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A B S T R A C T

Enabled by the big data driven user profiling and precision bidding techniques, online programmatic advertising
markets have evolved from the traditional website-buying or ad-slot-buying models to a fine-grained and real-
time trading model at the level of ad impressions (i.e., ad inventory). As a result, Web publishers are now facing
a challenging decision of allocating the ad inventory across multiple advertising models, which has a direct and
important influence on both their individual revenues, and the market-wide supply-demand balance. In this
paper, we propose a novel hierarchical ad inventory allocation framework (AIAF), taking into consideration the
possible scenarios of ad inventory allocation in programmatic advertising markets. AIAF explicitly captures the
specific features of ad inventory allocation in each of three levels (i.e., channel level, market level and platform
level), and also their influence-feedback effects. We present the general solution process for solving this model
on the basis of its property analysis. An illustrative instantiation of our AIAF model is formulated to demonstrate
its applications in supporting publishers’ decision-making on the ad inventory allocation. We also conduct ex-
periments based on empirical data so as to validate the model and analysis. Our research findings indicate that 1)
our AIAF model outperforms other single-level and two-level allocation strategies; 2) the fine-grained optimi-
zation is superior to that of the coarse-grained level; 3) allocation decisions should be made on the basis of the
comparative marginal revenue instead of the absolute marginal revenue.

1. Introduction

Programmatic advertising (PA), as a novel format of online preci-
sion marketing, has sparked a new wave of explosive growth in display
advertising markets. According to eMarketer, in USA, the PA promotion
spending reaches 32.56 billion dollars in 2017, taking up the 80%
market share of the online display advertising; in UK, programmatically
traded ads account for more than 75% of online display advertising
spending by the end of 2017; and in China, the PA market scale is about
11.69 billion dollars in 2017, and will grow to 29.6 billion in 2019 with
the average growth rate of about 35%. Enabled by the big data driven
user profiling and precision bidding techniques (Busch, 2015), online
programmatic advertising markets have evolved from the traditional
website-buying or ad-slot-buying models, to a fine-grained and real-
time trading model at the level of ad impressions (i.e., ad inventory).
This evolution of sales model has been witnessed to be able to facilitate
precise matching between advertisements and target audiences in a

real-time fashion (Dawson et al., 2016), as well as effective allocation of
the limited ad resources, thus leading to the improved performance in
market promotions (Yuan et al., 2014).

The increasing prevalence of PA is widely recognized to attribute
partially to the influx of millions of publishers, who play the critical
role as ad impression suppliers in PA markets. In China, more than 90%
online medias use PA to sell ad impressions according to the statistics of
iResearch. Also, almost all the leading medias in China, e.g. Baidu,
Alibaba, Tencent, Sina, etc. have marched into this field to adopt
multiple ad models to sell the online advertising resources. One of the
crucial decisions that arises for the publishers is ad inventory alloca-
tion, i.e. determining how to allocate the limited ad impressions to the
demanding advertisers as to optimize the publishers’ various objectives.
The allocation decisions not only produce important influence on their
revenue management, but also greatly affect the promotion perfor-
mance, the supply-demand balance, and also the market structure in the
PA market (Clerici and Perego, 2010; Li et al., 2018). As such, the ad
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inventory allocation is widely considered in the literature as a critical
decision for publishers.

Generally speaking, publishers are confronted with three key chal-
lenges of uncertainty, scarcity and diversity in their decision-making
tasks of the ad impression allocation. First, the market supply of ad
impressions is uncertain due to the unpredictable user visits on the
publishers’ landing pages (Balseiro et al., 2014; Lai et al., 2017).
Second, compared with advertisers’ huge demand on ad display op-
portunities, current supply of ad impressions is still very limited ac-
cording to the yearly report of ∂nalysis. Third, publishers typically sell
the ad inventory by means of diversified models including online real-
time bidding (RTB), private marketplace (PMP), header bidding (HB),
and offline guaranteed contracts. Consequently, these challenges bring
unprecedentedly higher complexity for publishers’ decisions to allocate
their ad impressions, which has a direct and important influence on
both their individual revenues, and the market-wide supply-demand
balance. Therefore, ad impressions allocation has been widely con-
sidered as one of the most critical decisions for publishers in PA markets
(Muthukrishnan, 2009; Mostagir, 2010).

Besides the complex market environments, the ad impression allo-
cation itself is a complex research issue for publishers. For instance, the
limited ad inventory should be wisely allocated among multiple ad-
vertising models, which are remarkably different in trading mechan-
isms. Also, there exists strong coupling relationships between the ad
inventory allocation and publishers’ other strategies including pricing
(Muthukrishnan, 2009), information disclosure (Cachon and Fisher,
2000; Li et al., 2017) and so on. Meanwhile, the ad impression allo-
cation will significantly influence decisions of other downstream
players in the PA ecosystems, such as the decision of demand side
platforms (DSP) to match ad impressions with target audiences (Adikari
and Dutta, 2015), due to the diversity in trading mechanisms
(Stavrogiannis et al., 2014), complexity of bidding dynamics (Adikari
and Dutta, 2015) as well as the uncertainty in realized market equilibria
(Mcafee, 2011); Meanwhile, the advertisers’ bidding strategies are also
studied in the realistic context by constraints given by the ad inventory
optimization (Fernandez-Tapia et al., 2016). To date, publishers have to
deal with these challenges when allocating the ad resource using mul-
tiple models simultaneously, with the aim of dispersing risks and
maximizing revenues. As such, there is a critical need for researchers to
design a novel framework to help publishers make rational ad inventory
allocation decisions in PA markets (Chen, 2013). This motivates our
research.

In this paper, we first classify the four typical advertising models
mentioned above into three levels, i.e., the channel level, the market
level and the platform level, mainly based on their priority, granularity,
and trading mechanism. We then propose a novel hierarchical ad in-
ventory allocation framework (AIAF) model for studying publishers’
three-level allocation strategies, which provides a basic architecture for
analyzing allocation strategies in different levels and their influence-
feedback effects with each other. The properties of our proposed AIAF
are theoretically proved, and the general solution process is given for
solving our AIAF model. An illustrative instantiation of AIAF is pre-
sented to give further explanation. Also, computational experiments
based on real-world data are designed to validate our framework.

The rest of this paper is organized as follows. Section 2 reviews
relevant literatures. Section 3 briefly states the ad inventory allocation
problem, and then Section 4 formulates the AIAF model, analyzes its
properties and presents the solution process. In Section 5, we present an
instantiation of AIAF. Section 6 conducts computational experiments to
validate the framework, and discusses the managerial insights of our
research. Section 7 concludes.

2. Literature review

Ad inventory allocation is one of the most crucial tasks in almost all
formats of online display advertising (Broder, 2008; Yang et al., 2010),

and can be categorized into the intensively studied resource allocation
issue in Economics (Harris et al., 1982; Sudharshan, 1995; Krieger and
Green, 2006). This issue mainly concerns the publisher’s allocation
decision to optimize efficiency or revenue while keep to pre-specified
contracts (Agrawal and Wang, 2014; Feldman et al., 2009; Devanur and
Hayes, 2009), which has been well discussed for the traditional display
advertising and sponsored search auctions, but not for programmatic
advertising. From the input perspective of allocation tasks, on one
hand, the capacity of supplying ad impressions is typically constrained,
which as a result leads to a relatively low flexibility and fault tolerance
threshold in publishers’ allocation decisions (Sabbaghi et al., 2014);
From the output perspective, on the other hand, advertisers in PA
markets only bid for their best-matched ad impressions, which limits
the publishers’ strategy space within the precisely targeted niche mar-
kets (Qin et al., 2017). These two facts thus impose significant chal-
lenges for publishers to make ad inventory allocation decisions with the
purpose of revenue maximization.

