detection
for 5 min. The library size was 20 markers. Hence, the true
identification of marker A is validated if the camera recog-
nizes marker A when it is flashed in front of the camera.
Similarly, if marker A is recognized as marker B or any other
marker in the library, then it is considered false identification.

The confidence factor (CF) values were also recorded
for each instance of marker detection whose average was
calculated for each experiment. CF is a quantitative value
in the range [0, 1], which represents the level of similar-
ity between the detected marker and corresponding stored
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FIGURE 11. Three markers used for testing (i.e., experiment 1). From top
to bottom: manually designed and FMO optimized markers. From left to
right: markers 1, 2, and 3.

template. It highlights the endurance level of ARToolKit for
the current detection i.e., the level of similarity between the
marker and its template as determined by ARToolKit. A high
value of CF denotes a high level of confidence, whereas a
small value denotes less similarity. The results are compared,
and a considerable enhancement was found in the average CF
values as well as marker detection rate for markers that were
optimized by the FMO (see Figure 12).

FIGURE 12. Results of experiments on the input and output markers of
the FMO.

(2) The second experiment aimed to examine the meaning-
ful relationship between the numerical value for computing
marker similarity used in FMO and that of the ARToolKit.
In short, we intend to show the semantical relationships of
the FMO and ARToolKit marker matching methods. In this
regard, we used 10 markers as a testing set (see Figure 13).

FIGURE 13. Markers used in experiment 2 with calculated degree of
similarity with the key marker.

We designed one marker as key marker which is translated
and rotated in front of the video camera for recognition via
ARToolKit. The library contained five ARToolKit markers,
namely, a key marker, another marker picked from the testing
set, and three additional markers (to increase library size).

The key marker was rotated and translated in front of the
camera for 10 min. We stored the number of instances that
the marker is detected as the key (true detection) and the
number of instances that it is detected as the testing marker
(confusion with testing marker) markers and the total number
of detection (see Figure 10). Similarly we replaced the testing
marker with another marker from the testing set and repeated
the experiment. In this manner the same experiment was re-
executed for each of the testing marker.

In each experiment we computed the percent inter-marker
confusion (i.e. confusion due to testing marker) with equa-
tion (2), where ‘

∑
I (test)’ shows the number of identifica-

tions as testing marker and ‘
∑
I (N )’ shows the total numbers

of identifications.

%inter-marker confusion =

∑
I (test)∑
I(N )

∗ 100, (2)

Similarly, the similarity of the key marker with each testing
marker was also computed in the FMO. Marker similarity
equal to 1 means the two markers (key and testing markers)
have the same shape. It is to be noted that, the FMO crops
the interior white region of a marker for calculation of its
degree of similarity with the key marker. Figure 13 presents
the markers used in this experiment along with the calculated
degree of similarity with the key marker. Table 1 shows the
results while Figure 14 shows the graph between the degree
of similarity of the FMO and % inter-marker confusion in
the ARToolKit; which highlight that marker similarity com-
puted via FMO has a meaningful match with the inter-marker
confusion in ARToolKit. Therefore, this module is feasible to
control inter-marker confusion in ARToolKit.

TABLE 1. Results of experiments on the inter-marker confusion. Here
degree of similarity means the similarity between key marker and testing
marker calculated in FMO, whereas IMC means inter-marker confusion
caused by testing marker (in ARToolKit).

Furthermore we observed a rapid increase in inter-marker
confusion with the increase in the degree of similarity of up
to 0.46. Hence, this value is recommended as a threshold for
inter-marker confusion

(3) The objective of these experiments was also the
same for experiment 2. The % inter-marker confusion in
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FIGURE 14. Graph between degree of similarity provided by
FMO and % inter-marker confusion in ARToolKit.

ARToolKit was replaced by CF value. We used 40 markers
in 20 pairs of markers. We measured the degree of similarity
between the two markers in each pair in FMO. Similarly,
to measure the CF value (representing the similarity between
the two paired markers in this case, i.e., false positivity of one
marker caused by the second one), we store the pattern of one
marker in ARToolKit and brought the second one in front of
the camera during testing. We repeated the same experiment
for the 20 pairs. To get further valid results, we calculated the
average of the positive CF values generated in a two-minute
experiment for each pair (instead of a single CF value).
Figure 15 plots the results, which shows the validity of the
FMO prediction on inter-marker confusion for ARToolKit.

FIGURE 15. Graph between degree of similarity provided by FMO and the
average CF values generated by ARToolKit.

(4) The fourth experiment intends to examine the common
mistakes while manually designing fiducial markers. For this
purpose, we asked five ARToolKit users to design a library of
twenty distinct markers. The library made by each user was
then passed through FMO and several shortcomings/mistakes
were captured. Table 2 shows the results, which denotes that

TABLE 2. Results of experiments on capturing mistakes of the ARToolKit
users

ARToolKit users are making many errors in designing fidu-
cialmarkers and that FMOcan reduce these errors. The values
in Table 2 show the number of markers. The optimal values
are the recommended thresholds for the desired attributes.

