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Abstract—We present a novel Scale Position Correlation
Network (SPCNet) for learning to track objects robustly and
efficiently. Different from most previous Correlation Filter (CF)
based tracking models, SPCNet unifies the feature representation
learning and CF based appearance modeling within one end-
to-end learnable framework. In particular, SPCNet learns to
track objects within a joint scale-position space, and is very
effective in learning features for the accurate prediction of object
scale and position. To learn our model from end to end, the
SPCNet introduces a differentiable correlation filter layer into
a Siamese architecture. Therefore, the localization error can be
effectively back-propagated through the whole network, enabling
fast adaptation of feature learning and appearance modeling for
the objects to be tracked. Such task driven feature learning
admits a very lightweight design that can be efficiently pre-
trained. In addition, the dense appearance modeling in the
joint scale-position space is also efficient. It benefits from the
computation of gradients within the Fourier frequency domain.
Such careful architecture design ensures that SPCNet is effective
and efficient with a small model size. Extensive experimental
analyses and evaluations on three largest benchmarks, OTB-2013,
OTB-2015, and VOT2015, demonstrate its superiority over many
state-of-the-art algorithms.

I. INTRODUCTION

Object tracking is a fundamental problem in computer vision
with wide applications such as human computer interaction [1]
and assistant driving systems [2]. One common setting for
this problem is to specify the object of interest in the first
frame with a bounding box. The objective is to estimate the
trajectory of the object in subsequent frames [3], [4]. Despite
significant progress made in last decade [5], [6], [7], [8], [9], it
still remains a challenging problem due to object deformation,
scale variation, partial occlusion, etc. Moreover, maintaining
real-time processing is also vital for visual tracking. This
condition rules out many state-of-the-art trackers.

Recently, correlation filter (CF) based trackers [10], [11],
[7] have received great attention because of their remarkable
tracking performance and efficiency. These trackers model the
correlations between the object patch and the full set of ap-
proximate surrounding patches in the position space by solving
a ridge regression problem efficiently in the Fourier frequency
domain. To further boost the tracking performance, many
improvements have been made [12], [9], [13], [14]. To enhance
the discriminative power of a tracker, the object representation
has evolved from simple hand-crafted features (eg, raw gray
features [10], HOG [15], [7] and Color Names [16]) to pre-
trained multi-layer deep features [13], [17], [18], [9]. The scale

factor is considered in DSST [11] by extending the object
search space from a single position space to the joint scale-
position space. The correlation analysis is also transformed
into a verification problem to leverage the effective Siamese
network and external large video dataset [19], [20].

Despite significant progress, some obstacles for extending
CF based trackers to more realistic application scenarios still
remain prominent. First, the object scale factor is usually
ignored or not well considered in the appearance modeling
process. This makes it difficult for trackers to take advantage
of the correlations between object position and scale. For
instance, the seperately exploited position filter and one-
dimensional scale filter in [11] can not handle the simultaneous
variations of object scale and position well. Moreover, the
visual features for these trackers are either hand-crafted or
chosen from unchangeable pre-trained networks for the image
classification task [21], [22] or object detection task [23].
Therefore, feature extraction and object tracking appearance
modeling are isolated from each other and cannot co-adapt
to achieve better tracking performance. By exploiting more
layers of deep features and combining multiple features, the
increasingly complex models, with massive trainable param-
eters, inevitably introduce the risk of severe over-fitting and
expensive computing [9]. A good trade-off between tracking
accuracy and speed is often absent, which hampers the appli-
cation of real-time visual tracking. For Siamese network based
trackers [24], [19], feature extraction and correlation analysis
are performed simultaneously, and the tracking speed is quite
fast. However, there is no on-line learning process. A fixed
metric obtained from the correlation analysis is used. It is not
possible to take advantage of video-specific cues, and tracking
adaptability is lost.