In PA practice, publishers must leverage their revenues and the
associated risks in different channels seeking for a trade-off solution,
since offline channels typically have lower risks and long-run guaran-
teed revenues, while online channels on the contrary have higher risks
but short-term higher revenues. More specifically, given a set of ad
impressions and a general priori about demands arriving stochastically
with associated properties, the publisher should decide a valid alloca-
tion whether and how to satisfy the demand to maximize total payoffs
(Feldman et al., 2010). A popular method of controlling the ad in-
ventory sales for revenue management is using the bid-price controls
first introduced by Simpson (1989). This method control the ad in-
ventory allocation through setting a threshold price for each advertiser,
which can be interpreted as the opportunity cost of allocating one ad-
ditional impression to the advertiser. A certainty equivalent control
heuristic was used to discuss this trade-off problem by Roels & Frid-
geirsdottir (Roels and Fridgeirsdottir, 2009) to show the necessity of
adopting both channels to reach the global maximum revenue.

This trade-off problem is further compounded by the fact that the
publisher is typically hard to access to all the information for ad in-
ventory allocation. To address the scenario of unknown demand of
online channel, Ghosh et al. (2009) considered the publisher as a bidder
of a series of offline guaranteed contracts and bids on behalf of them;
then the publisher dynamically accepts some offline requests and al-
locates corresponding ad inventory to them only when the auction is
lost by online advertisers. They proved that randomized bidding is a
useful compromise for the trade-off. Walsh et al. (2010) proposed an
approach that can automatically partition ad inventory into abstract
channels, and also proposed a new constraint generation algorithm for
improving ad allocation. Vee et al. (2010) built a two-phase auction
model to sample and compute a compact allocation plan, and assign ad
impressions online to advertisers submitting contracts with overlapping
targeting rules. They also provided a solution serving advertisers in an
online manner that is provably nearly optimal. However, these works
do not take consideration of the trade-off between the revenue from a
spot channel adopting real-time bidding and the efficiency from the
reservation-based channel. Balseiro et al. (2014) considered this trade-
off problem under this setting and formulated it as a stochastic control
problem to deal with combined optimization of multi-channel alloca-
tion. Their research showed that the jointly optimization over both
channels brings in considerable advantages for the publishers.

Essentially, the main objective of publishers is to maximize revenue
through appropriately managing their available ad inventory, and the
pricing must reflect the considerations, thus the ad inventory allocation
problem can also be casted as an ad inventory pricing problem
(Radovanovic and Heavlin, 2012). The key issue of the ad inventory
allocation is to predict advertisers’ bids and determine proper sales
prices of ad impressions selling through different channels, markets,
and platforms (Wu et al., 2015; Yuan et al., 2013). However, it becomes
tremendously hard for publishers to learn the distribution of bids and
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sales prices, since proprietary algorithms of advertisers’ auctions rely
heavily on privately-owned target audience profile which might never
be disclosed to publishers (Yuan et al., 2014). Also, for the reason that
past decisions to show ads on a given inventory depend in part on the
publisher’s propensity to convert, the quality is hard to be determined
by advertisers (Perlich et al., 2012), which further make challenges for
the publisher to predict bids and make the price. When the online
channel adopts several ways to sell ad inventory, the pricing method is
combinatorial auctions (Cramton et al., 2006), and the pricing problem
turns out to be an issue of finding a yield maximizing way to allocate
the ad inventory. Fernandez-Tapia (2015) researched the optimization
of RTB-based ad inventory buying under limited budget settings, and
focused on the inventory pricing to obtain the optimal tactics on a
straightforward way by solving a constrained optimization problem.
Najafi Asadolahi and Fridgeirsdottir (2014) investigated the optimal
pricing strategy for ad inventory when impressions and clicks are un-
certain, and found that the general heuristics to convert between the
Cost Per Click (CPC) and Cost Per Mille (CPM) pricing schemes may be
misleading as it may cause a great amount of revenue loss for pub-
lishers. Chahuara et al. (2017) discussed the optimal setting of the re-
serve price for RTB auctions in a revenue maximization engine for the
publisher. In particular, these previous works on ad inventory pricing
are mainly focused on the online single-channel sales of ad inventory
instead of the cross-channel allocation of ad inventory, thus are not
enough to support the publishers’ revenue management decisions.

To sum up, the current research efforts on the ad inventory man-
agement in PA markets is limited, and they focus on the allocation
across channels, especially across online RTB markets and offline
guaranteed contracts. The existing research efforts are supportive to the
viewpoint that the joint optimization of cross-channel allocations can
benefit the publishers in revenue maximization. However, they seldom
take into consideration of the whole trading process of ad impressions
in the PA market, as well as the other advertising models with more
fine-grained levels (e.g. market level and platform level). That is, the
state-of-the-art works of the ad inventory allocation strategies lack a
systematic and structured consideration of the entire PA markets.
Consequently, these research efforts are still far from enough to provide
effective supports for publishers’ decisions in practical scenarios. In
view of this situation, we believe that it is necessary to propose a novel
hierarchical framework incorporating the publishers’ multi-level ad
inventory allocation decisions. Moreover, the framework is designed to
be capable of providing an open environment for diversified research
proposals about ad inventory allocation models, strategies and algo-
rithms.

3. Problem statement

Typically, an ad impression is triggered when an user visit the
publisher’s landing page in the PA market. Then, the publisher should
make an immediate allocation decision to submit it to a certain ad-
vertising channel, market and platform. Considering the aforemen-
tioned four advertising models and the whole ad impression trading
processes in the PA market, there exists three ad inventory allocation
scenarios depicted in Fig. 1.

First, the publisher should allocate ad inventory across the offline
and online channels. The offline channel is typically realized with the
format of guaranteed contracts; while the online channel includes
multiple advertising formats, which we will discuss below in the market
level and the platform level. The demand and unit price (i.e., CPM) for
ad impressions in the offline channel are predetermined as a consensus
between publishers and advertisers through one-to-one negotiation;
while the demand and sales price of the ad inventory in the online
channel are determined by online auctions in a real-time fashion.

Then, for those ad impressions allocated to the online channel, the
publisher continues to allocate them between the direct and indirect
markets. Here, the direct market usually refers to the HB market, which

enables the publisher to establish a priority sub-market to directly sell
ad impressions to their allied advertisers. The indirect market trades ad
impressions via Ad Networks or Ad Exchange (AdX), which serves as
the intermediary to help the publisher deliver ad impressions to their
precisely matched advertisers.

Finally, ad impressions allocated to the AdX should be further sold
via either public AdX platforms or private AdX platforms. The public
platform is built by the third-party agency, and adopts open auctions to
sell ad impressions with diversified quality to generic advertisers. In
contrast, the private platform is usually built by leading publishers and
applies invitation-only private auctions to sell high-quality ad im-
pressions to premium or VIP advertisers. Usually, the mainstream
public and private platforms are RTB and PMP, respectively.

In view of the ad impression sales process in the PA market, we
think it is of necessity to formulate a hierarchical AIAF model to deal
with the three-level ad inventory allocation for publishers. First, ac-
cording to above description of the ad impression sales practice, there
exist the hierarchical relationships of the ad inventory sales through
different ad models. Second, allocation decisions in three levels are
inter-dependent, where upper levels create restrictions to the lower
ones, and meanwhile lower levels produce feedbacks to the upper ones.
Third, ad inventory allocation environments in each scenario are quite
different, e.g., the channel-level allocation should consider the risk-
revenue evaluation, the market-level allocation should consider the
information disclosure, and the platform-level allocation is done under
the principal-agent framework.

Accordingly, one of the contributions is designing a novel hier-
archical three-level framework, corresponding to the above three ad
inventory allocation scenarios. Our framework can serve as a generic
model capable of dealing with the ad inventory allocation problems
systematically. Then, we provide the solution process of AIAF on the
basis of its property analysis. The other contribution is conducting the
computational experiments to find the optimal ad inventory allocation
strategies based on the real-world empirical data and validate the for-
mulation of the AIAF model as well as the corresponding analysis.

4. Ad inventory allocation framework

In this section, we will propose a hierarchical AIAF model corre-
sponding to the ad inventory allocation scenarios discussed in Section
3. Here, we consider a single publisher with the constrained supply of
ad inventory and a numbers of advertisers without demand restrictions
in the PA market. Table 1 describes the notations of this paper.