(5) We asked the same users in experiment 4, to design
these markers using FMO and perform experiments similar to
experiment 1. In this manner, one marker was selected from
the twenty markers as testing marker (in front of camera)
and the library size was 20 markers. The experiments were
repeated for each user in both cases (manually designed,
as well as FMO optimized markers). Table 3 lists the results
of each user. The average results have been graphically shown
in Figure 17, which show a considerable improvement in all,
three parameters were used (true identification, false identi-
fication, and CF values).

TABLE 3. Results of experiment 5: Comparison of manually designed and
FMO optimized markers.

(6) These experiments aim to identify the recom-
mended threshold values for complexity and intensity change
(T1 and T2) used in algorithm 2. In this regard, we used nine
markers which have various complexity levels and tested each
of them in front of the camerawith a library size of 20markers
(similar to experiment 1). During the experiment we counted
CF values, true identifications, and false identifications for
5 min. Figure 16 shows the results which imply that marker
quality is slightly affected with the increase in complexity up
to 0.76. No major effect on identification occurs below this
value. Hence, a value of 0.76 is recommended as complexity
threshold T1.
Similarly, we also repeated the same experiments for nine

markers which have different intensity changes and stored
the desired results. Figure 18plots the results, which show
that quality is significantly negatively affected as inten-
sity change is increased after 0.016; which means 16/1000
(i.e., 16 intensity changes per row of 1000 pixels).
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FIGURE 16. Experiments on marker complexity. Top: Graph between
marker complexity and average CF values. Bottom: Graph between
marker complexity and number of identifications in 5 minutes.

FIGURE 17. Comparison of the manually designed vs FMO optimized
markers (by end users). The average CF value for the manually designed
markers was 0.80262 whereas for the FMO optimized markers was
0.76752 (calculated from the experiments by 5 users for 5 minutes each).

Hence, the recommended value for intensity change thresh-
old T2 is 0.016 (used in algorithm 2).

(7) These experiments are concerned with testing the algo-
rithm used for marker classification (i.e., Algorithm 6).
Seven markers (see figure 19) were divided in the four dif-
ferent groups using Algorithm 6.

The four classes according to algorithm were:
Class 1: A
Class 2: B and D

FIGURE 18. Experiments on intensity changes. Top: Graph between
intensity changes and average CF values Bottom: Graph between
intensity changes and number of identifications in 5 minutes.

FIGURE 19. Seven markers used for testing the classification algorithms.

Class 3: C and G
Class 4: E and F
Similarly for k = 3 the results were:
Class 1: A
Class 2: B, E and F
Class 3: C, D and G
For k = 2, the grouping was:
Class 1: A, B, E and F
Class 2: C, D and G
The marker from the smaller-sized Class when the total num-
ber of Classes (k value) is greater will be additionally distinct
in the library. For example, in the above experiments marker
A is more distinct than the 7markers. For k = 4, the Class size
is 1; although its class size is 4 when k = 2. The described
distinction of marker A can also be understood, as shown

TABLE 4. A 7 × 7 Results matrix, classifying seven markers A, B, C, D, E, F,
and G, into four distinct classes.
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in Table 4, where the maximum similarity of marker A with
each value for the rest in the table is less than the remaining
values in the Table.

V. CONCLUSION
We designed a tool called FMO to design high quality
ARToolKit markers. The FMO enables the marker designers
to individually upload all markers of the library and optimize
their design attributes, such as B:W ratio, edge sharpness, and
information complexity, and checks for possible confusion
with other markers of the library. The reduction of inter-
marker confusion is the most important factor in this study
which has been achieved by ensuring marker distinction in
the library. Similarly, to make markers increasingly visible
is also a key factor. The visibility of the marker has been
enhanced through removal of noise and edge sharpness. FMO
provides various cognitive aids for marker designers at vari-
ous stages of marker enhancement. In addition, the marker
classifier module classifies the markers into a given number
of classes based on their degree of similarities for reduction
of inter-marker confusion. The key achievements of the FMO
are: (1) reducing inter-marker confusion, (2) increasing true
detection, and (3) minimizing false detection. The FMO will
be used for designing reliable markers in an easy to use
fashion and, as an outcome, will considerably improve the
efficiency and performance of desired applications.
Limitations: The limitations in the current study are listed

below. (1) A number of toolkits exist for marker tracking
(as discussed in Section II)). However, our study specifi-
cally focuses on ARToolKit. Although the importance of
ARToolKit is evident based on recent research, other toolkits
are also meritable. Conducting a general study of all marker
based systems is, therefore, desirable. (2) This study is limited
to black and white markers. Other ARToolKit markers also
use colors. (3) For certain markers, such as those that contain
complex information, FMO only detects the optimality of
attributes (such as information complexity) without auto-
matically optimizing the marker. In this case, the user will
manually edit the marker (using an external tool). Hence,
the input and output markers may be completely different in
structure (see marker 2 in Figure 11).
Future work:We aim to generalize and extend the scope of

our study to all marker tracking systems. In addition, we are
also interested to introduce a new marker-based interactive
toolkit with voice and motion detectors to increase reliability.
The additional detectors will extend the functionality of the
toolkit and overcome the problems of occlusion and light
intensity.
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