To address the above issues, we present an end-to-end
lightweight network architecture for visual tracking. The pro-
posed SPCNet learns the convolutional feature representations
and performs adaptive correlation tracking in the joint scale-
position space simultaneously. Specifically, SPCNet adopts a
Siamese architecture to automatically learn optimized features
for better CF based object tracking. The correlation operation
is treated as a special correlation filter layer. More importantly,
the introduced correlation filter layer is differentiable and thus
the overall network can be trained end-to-end through error
back-propagation. SPCNet only requires a few convolutional
layers to learn features which encode the prior tracking knowl-
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Fig. 1: The overall SPCNet architecture. SPCNet is quite lightweight with only two convolutional layers and one correlation filter layer. It
is end-to-end trainable in the joint scale and position space of the object state, which permits task-driven feature extraction and adaptive
appearance modeling in the CF based tracking framework.

edge in the pre-training process of the whole tracking network
by leveraging large video object detection datasets and pro-
vides outstanding efficiency. The correlation filter layer works
on convolutional features extracted from the object template
and the search area in the joint scale-position space, and then
a joint correlation analysis is performed to estimate the object
position and size simultaneously. The weights of this layer
are learnt and updated online in the same joint space to make
the tracker adaptive to continuous object appearance changes.
Since the derivation of the correlation filter layer is still done in
the Fourier frequency domain, the efficiency property of CF is
preserved. Despite the fact that our innovation of introducing a
differentiable CF layer into a Siamese architecture bears some
similarity to the very recent work of [20], we in contrast
consider a CF layer which explicitly operates in the scale
space in addition to the position space, and the differentiable
CF layer can propagate the gradient from both the position
and scale estimation errors. Our used regression loss in the
end-to-end training is also more suitable for tracking than the
element-wise logistic loss in [20].

Benefiting from the above novel designs, our proposed
SPCNet provides high speed of over 60 FPS, while still
achieving competitive tracking accuracy with state-of-the-art
trackers with heavier weights.

II. THE PROPOSED SPCNET

SPCNet offers high tracking accuracy and real-time tracking
speed. Its pipeline is summarized as follows. The SPCNet
consists of two convolutional layers for feature learning and
a correlation filter layer for visual tracking, as shown in
Fig. 1. The regression loss of joint scale-position correlation
response is back-propagated through the whole network to
adjust the parameters for both feature extraction and object
appearance modeling. In the offline training stage, the SPCNet
is trained from scratch and end-to-end based on the large
ILSVRC15 video object detection dataset [25]. This greatly
enhances the representation power of its feature extraction
module, without requiring scarce online tracking data while
obtaining features suited to tracking. The convolutional layers
for feature extraction are extensively trained off-line, and for

this reason are very robust and accurate. In the online tracking
stage, these convolutional layers are frozen to save processing
time, avoid overfitting, and reduce tracking drift. Meanwhile,
the correlation filter layer is updated continuously to tackle
object appearance variations. The object size and position are
simultaneously estimated according to the maximum of the
joint scale-position correlation response.

In the following subsections, we first introduce the joint
scale-position estimation of the object in the SPCNet based
tracking process. Then, the learning process of the tracking
task driven features is elaborated. Finally, we explain the
update process of the correlation filter layer in the spirit of
Recurrent Neural Network (RNN).

A. Joint Scale-Position Estimation in Visual Tracking

In order to enhance the discriminative power of SPCNet in
visual tracking, our correlation filter layer models the object
and contextual appearance correlations in the joint scale-
position space instead of the pure position space. Thus, the
simultaneous variation of object size and position is learnt by
our SPCNet and accurately estimated in the tracking process.

When a new video frame arrives, based on the object
size and position in previous frame, we first extract the
candidate samples in the joint scale-position space. This is
done by cropping the object region from current frame and
its scaled versions, and further resizing them to a fixed size
with M ×N pixels. Let S be the number of scales and zs be
the candidate sample in the s-th scale space, these candidate
samples can thus be denoted as {zs}Ss=1. The convolutional
layers for feature extraction work on these samples and output
D−dimensional feature representations {ϕl(zs)}Dl=1. The full
set of parameters of the correlation filter layer is represented
as w, containing one M ×N correlation filter wl per feature
layer. Therefore, let x̂ denote the discrete Fourier transform
of x, ie, F(x), x∗ represent the complex conjugate of x,
and � denote the Hadamard product. Then, the correlation
response of the sample zs output by the correlation filter layer
is obtained as:

g(zs) =

D∑

l=1

wl ? ϕl(zs) = F−1

(
D∑

l=1

ŵl∗ � ϕ̂l(zs)

)
, (1)



where ? denotes a circular correlation operator. The object size
and position are estimated in one go based on the maximum
of the joint scale-position correlation response.

The main advantage of such a correlation filter layer is that
its parameter set w can be learnt and updated online to adapt
to the appearance variation of the current video object. This
approach is superior to the fixed similarity metric in conven-
tional Siamese networks. This parameter learning process in
the joint scale-position space is described as follows.