The channel level concerns the ad inventory allocation across
offline and online channels; the market level focuses on the online ad
inventory allocation between direct and indirect markets; and the
platform level devotes to the ad inventory allocation among public and
private platforms in indirect markets. Allocation strategies at these
three levels are not separated but inter-dependent, forming a complete
loop for the ad inventory allocation optimization where upper levels

Fig. 1. The Three-level Ad Impression Allocation Scenarios in PA Markets.
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create restrictions to the lower ones, and meanwhile lower levels pro-
duce feedbacks to the upper ones.

The channel-level allocation is the first decision faced by the pub-
lisher. Set the total ad inventory as a, and assume there are I alternative
channels for the publisher. Then, the ad inventory allocation in the
channel level can be given as:

→ … … ∈ …a a a a i I, , , , , {1, 2, , },i I1

where ai denotes the ad inventory allocated to the channel i. Generally,
more ad inventories allocated to a certain channel will yield more
revenues for the publisher from it; however, excessive allocation over a
threshold may result in diseconomy for the reasons that 1) the offline
guaranteed revenue has a fixed upper bond, and excessive supply cre-
ates no extra gainings; 2) too much supply for the online channel may
result in comparatively low sales price or even sales failure when facing
with budget-constrained advertisers and fierce competitions from other
publishers.

The market-level decision is with regard to further allocation among
segment markets in the online channel, which can be defined as:

→ … … ∈ …a a a a j J, , , , , {1, 2, , },i i i j i J,1 , ,

where ai j, denotes the ad inventory allocated to the market j in the
channel i. The publisher’s market-level ad inventory allocation decision
is done under the constraint generated by the channel-level allocation
result. Inversely, the market-level allocation will create effective feed-
backs to the channel-level allocation.

In this level, the publisher determines the winning advertisers
through online auctions. Trading mechanism, market structure and
information disclosure are essentially different in direct and indirect
markets. The direct market adopts the direct auctions between the
publisher and advertisers, while the indirect market applies two-stage
resale auction mechanism conducted by agents to match the publisher’s
supply and advertisers’ demands. The publisher has more powerful
control of trading process in the direct market than that in the indirect

market, since he/she could independently design the auction me-
chanism and information disclosure strategy in the direct market; while
in the indirect market, these are greatly enslaved by various agents in
the trading process. Therefore, the publisher should take essential dif-
ferences between these two kinds of markets into consideration to de-
cide the online allocation in the market level.

The platform-level allocation aims to decide which platforms should
be connected to sell the ad inventory in the indirect market of the on-
line channel, and it can be given as:

→ … … ∈ …a a a a k K, , , , , {1, 2, , },i j i j i j k i j K, , ,1 , , , ,

Here, ai j k, , represents the ad inventory for the kth platform of the market
j in the channel i. Similarly, the platform-level allocation is constrained
by the market-level allocation result, and also creates feedbacks to the
market-level allocation.

In both RTB and PMP, the publisher has a principal-agent re-
lationship with AdX. However, due to the differences in constructor and
service object of public and private platforms, the publisher has more
powerful control in the private platform than the public platform.
Correspondingly, the difference in efforts and incentives of agents will
transmit to form different costs and revenues for the publisher to sell
the ad inventory through public and private platforms.

4.1. Formulation

Inspired by the decentralized planning problems, we formulate
AIAF as a hierarchical programming model taking three-level ad in-
ventory allocation in the PA market into consideration. With the pur-
pose of understanding the framework more intuitively and clearly, we
formulate the model with the order from more fundamental fine-
grained level to coarse-grained level, i.e., from platform level to market
level and then to channel level.

Model 1 (Platform-level model) The ad impression allocation opti-
mization in this level is subject to the constraint of ad impressions
supply in the indirect market. The decision on the ad inventory allo-
cation between RTB and PMP results in different principal-agent re-
lationships.

Based on the analysis, we model the ad impression allocation pro-
blem in the platform level as:

≔

⩽
∈ ⊂

z f a

g a a
a A A A

max ( )

s. t. ( , ) 0,
, .

i j
k i j i j k

i j i j i j k

i j k

,
(1)

,
(1)

, ,

,
(1)

, , ,

, , 1 1 2 (1)

Here, fi j,
(1) is the payoff function in the platform level, which should be

considered under the principal-agent relationships of publishers and
AdXs. The supply of ad inventory in the platform level constrained by
the market-level allocation result ai j, is defined by gi j,

(1).
Model 2 (Market-level model) The optimization of the ad inventory

allocation in this level is subject to the constraint from allocation results
of online channels. Selling ad inventory through direct and indirect
markets leads to different auction mechanisms and information dis-
closure strategies in online auctions.

Based on the analysis, we model the ad impression allocation pro-
blem in the market level as:

≔

⩽
∈ ⊂

z f a z

g a a
a A A A

max ( , )

s. t. ( , ) 0,
, .

i
j i i j i j

i i i j

i j

(2) (2)
, ,

(1)

(2)
,

, 2 2 3 (2)

Here, fi
(2) is the payoff function of market-level allocation, and gi

(2) is
the supply constraint of the ad inventory in this level. In this level,
trading mechanisms and information structures should be introduced
into the payoff function the distinguish the differences of these two
types of markets.

Table 1
Summary of Notations.

Notations Definitions

a the total ad inventory
I the number of channels
J the number of markets
K the number of platforms
ai the ad inventory allocated to the channel i
ai j, the ad inventory allocated to the market j in the channel i
ai j k, , the ad inventory allocated to the kth platform of the market j in the

channel i
pi j k

x
, , the sales price of the specific ad impression x in the kth platform of

the jth market in the ith channel
mi j k

x
, , the comparative marginal revenue of the publisher selling the ad

impression x in the kth platform in the jth market of the ith channel
ci j k

x
, , the commission rate of the ad impression x’s sales in the kth platform

in the jth market of the ith channel
ei j k, , the AdXs’ efforts to match ad impressions to targeted advertisers in

the kth platform
−k the competitive platforms of the AdX k

′mi j
x
, the comparative marginal revenue of the publisher selling the ad

impression through the ′j th direct market
θ the discounted factor
− ′j the competitive direct market of the direct market ′j

′ ′di j k
x
, , the unique information received by the advertiser ′k about the ad

impression x in the ′j th direct market
′wi j, the unit variable cost of information disclosure in the ′j th direct

market

′ ′bi j k
x
, , the bid of the advertiser ′k about the ad impression x in the ′j th direct

market
̂Di the ad impression demand in the offline channel ̂i

̂bi the unit price of ad impressions in the offline channel ̂i
̂β i the penalty factor in the offline channel ̂i
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Model 3 (Channel-level model) The allocation optimization problem
in the channel level is studied under the total supply constraint of ad
impressions generated by web-page visitors. Typically, the publisher is
willing to sell limited ad impressions across both offline and online
channels with the purpose of revenue maximization under a certain risk
constraint or risk minimization given a certain revenue constraint. In
this paper, we consider the former situation to model the ad impression
allocation problem in the channel level as follows:

≔

⩽
⩽

∈

z f a z

g a a
h a
a A

max ( , )

s. t. ( , ) 0,
( ) 0,

.

i
i i

i

i

i

(3) (3) (2)

(3)

(3)

3 (3)

The payoff function in the channel level is defined by f (3), and g(3) is the
total supply constraint of the ad inventory. The risk constraint of allo-
cating the ad inventory across channels is given as h(3) , which is de-
termined by the publisher’s individual risk preference or risk tolerance.

The above three models deal with the ad inventory allocation pro-
blem in a hierarchical way, and cover almost all the possible allocation
scenarios in the PA market. These models are not independent, and can
be combined to form the integrated closed-loop structure of AIAF for-
mulation. Currently, we establish the AIAF as a framework, and do not
present the concrete model of it. Note that, the payoff functions fi

(2) and
f (3) in the upper level could be formulated as the linear or non-linear
function of the optimal payoff from the lower level, which greatly de-
pends on the publisher’s objective. Also, the constraint function of each
level can also be linear or non-linear in AIAF.

On one hand, AIAF conducts joint studies of the three-level alloca-
tions by considering their influence-feedback effects and coupling re-
lationships. The allocation results of upper levels constrain the alloca-
tions in lower levels, and inversely the allocation results in lower level
models also produce feedbacks to that of upper levels. On the other
hand, AIAF can deal with the ad inventory allocation in a specific level
independently by neglecting the coupling relationships with other le-
vels.

In addition, AIAF is capable of considering much more complicated
situations of ad inventory allocation in the PA market. For example, it
can capture the dynamic allocation at different temporal granularity for
each level. After the publisher determines the ad inventory allocation
across channel during a certain period (e.g., month, week, etc.), he/she
aims to distribute the online ad inventory to multiple markets over d
temporal slots (e.g., day) in the market level. Furthermore, with the
outcome from the market level as constraints, the platform-level model
not only deals with the dynamic ad inventory allocation a t( )i j k, , , but
also the real-time adjustment. The real-time adjustment is conducted
through a control variable tΔ ( )i j k, , according to some performance in-
dicators of ad impressions (e.g. bid numbers, sales price, etc.).
Accordingly, the AIAF model can be extended as:

≔ ∑

⩽

+ = +
∈ ⊂

z d f a t

g a a t

a t a t t
a A A A

( ) max [ ( )]

s. t. [ , ( )] 0,

( 1) ( ) Δ ( ),
, .

i j
k t i j i j k

i j i j i j k

i j k i j k i j k

i j k

,
(1)

,
(1)

, ,

,
(1)

, , ,

, , , , , ,

, , 1 1 2 (4)

≔ ∑

⩽
∈ ⊂

z f a d z d

g a a d
a A A A

max [ ( ), ( )]

s. t. ( , ( )) 0,
, .

i
j d i i j i j

i i i j

i j

(2) (2)
, ,

(1)

(2)
,

, 2 2 3 (5)

≔

⩽
⩽

∈

z f a z

g a s a
h a
a A

max [ , ]

s. t. [ ( ), ] 0,
( ) 0,

.

i
i i

i

i

i

(3) (3) (2)

(3)

(3)

3 (6)

4.2. Solution

In what follows, we will conduct the theoretical analysis of these
three models, and try to find useful properties of AIAF to serve for
finding the solution of AIAF.

For the following analysis, first we make transformation of payoff
functions of above three models. Let = −v fi j i j,

(1)
,
(1), and then solving ori-

ginal model (1) is equivalent to solving the programming ∼z (1) with the
objective to minimize vi j, under constraints gi j,

(1). Similarly, we let

= − = −v f v f,i i
(2) (2) (3) (3) to transform the programming z (2) in the market

level and z (3) in the channel level into ∼ ∼z z,(2) (3), respectively.

Theorem 1. If vi j,
(1) , and gi j,

(1) are convex functions, the programming ∼z (1) is
convex.

Proof. Let R be the constraint set, and we have

= ⩽{ }R a g| 0i j k i j, , ,
(1)

Since gi j,
(1) is the convex function, it is easy to deduce that R is a convex

set.
Define X t( )R as

= ⎧
⎨⎩

∈
∞

X x x X( ) 0, if
, else.R

We can verify that X x( )R is a convex function.
Define ̂ = +v v X x( )i j i j R,

(1)
,
(1) . Because vi j,

(1) and X x( )R are convex func-
tions, ̂vi j,

(1) is also a convex function. It can be proved that ̂vmink i j,
(1) is

convex, where we have

̂ = ⎧
⎨⎩

∈
∞

v v a R, if
, otherwise.

i j
i j i j k

,
(1) ,

(1)
, ,

Since ̂=v vmin mink i j k i j,
(1)

,
(1) for ∈a Ri j k, , , we can prove that vmin )k i j,

(1) is
convex. Therefore, ∼z (1) is convex. □

Theorem 2. If vi j,
(1) , gi j,

(1) ,vi
(2), and gi

(2) are all convex functions, and vi
(2) is

nondecreasing on ∼z (1), then the programming ∼z (2) is convex.

Proof. Define R as:

= ⩽R a g{ | 0}i j i,
(2)

Since gi
(2) is the convex function, we can get that R is a convex set.

Similarly, we can prove that X x( )R is convex.
Let ̂ = +v v X x( )i i R

(2) (2) . Because vi
(2) is convex function and non-

decreasing on ̂∼z v, i
(1) (2) is also a convex function. Therefore, we have

̂vminj i
(2) is convex, where we have

̂ = ⎧
⎨⎩

∈
∞

v v a R, if
, otherwise.i

i i j(2)
(2)

,

Since ̂=v vmin minj i j i
(2) (2) for ∈a Ri j, , we can prove that vminj i

(2) is
convex. Therefore, ∼z (2) is convex. □

Theorem 3. If vi j,
(1) , gi j,

(1) ,vi
(2), gi

(2), v(3), g(3), h(3) are all convex functions,

and vi
(2) is nondecreasing on ∼z v,(1) (3) is nondecreasing on ∼z (2), then the

programming ∼z (3) is convex.

Proof. Similar as in Theorem 1 and Theorem 2, we can prove that
vmini

(3) is convex. Furthermore, we deduce the programming ∼z (3) is
convex. □

Theorem 4. Under the condition that ∼ ∼ ∼z z z, ,(1) (2) (3) are all convex
programming, if ∗s(1) , ∗s(2) , ∗s(3) are the optimal strategy in each level
respectively, =∗ ∗ ∗ ∗s s s s( , , )(1) (2) (3) is the optimal three-level allocation
strategy and vice versa.

Proof. First, we prove the sufficiency of this theorem. Since
∗ ∗ ∗s s s, ,(1) (2) (3) are the optimal strategy for each level, we can get the

minimal revenue of the platform level, market level and channel level
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in the programming ∼ ∼ ∼z z z, ,(1) (2) (3) as ∗vi j,
(1) , ∗vi

(2) , ∗v(3) , respectively.
Therefore, for ∀ ≠ ∗s s(1) (1) , we have <∗v vi j i j,

(1)
,
(1); for ∀ ≠ ∗s s(2) (2) , we

have <∗v vi i
(2) (2); and for ∀ ≠ ∗s s(3) (3) , we have <∗v v(3) (3).

Here, we have = =∗ ∗ ∗v v v v v v( ) [ ( )]i i j
(3) (3) (2) (3) (2)

,
(1) . Since

∼ ∼ ∼z z z, ,(1) (2) (3) are all convex programming, we can prove that ∗v is the
minimal payoff. Due to the equivalence of z and ∼z , we can deduce that

= −∗ ∗f v(3) (3) is the maximal revenue for original three-level allocation
models. Therefore, =∗ ∗ ∗ ∗s s s s( , , )(1) (2) (3) is the optimal allocation
strategy for the AIAF model.

Then, we prove the necessity of this theorem. If
=∗ ∗ ∗ ∗s s s s( , , )(1) (2) (3) is the optimal allocation strategy for the AIAF

model, it must be the optimal strategy of the three-level model com-
prised of the programming ∼ ∼z z,(1) (2), and ∼z (3). If ∗s(1) is not the optimal
strategy for platform-level allocation, there must exist another strategy

≠ ∗s s(1) (1) to result in < ∗v vi j i j,
(1)

,
(1) . Due to the coupling of three-level

allocations, s(1) in the platform level must transmit to formulate a new
optimal allocation strategy ≠ ∗s s(2) (2) with the minimal payoff

< ∗v vi i
(2) (2) in the market level and ≠ ∗s s(3) (3) in the channel level with

the minimal payoff < ∗v v(3) (3) . Here, the result that < ∗v v(3) (3) is con-
tradictory with the condition that ∗v(3) is the minimal payoff under ∗s .
Therefore, ∗s(1) , ∗s(2) , ∗s(3) are the optimal platform-level, market-level
and channel-level allocation strategies, respectively. □

Based on the above research, the solution process to find the optimal
three-level allocation strategy for the AIAF formulation is depicted as
follows.