The correlation filter layer is learnt using a set of training
samples from T frames in the joint scale-position space,
which can be represented as {(ϕ(xs,t),ys)}S,Ts=1,t=1. Here ys

is the desired correlation output in the s-th scale space, and
{ys}Ss=1 is constructed as a 3-D Gaussian function with its
peak at the target’s centre position and scale (see the expected
correlation response g̃(z) in Fig. 1 for more details). These
training samples are extracted based on the tracking results
in previous frames and are resized to the same spatial size
M × N . The correlation response of these training samples
estimated by our correlation filter layer is given as {g(xs) =∑D

l=1 w
l?ϕl(xs)}Ss=1. The correlation filter layer is optimized

by minimizing a ridge regression loss:

ε =
T∑

t=1

βt

(
S∑

s=1

‖g(xs,t)− ys‖22 + λ

D∑

l=1

∥∥wl
∥∥2
2

)
, (2)

where βt ≥ 0 is the impact of training samples from the t-th
frame, and the constant λ ≥ 0 controls the relative weight of
the regularization term.

We transform the ridge regression problem of Eqn. (2) to
the Fourier domain using Parseval’s formula. The objective
function is real valued, positive, and convex, so it is possible
to obtain the global optima by setting the partial derivative
equal to zero. Then, the solution is obtained as:

ŵl =

∑T
t=1 βt

(∑S
s=1 ŷ

∗
s � ϕ̂l(xs,t)

)

∑T
t=1 βt

(∑S
s=1

∑D
k=1 ϕ̂

k(xs,t)� (ϕ̂k(xs,t))∗ + λ
) .

(3)
Since this correlation filter layer is learnt in the Fourier fre-
quency domain using several discrete Fourier transforms and
element-wise multiplications, the computing in this layer is
quite efficient. In particular, the closed-form solution provided
here can avoid an expensive iterative optimization process.

B. Task Driven Feature Learning for tracking

Existing CF based trackers usually separate feature extrac-
tion from correlation analysis, which tends to give sub-optimal
results. The features exploited in these trackers are either hand-
crafted or chosen from pre-trained networks for the image
classification task or the object detection task. These features
may not be suitable for tracking. Therefore, we introduce a
differentiable correlation filter layer into a Siamese network
to enable the learnable parameters in the two components
to co-adapt and cooperate to provide an expected correlation
response. The regression loss of the correlation response in
the joint scale-position space is back-propagated through the

whole network to automatically learn tracking task driven
features. Here, we give details of the backward propagation
in SPCNet.

As shown in Fig. 1, SPCNet consists of two branches. A
filter learning branch exploits object exemplars in the joint
scale-position space to learn the parameters in the correlation
filter layer, as aforementioned in Eqn. (3). The other tracking
branch works on candidate search samples from the joint space
and finally calculates their correlation response in the corre-
lation filter layer. Then, the network is trained by minimizing
the differences between the real response and the expected 3-
D Gaussian-shaped response. Therefore, let each training pair
be ({zs}Ss=1, {xs}Ss=1), the expected 3-D Gaussian-shaped
response for candidate samples be {g̃(zs)}Ss=1 (see Fig. 1),
and convolutional parameters for feature extraction be θ. Our
offline training problem is formulated as:

L(θ) =

S∑

s=1

‖g(zs)− g̃(zs)‖22 + γ ‖θ‖22 , (4)

where

g(zs) = F−1

(
D∑

l=1

ŵl∗ � ϕ̂l(zs;θ)

)
, (5)

ŵl =

∑S
s=1 ŷ

∗
s � ϕ̂l(xs;θ)∑S

s=1

∑D
k=1 ϕ̂

k(xs;θ)� (ϕ̂k(xs;θ))∗ + λ
. (6)

An explicit regularization should be incorporated for bet-
ter convergence. We use the weight decay method in the
conventional parameter optimization to make implicit this
regularization. Besides, to restrict the magnitude of feature
map values and increase the stability of the training process,
we add a Local Response Normalization (LRN) layer [21] at
the end of the convolutional layers.