First, given the total supply ai j, in the platform level, we get the
optimal allocation strategy across RTB and PMP platforms as s(1) # and
also the maximal revenue z (1) # through solving the model 1.

Second, substitute z (1) # into the market-level model 2, where the
total supply is ai. Then, solve the model to get the optimal allocation
strategy across AdX and HB markets as s(2) # with the maximal revenue
z (2) #.

Third, substitute z (2) # into the channel-level model 3 with the total
ad inventory a, solve the model to find the optimal allocation strategy
across online and offline channels as ∗s(3) and also the maximal revenue

∗z (1) .
Inversely, substitute ∗s(3) to the model 2 to constrain the market-

level allocation, and obtain the optimal strategy ∗s(2) , then further solve
the model 1 to get the optimal allocation strategy in the platform level
as ∗s(1) .

Finally, we obtain the optimal three-level allocation strategy
=∗ ∗ ∗ ∗s s s s( , , )(1) (2) (3) , and the maximal revenue ∗z (1) for the publisher to

sell a ad impressions in the PA market.

5. Instantiation

In this section, we formulate an illustrative instantiation to make the
further demonstration of AIAF. In the PA market, only the successfully
sold ad impressions can generate revenues for the publisher, no matter
through offline negotiations or online auctions. That is, the opportunity
cost of selling ad impressions in the PA market is zero, and owing but
not selling ad impressions is not profitable for the publisher.

The publisher’s payoff from the platform level can be computed by
the sum of each ad impression’s revenue acquired from K AdXs.

∑ ∑= −f p a c(1) (1 )i j
x k

i j k
x

i j k
x

i j k, , , , , , ,

We denote pi j k
x
, , as the individual sales price for the specific ad im-

pression x paid by the auction-winning advertiser from the kth AdX in
the jth market of the ith channel, and its sales price is ∑ p ak i j k

x
i j k
x

, , , , . Also,
the sales price from each platform is greatly influenced by the AdX’s
efforts ei j k, , to match the ad impression to more competitive targeted
advertisers. Accordingly, we have =p p e x( , )i j k

x
i j k, , , , . Here, ai j k

x
, , is a

piecewise function, and we have

=
⎧

⎨
⎪

⎩⎪

>
∈ =a

m
ζ m
1, if 0

(1) (0, 1), if 0
0, otherwise.

i j k
x

i j k
x

i j k
x

, ,

, ,

, ,

Here, mi j k
x
, , is defined as the comparative marginal revenue of the

publisher selling the ad impression through the kth AdX, and it is cal-
culated by

= − − −− −m p c p cmax[ ]i j k
x

i j k
x

i j k i j k
x

i j k, , , , , , , , , ,

where −k denotes the competitive platforms. We have = ∑a ai j k x i j k
x

, , , , ,
and ai j k, , is the number of ad impressions allocated to the kth AdX in the
platform level.

Generally, how many ad impressions are allocated to a certain
platform is greatly influenced by the sales price achieved from it, which
is concerned with the AdX’s effort. The AdX k does not simply accept ad
impressions, but compete for them and hope to win over more com-
mission payment. The commission rate for the ad impression sales is
ci j k

x
, , , and usually the commission rate in an AdX is identical for all ad

impressions, thus we have =c ci j k
x

i j k, , , , .
Also, the AdX k gets payoff from serving as the agent of the pub-

lisher, which is

∑= −∊f p a c a e(2) ( , )i j k
x

i j k
x

i j k
x

i j k i j k k, , , , , , , , , ,

where, ∊ a e( , )i j k i j k, , , , represents the effort cost of the AdX k for helping
the publisher sell ai j k, , ad impressions. It is well-known that the pub-
lisher has more powerful control in the private AdX, therefore, they
would like to access to premium advertisers with the high-quality ad
impressions through the private AdX, while connect with generic ad-
vertisers through the public AdX; therefore, the sales prices and com-
missions of selling ad impressions in PMP platforms are much higher
than that in RTB platforms. Correspondingly, the effort cost of the
private AdX is generally higher than that of the public AdX.

Based on the above analysis, the model (1) can be substantiated as a
multi-objective optimization problem under the principal-agent fra-
mework:

=
⎧
⎨
⎩

∈
⎫
⎬
⎭

z
f

f
a G

max (1)

max (2)i j
i j

i j k
i j k,

(1) ,

, ,
, ,

(7)

where, the feasible solution set G is determined by the constraints in the
platform level, which is

∑
=

⎧

⎨

⎪

⎩
⎪

∑ − ⩽

⩾ ⩾
⩾

⎫

⎬

⎪

⎭
⎪

G a

a a

c p
a

0,

0, 0,
0.

i j k

k
x

i j k
x

i j

i j k i j
x

i j

, ,

, , ,

, , ,

,

In the market level, we view the K platforms in the jth indirect
market as a whole to substantiate the market-level model (2) as follows:

∑ ∑

∑

≔ ∑ + ′ − −

∑ + ⩽

⩾ ⩽ ⩽

′
′

′
′

′
′

′
′

′

′
z z z θ W

a a a

a θ

max [1 ]

s. t. ,

0, 0 1.

i j i j
j

i j
j

i j
z

z a

j i j
j

i j i

i

(2)
,
(1)

, , ( )

, ,

i j

i j i

,

,

(8)

Here, we have revenue gained from the direct market calculated by
∑ ′′ ′zj i j, through allocating ∑ ′ ′aj i j, ad impressions to it, and revenue

from the indirect market by ∑ zj i j,
(1) from selling ∑ aj i j, ad impressions.

We define − ′
′

′

′
1 z

z a( )
i j

i j i

,

,
as the under-utilization of the direct market ′j , and

′Wi j, as the sunk fixed cost to establish it. Here, θ is the discounted factor,
and ′ ′z a( )i j i, represents the revenue gained from the direct market ′j
when all the ad impressions of the online channel i are allocated to
these direct markets. Based on the above analysis, the publisher’s total
revenue should be subtracted by the under-utilization loss to formulate
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the market-level payoff function.
Comparing with the ad impression sales through AdXs in the in-

direct market, the publisher has the capacity to apply the differentiated
information disclosure strategies in the direct market, which will result
in the asymmetric information structures for all advertisers. However,
the publisher should pay extra information disclosure cost to do so.
Therefore, we formulate the revenue in the HB market as

∑′ = −′ ′ ′ ′ ′z p a a wi j
x

i j
x

i j
x

i j i j, , , , ,

where the number of ad impressions allocated to the ′j th HB market is
= ∑′ ′a ai j x i j

x
, , , and

=
⎧

⎨
⎪

⎩⎪

>
∈ =′

′

′a
m

ζ m
1, if 0

(2) (0, 1), if 0
0, otherwise.

i j
x

i j
x

i j
x

,

,

,

Here, ′mi j
x
, is defined as the comparative marginal revenue of the pub-

lisher selling the ad impression through the ′j th direct market, and it is
calculated by

= − − − −′ ′ ′ − ′ − ′m p w p w p cmax[ , (1 )]i j
x

i j
x

i j i j
x

i j i j
x

i j
x

, , , , , , ,

= ⩽′ ′
′ ′ ′ ′

′
′ ′p b b bmax[ | max ]i j

x

k
i j k
x

i j k
x

k
i j k
x

, , , , , , ,

where − ′j denotes the competitive direct market.
In the direct market, the asymmetric information structure is op-

erable for the publisher. In view of this, we define the unique in-
formation received by the advertiser ′k about the ad impression x in the
′j th direct market as ′ ′di j k

x
, , . The advertiser then determines his/her bid

=′ ′ ′ ′b b d( )i j k
x

i j k
x

, , , , of the ad impression on the basis of the received in-
formation. Among all the submitted bids, the second highest one will be
the final sales price ′pi j

x
, of the ad impression. Actually, the sales prices of

ad impressions also partially reflect the differences between direct and
indirect markets. Li et al. (2017) has proved that the asymmetric in-
formation structure can bring in much higher sales price for the pub-
lisher than the symmetric information structure, especially when the
publisher sells both high-quality and low-quality ad impressions. The
unit variable cost for information disclosure in the the ′j th HB market is

′wi j, , and different information disclosure strategy corresponds to dif-
ferent cost, that is, =′ ′w w d( )i j i j, , .

The channel level concerns maximizing the total payoff gained from
both online and offline channels. We use = ∑z zi i

(2) to define the online
revenue, and ̂ ̂ ̂= ∑z zi i to define the offline revenue. Here, the offline
revenue in the ̂i th offline channel can be computed by

̂ ̂ ̂ ̂ ̂ ̂= − −z a b D a β( )i i i i i i

where ̂Di and ̂bi represent the demand and unit price of ad impressions
in the offline channel ̂i respectively, which are both predetermined by
offline negotiation. The publisher needs to guarantee the delivery of ad
impressions in the negotiated contract; otherwise the penalty will be
incurred to compensate offline advertisers (Roels and Fridgeirsdottir,
2009; Vee et al., 2010). The penalty factor is defined by ̂βi , which is
also agreed in advance. The excessive supply more than ̂Di is not de-
sirable, since it will not bring in more than negotiated revenues for the
publisher.

The publisher’s cross-channel allocation decision of a ad im-
pressions is to choose the proper channel portfolio for revenue max-
imization under a risk constraint. The online risk is mainly from the
online sales failure, while the offline risk is mainly from the offline
default. Therefore, we formulate the risk constraint as follows:

̂ ̂+ − + ⩽E z z u z u z U[([ ] [ ( ) ( )]) ]2

where u z( ) and ̂u z( ) are expected revenue in online and offline chan-
nels, respectively; and U is the risk tolerance of the publisher.

Based on the above analysis, the model (3) can be substantiated as:

̂
̂ ̂

̂
̂

̂
̂ ̂

̂
̂ ̂

∑

∑

≔ +
+ − + ⩽

∑ + ⩽

⩽ ⩽

⩾ ⩾
⩾ ⩾

⩾ ⩾

z z z
E z z u z u z U

a a a

a D
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D b
a U

max
s. t. [([ ] [ ( ) ( )]) ] ,

,

0 ,

0, 0
0, 0,

0, 0.

i i
i

i

i
i i

i i

i i

(3)

2

(9)

Following the general process of solving the AIAF model in Section
4.2, we can also solve the instantiation and find the optimal ad in-
ventory allocation strategy for the publisher.

6. Experiments

6.1. Experimental data and scene

In this section, we design computational experiments to validate the
above analysis. The basic data set is the field logs released by one of the
leading RTB platforms in China (iPinyou.com.cn), which comprises re-
cords of more than 3 million ad impressions and 10 million bids. We
conduct the data processing of the raw data set to support more reliable
experimental process as well as results, which mainly includes identi-
fying the redundant data, filtering the data with missing values and
detecting the data with outlier values. All of these imperfect data are
removed to ensure that each bid ID matches one ad impression and all
data are with perfect information.

From the analysis of real-world winning bid logs in iPinyou plat-
form, we find it fits with the log normal distribution, which also has
been verified by the research in Cui et al. (2011) and Li and Guan
(2014)). In accordance with the market practice stated in the white
book released by an authoritative Chinese advertising research in-
stitution (RTBChina.com) that the premium ad impressions in HB mar-
kets will win the highest bids with the smallest variance, and the
higher-quality ad impressions in PMP platforms will win the higher bids
with the smaller variance than that from the general-quality ad im-
pressions sold in RTB platforms, we fit the distribution functions of
winning bids in PMP platforms and HB markets in Fig. 2, which will be
used to generate data sets for the following experiments.

We consider a publisher supplies about 100 thousands of ad im-
pressions in the PA market. The allocation experiments are conducted
in the scenario that he/she decides to allocate ad impressions across one
guaranteed contract, one HB market, one RTB platform and one PMP

Fig. 2. Winning Bids (Unit: CNY) in RTB, PMP, and HB Fit Log-Normal
Distribution.
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platform. In detail, the publisher first determines the allocation across
the offline guaranteed contract and the online channel, and the pre-
determined offline demand is 20 thousands of ad impressions at CPM of
CNY (Chinese Yuan) 50. Then, as for these ad impressions allocated to
the online channel, he/she continues to allocate between the HB market
and the indirect market, where ad impressions sold through HB has the
higher information cost. Finally, he/she allocates ad impressions in the
indirect market to the RTB platform and the PMP platform, where we
simply consider the commission rates are determined by the AdXs, and
the PMP platform has higher commission rates than the RTB platform
does.

To ensure the reliability and validity of our experimental analysis,
all experiments are conducted for 1000 times independently.

6.2. Three-level optimal allocation strategy

Under the experimental data set, given all parameters, we can figure
out the three-level optimal allocation strategy for the publisher fol-
lowing the solution process described in Section 4.2. Under the optimal
three-level allocation strategy, the maximal total revenue is CNY
12.051 million.

In the platform level, the optimal ad impressions allocated to PMP is
28,594, and to RTB is 22,132, and the publisher gets CNY 3.629 million
from PMP and CNY 3.087 million from RTB. The results show that the
publisher obtains more revenue through allocating more ad inventory
to PMP.

For the optimal allocation in the platform level, we find an inter-
esting phenomenon: the average unit revenue in PMP is lower than that
in RTB; however, the average bid in PMP is much higher than that in
RTB. This can be explained by the fact that a higher bid is accompanied
by a higher cost in PMP. PMP guarantees the higher quality of ad im-
pressions for advertisers and allows the publisher to have more control
on the ad impression sales than RTB does. Therefore, although PMP
requires more commissions transferred from the publisher, higher bids
acquisition still makes it much more attractive than RTB in the platform
level.

The platform-level allocation results tally with the practical situa-
tion in Chinese PA markets. According to the leading internet con-
sulting organization in China (iResearch), PMP gradually surpasses RTB
to be the dominant ad model in PA markets, and more and more pub-
lishers and advertisers access to PMP platforms.

In the market level, considering =θ 0, the optimal strategy is to
allocate 50,726 ad impressions to AdX and 39,780 to HB; and the
maximal revenue from these two markets are CNY 6.716 million and
CNY 4.912 million, respectively. Although HB does not get more ad
inventory allocation than AdX, it wins more allocations compared with
both RTB and PMP platforms.

Similar with the platform-level optimal allocation, the average unit
revenue in HB is lower than that in AdX; however, the average bid from
HB is higher than that from AdX. This phenomenon can also be ex-
plained by the fact that a higher bids is accompanied by a higher cost in
HB. Since HB allows advertisers to access to publisher’s premium ad
inventory, meanwhile raises the charges of it for advertisers in terms of
higher bids, and for the publisher in terms of growing information in-
teraction costs. According to the experimental results, the balance of
the cost and revenue results in more ad impressions sold through the
indirect AdX market than the direct HB market.

In the real practice, the programmatic buying through direct mar-
kets is increasing while that through indirect markets is decreasing. In
US, the direct buying takes up 56% share of the US programmatic ad-
vertising market till 2017 according to eMarketer; and in China, the
direct buying gradually growing up and becoming more popular among
advertisers according to RTBChina.

In the channel level, the optimal ad inventory allocated to the online
channel is 90,506, and to the offline channel is 9494, and the maximal
total revenue is CNY 12.051 million. The average unit revenue of all

online ad impressions is about CNY 128.211, which is much higher than
the offline CPM. Therefore, the publisher prefers not to satisfy the
offline contract but compensate the offline advertisers to strive for more
ad impressions allocated to the online channel with the purpose of
getting higher online revenues. However, completely ignoring of the
offline contract is not feasible, since the online surplus is not enough to
compensate such a large amount of offline penalties. Therefore, the
publisher makes a balance between the online surplus and the offline
penalty to decide the optimal allocation strategy in the channel level.

In practice, on one hand, publishers heavily rely on the online
channel to boost short-term revenue, which is consistent with the gra-
dually growing market share of PA models in the online digital display
advertising market both in China and USA. On the other hand, pub-
lishers still attach much importance to offline advertisers in view of
long-term revenue, therefore, it is irrational for them to completely
abandon the offline channel.

The experimental results of the optimal allocation strategy also
prove the validity of Theorem 4 we propose in Section 4.2.

6.3. Comparative experiments

Furthermore, we design independent comparative experiments to
validate the proposed AIAF model and the corresponding strategies. In
what follows, we will compare our optimal AIAF strategy with the
single-level and two-level optimal allocation strategies.

6.3.1. Single-level allocation strategy
First, we conduct experiments to compare the revenue maximiza-

tion under the AIAF strategy with single-level allocation (SLA) strate-
gies. In this paper, we do not consider the single-level optimization of
the market level for the reason that very limited attentions have been
paid for the market-level allocation by publishers in practice.

• The platform-level allocation strategy (the strategy SLA-P)

Under the strategy SLA-P, the publisher merely emphasizes the ad
inventory allocation across RTB and PMP platforms for the revenue
maximization. The publisher optimizes the platform-level allocation
under the constraint determined by some commonly adopted upper-
level allocation strategies, e.g., allocating all ad impressions to online
channel (strategy AO) and fulfilling the offline contract and allocating
the remaining to the online channel (strategy FO) in the channel level,
allocating all to AdX (strategy AA) and the randomly average allocation
between HB and AdX (strategy RA) in the market level.

Table 2 depicts the optimization results of the strategy SLA-P under
commonly adopted higher-level strategies mentioned above. From it,
we can see that the revenue maximization under the strategy SLA-P is
greatly influenced by the channel-level and market-level allocation
strategies. The strategy SLA-P constrained by the strategy AO in the
channel level and the strategy AA in the market level generates the
highest optimal revenue, while it constrained by the strategy FO in the
channel level and the strategy RA in the market level generates the
lowest optimal revenue. Also, from the angle of the channel-level op-
timization, the strategy AO outperforms FO; and from the angle of the
market-level optimization, the strategy AA outperforms RA. These re-
sults indicate that under the strategy SLA-P, more ad impressions are

Table 2
Total Revenue of Strategy SLA-P Under Typical Channel-Level And Market-
Level Strategies (Unit: Million CNY)

Market-Level Strategy Channel-Level Strategy

AO FO

AA 9.478 8.744
RA 9.030 8.195
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delivered to the AdXs, higher revenue will be achieved by the publisher.
To make in-depth studies on the strategy SLA-P, we further optimize

total revenues of it under the generic channel-level and market-level
allocation strategies, and the results are shown in Fig. 3. It is rational
for us not to consider the excessive offline supply more than the pre-
determined demand, therefore, the online allocation proportion will
never be less than 80%. From Fig. 3, we can see that with the increasing
allocations to the online channel in the channel level and the increasing
allocations to AdX in the market level, the maximal total revenue under
the strategy SLA-P increases, and the maxima of it is CNY 9.478 million
achieved when all ad impressions are allocated to AdX, which is less
than that under the optimal AIAF strategy.

• The channel-level allocation strategy (the strategy SLA-C)

Under the strategy SLA-C, the publisher focuses on the ad inventory
allocation optimization across multiple channels and completely ignore
the differences between these online channels. The publisher de-
termines the cross-channel allocation relying on the comparison be-
tween the offline CPM and the online sales price. When the offline
contract is not fulfilled, if the online payment is lower than the offline
CPM, no matter whether it is the lowest one from HB, RTB and PMP, the
ad impression will be allocated to the offline channel; if the online
payment is higher than the offline CPM, no matter whether it is the
highest one from HB, RTB and PMP, the publisher will decide to allo-
cate it to the online channel only if the online payment exceeds the sum
of the offline CPM plus the unit penalty. When the offline contract is
fulfilled, the remaining impressions should be totally allocated to the
online channel. The optimal SLA-C is to satisfy the offline demand first
and then allocate the remaining to the online channel and the maximal
revenue is CNY 3.986 million. From the result, we can find that the
maximal revenue under the strategy SLA-C is far less than that under
the AIAF strategy.

• Comparison of the strategy SLA-C and SLA-P

From comparison of the strategy SLA-C and SLA-P, we can find that
1): both strategies are inferior to the AIAF strategy in term of the rev-
enue maximization, which means three-level allocation optimization is
a better choice for the publisher than the single-level allocation opti-
mization. 2) The strategy SLA-P surpasses SLA-C, which implies that
optimization of the fine-grained level is much more profitable than that
of the coarse-grained level. 3) The optimal allocation points under both
strategies indicate that as much as possible ad inventory should be al-
located to the level being optimized.

6.3.2. Two-level allocation strategy
Then, we conduct experiments to compare the revenue

maximization under the AIAF strategy with two-level allocation (TLA)
strategies. In practice, joint optimization of channel level and platform
level is usually not considered by publishers, therefore, we will neglect
it and only consider the joint optimization of adjacent levels, i.e.,
market level and platform level, market level and platform level.

• Joint optimization of the market-level and platform-level allocation
strategy (the strategy TLA-MP)

The strategy TLA-MP discusses joint optimization of the market-
level and platform-level allocation regardless of the channel-level op-
timization.

The total revenue under the strategy TLA-MP is shown in Fig. 4,
where the offline supply-demand ratio is defined by the offline supply
dividing the offline demand. We can see that the maximal revenue is
gained under the AIAF strategy for which the offline demand is partially
satisfied in the proportion of 47.5%; while when the offline contract is
completely fulfilled, the achieved revenue of CNY 11.964 million,
which is much less than the maximal CNY 12.051 million.

From Fig. 4, we can see that the total revenue fits the trend of in-
creasing quickly to a peak followed by a sharp decrease with the in-
creasing offline allocation, which means under the soft constraint of the
offline contract, both over-low and over-high offline allocation are not
desirable. From the experiments, we can also conclude that the pub-
lisher can improve his/her optimal revenue through more effective
offline negotiations to reduce the default penalty or agree on a more
flexible offline demand.

Fig. 5 depicts the offline supply-demand ratio under the strategy
TLA-MP with respect to the comparative marginal revenue, which is the
sum of the offline marginal revenue and the online marginal loss (ne-
gative marginal revenue). Due to the fixed offline CPM and penalty
factor, the offline marginal revenue is also fixed; but the online mar-
ginal loss increases with the growth of the offline allocation. When the
offline marginal revenue can not compensate the online marginal loss,
i.e. the comparative marginal revenue under Strategy TLA-MP reaches
zero, the publisher should stop allocating more ad inventory to the
offline channel. Therefore, the decision of the ad inventory allocation
under the strategy TLA-MP mainly depends on the comparative mar-
ginal revenue.

• Joint optimization of the channel-level and market-level allocation
strategy (the strategy TLA-CM)

The strategy TLA-CM discusses the two-level optimization of the
channel-level and market-level ad inventory allocation while the plat-
form-level optimization is not considered.

Fig. 3. Total Revenue Under Strategy SLA-P (Unit: Million CNY).

Fig. 4. Total Revenue Under Strategy TLA-MP (Unit: Million CNY).
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Experimental results under the strategy TLA-CM are shown in Fig. 6
and 7. The optimal allocation under this strategy is equivalent to that
under the optimal AIAF strategy, where 43.6% ad impressions in the

platform level are allocated to RTB, and the maximal revenue of CNY
12.051 million is achieved. Also, we can see that the allocation across
two platforms outperforms that to the single platform in most cases, but
it does not hold in all cases. When the allocation proportion of RTB
reaches 92.2%, the total revenue is CNY 10.169 million, which is equal
to that from allocating all ad inventory to PMP; and then more allo-
cation to RTB will result in continual decreasing of the total revenue to
the lowest CNY 9.596 million when all ad impressions are allocated to
RTB. That is, when the RTB allocation proportion is in the interval
(92.2%, 100%], the single-platform strategy of allocating all ad inventory
to PMP is a better choice comparing to the cross-platform strategy.

From the joint analysis of the marginal revenue and the total rev-
enue, we can see that when the comparative marginal revenue keeps
positive, the publisher continues to allocate more ad inventory to RTB
until it reaches zero, which is the optimal allocation point for the rev-
enue maximization. When the allocation proportion of RTB reaches
43.6%, although the marginal revenue in RTB keeps positive and even
gets increasing, it still can not compensate the increasing marginal loss
in PMP, and the continual allocation to RTB will result in more loss of
total revenue for the publisher. Therefore, the decision of the ad in-
ventory allocation under the strategy TLA-CM is greatly influenced by
the comparative marginal revenue.

As shown in Fig. 4 and 6, ad inventory allocation decisions ab-
stracted from three-level AIAF models are concave, which conforms to
the assumption of Theorem 1–4. As such, the analysis of the convex
programming of the hierarchical AIAF models in Section 4.2 is verified.

• Comparison of the strategy TLA-MP and TLA-CM

Next, we further compare the strategy TLA-MP and TLA-CM. From
Fig. 8, we can find that: 1) For these two strategies, the changing of
total revenue shows a similar trend under different allocation propor-
tions, but the strategy TLA-MP is much more stable than the strategy
TLA-CM. 2) The lowest revenue under the strategy TLA-MP is CNY
11.942 million from allocating all ad inventory to the online channel;
and the lowest revenue under the strategy TLA-CM is CNY 9.596 million
from allocating all ad inventory in the platform level to RTB. 3) The
average revenue under the strategy TLA-MP is CNY 12.018 million, and
that under the strategy TLA-CM is CNY 11.178 million. Therefore, we
can conclude that the strategy TLA-MP outperforms TLA-CM, since it
can generate higher revenues for the publisher more stably.

Fig. 5. Offline Supply-Demand Ratio with Comparative Marginal Revenue
Under Strategy TLA-MP (Unit: Million CNY).

Fig. 6. Total Revenue Under Strategy TLA-CM (Unit: Million CNY).

Fig. 7. RTB Allocation Proportion with Comparative Marginal Revenue Under
Strategy TLA-CM (Unit: Million CNY).

Fig. 8. Comparison of Total Revenue Under Strategy TLA-MP and Strategy TLA-
CM (Unit: Million CNY).
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6.4. Experimental discussions

From comparing the AIAF strategy with both the single-level allo-
cation strategies and two-level allocation strategies, we can draw the
following conclusions:

1) Comparing the experimental results in Section 6.2 and 6.3.1, we find
that the optimal revenue of the single-level allocation strategies is
far less than that of the three-level allocation strategy (i.e. our AIAF
strategy). Also, comparing the experimental results in Section 6.2
and 6.3.2, we find that the upper bound of the optimal revenue
achieved by the two-level allocation strategies is equal to the op-
timal revenue of the AIAF strategy. As such, we can conclude that
our AIAF strategy outperforms both two-level allocation strategies
and single-level allocation strategies. Accordingly, with the purpose
of revenue maximization, the publisher should take the whole PA
markets into consideration to conduct joint optimization of the ad
inventory allocation in almost all scenarios.

2) Comparing the experimental results under the strategy SLA-P in
Section 6.3.1 and the strategy TLA-MP in Section 6.3.2, we find that
the revenues under the strategy TLA-MP are comprehensively higher
than that under the strategy SLA-P. Similarly, comparisons of the
experimental results under the strategy SLA-C and TLA-CM show
that the strategy TLA-CM produces more revenues for the publisher
than the strategy SLA-C. Moreover, the above analyses have high-
lighted the superiority of the AIAF strategy over the single-level
allocation strategies. As such, for a specific level, joint optimization
with other one or two levels outperforms the isolated optimization
of itself significantly. That is, joint optimization of the multi-level
allocation is a better choice than the single-level optimization for
the publisher with limited ad inventory in PA markets.

3) For single-level allocation strategies, the strategy SLA-P outperforms
SLA-C as discussed in Section 6.3.1; and regarding two-level allo-
cation strategies, the strategy TLA-MP outperforms TLA-CM as dis-
cussed in Section 6.3.2, which means the fine-grained optimization
of lower levels can generate higher revenues than the coarse-grained
optimization of upper levels.

4) In case that more than 92.2% ad impressions in the market level are
allocated to RTB, the platform-level optimization (i.e. under the
strategy SLA-P) even results in more revenues than the joint opti-
mization of the channel-level and market-level allocation (i.e. under
the strategy TLA-CM), which indicates that sometimes the most fine-
grained single-level optimization even take advantages over the
coarser-grained joint optimization.

5) According to the analysis in Section 6.3, ad inventory allocation
decisions should be made under the comparative marginal revenue
from different channels, markets or platforms. If the marginal rev-
enue of a specific channel, market or platform is high enough to
compensate the marginal loss of the other, continuing the additional
allocation to it is a good choice for the publisher. The optimal al-
location strategy is realized when the marginal revenue and the
marginal loss reaches zero-sum.

6.5. Managerial insights

Diversified ad models of PA markets suggest more choices for
publishers to sell the limited ad inventory, but meanwhile add great
complexities of allocation decisions. This research works on the three-
level ad inventory allocation for publishers in PA markets and provides
supportive managerial insights for their decisions.

First, the ad inventory allocation is a very significant decision for
publishers, and slight changes of allocation strategies may result in
significantly different revenues, especially for the accumulated effects
of the three-level allocation.

Second, because of the hierarchical structure and strong couplings
of three-level ad inventory sales, the ad inventory allocation can not be

simply considered as independent and isolated decisions in each level.
Instead, publishers should take the influence-feedback effects of all
three levels into consideration to make joint optimization with the
purpose of revenue maximization. Our research has proved that the
three-level allocation strategy always outperforms two-level allocation
strategies, and similarly, two-level allocation strategies are better than
the single-level allocation strategies.

Third, it is the usual practice for publishers and the common re-
search interest of academia to put more efforts on more coarse-grained
ad inventory allocation (e.g. cross-channel allocation). However, our
research gives counter-intuitive conclusions and indicates that they
should put the emphasis on more fine-grained allocation instead of
more coarse-grained allocation. The reason may be that the precise-
targeting characteristics of programmatic advertising driven by big data
can not be fully reflected in coarse-grained levels.

Also, when publishers optimize the multi-level ad inventory allo-
cation, the absolute marginal revenue should be substituted by the
comparative marginal revenue as the decision basis. The above analysis
has proved that the increasing positive marginal revenue can not sup-
port publishers to keep increasing allocation to a channel or platform,
since the increasing marginal loss of another channel or platform may
not be compensated by it.

7. Conclusion and future work

Ad inventory allocation is the significant decision for publishers to
maximize revenues, and also the great concern for the supply-demand
balance and advertiser-audience match for PA development. In this
paper, we formulate the ad inventory allocation as a three-level opti-
mization problem, which views the channel-level, market-level and
platform-level allocation as an inter-dependent joint optimization issue.
We establish a hierarchical AIAF model, analyze some desirable theo-
retical properties, and present a generic solution process. Also, we
propose an illustrative instantiation to make further demonstrations of
AIAF. Computational experiments are designed to validate the models
and analysis, and the results show that AIAF can effectively improve
publishers’ maximal revenues compared with both single-level alloca-
tion strategies and two-level allocation strategies. This paper estab-
lishes a preliminary ad inventory allocation framework for publishers in
PA markets. It not only provides an open and inclusive context from the
angle of the PA ecosystem, but also supports the ad inventory decisions
in practice from the angle of individual publishers.

In the ongoing work, we will extend this framework to probe more
complicated situations, e.g. uncertainties, competitiveness, budget
constraints and so on. Also, we try to explore the problem using ACP
(artificial systems +computational experiments +parallel execution)
approach (Wang et al., 2008; Wen et al., 2013) to combine both the real
and artificial markets, resulting in an efficient allocation and adjust-
ment of the ad inventory allocation in PA markets.
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