Since the intermediate variables are complex-valued, we
first give some preliminary facts. According to [26], the
gradient of discrete Fourier transform and inverse discrete
Fourier transform are formulated as:

ĝ = F(g), ∂L
∂ĝ∗

= F
(
∂L

∂g

)
,
∂L

∂g
= F−1

(
∂L

∂ĝ∗

)
. (7)

Since the operations in the forward pass only contain
Hadamard product and division, we can calculate the derivative
per-element:

∂L

∂ĝ∗uv(zs)
=

(
F
(

∂L

∂g(zs)

))

uv

. (8)

For the back-propagation of the tracking branch,

∂L

∂(ϕ̂l
uv(zs))

∗ =
∂L

∂ĝ∗uv(zs)
∂ĝ∗uv(zs)

∂(ϕ̂l
uv(zs))

∗

=
∂L

∂ĝ∗uv(zs)
(ŵl

uv),

(9)

∂L

∂ϕl(zs)
= F−1

(
∂L

∂(ϕ̂l(zs))∗

)
. (10)



For the back-propagation of the filter learning branch, we treat
ϕ̂l
uv(xs) and (ϕ̂l

uv(xs))
∗ as independent variables.

∂ĝ∗uv(zs)
∂ϕ̂l

uv(xs)
=

(ϕ̂l
uv(zs))

∗ŷ∗
s,uv − ĝ∗uv(zs)(ϕ̂l

uv(xs))
∗

∑S
s=1

∑D
k=1 ϕ̂

k
uv(xs)(ϕ̂k

uv(xs))∗ + λ
,

(11)

∂ĝ∗uv(zs)
∂(ϕ̂l

uv(xs))∗
=

−ĝ∗uv(zs)ϕ̂l
uv(xs)∑S

s=1

∑D
k=1 ϕ̂

k
uv(xs)(ϕ̂k

uv(xs))∗ + λ
,

(12)

∂L

∂ϕl(xs)
= F−1

(
∂L

∂(ϕ̂l(xs))∗
+

(
∂L

∂ϕ̂l(xs)

)∗)
. (13)

Once the error is propagated backwards to the real-valued
feature maps, the rest of the back-propagation can be con-
ducted as traditional CNN optimization. Since all operations
of back-propagation in the correlation filter layer are still
Hadamard operations in the Fourier frequency domain, we
can retain the efficiency property of CF and apply the offline
training on large-scale datasets. After the offline training has
been completed, we get a tailored feature extractor for online
CF tracking.

C. Online Model Update: RNN-alike Implementation

The online update of our correlation filter layer makes
our tracker quite adaptive to continuous object appearance
changes. Compared to general Siamese networks, our simi-
larity embedding is able to adapt to the specific appearance of
the tracking inistance. In particular, we find that the solution in
Eqn. (3) of the optimization problem in Eqn. (2) can be posed
as an incremental update process. The advantage is that we do
not have to maintain a large exemplar set and only need small
memory footprint. Therefore, we update our correlation filter
layer similarly to RNN as shown in Fig. 2, while keeping it
a much simpler architecture. Specifically, at the time instance
t, we use the latest updated linear correlation filter wt−1 to
test the samples {ϕ(zs,t)}Ss=1 and get the response output
{g(zs,t)}Ss=1. The object size and position are simultaneously
estimated by searching the joint scale-position space where
the maximum value of the response output exists. Based on
this tracking result, the training samples {ϕ(xs,t)}Ss=1 are
extracted to incrementally update wt−1 to a new set of wt,
such that the new filter will approximately output an expected
Gaussian response when correlated with the training samples
{ϕ(xs,t)}Ss=1.

III. EXPERIMENTS

In this section, we first introduce our implementation details
and the experimental settings. Then, ablation studies of the
effectiveness and efficiency performance analysis of each
component are carried out on the OTB-2013 [27] dataset.
After that, the overall performance of our SPCNet tracker is
evaluated on the whole OTB [27], [3] and VOT2015 [4] in
comparison with a majority of the state-of-the-art trackers.

ϕ(xs,t−2) ϕ(zs,t−1)

S∑
s=1

D∑
k=1

ϕ̂k(xs) � (ϕ̂k(xs))
∗

+λ

βt−2 ×

+

βt−2

× +

Eqn (3)

Eqn (4)

gs,t−1

SPCNet

ϕ(xs,t−1) ϕ(zs,t)

S∑
s=1

D∑
k=1

ϕ̂k(xs) � (ϕ̂k(xs))
∗

+λ

βt−1 ×

+

βt−1

× +

Eqn (3)

Eqn (4)

gs,t

Fig. 2: The online tracking process of SPCNet. The Numerator
(output of the horizontal pipeline at the bottom) and Denominator
(output of the horizontal pipeline at the top) of ŵp are recurrently
forward-propagated and updated as Eqn. (3).

A. Implementation Details

Training Data Preparation. To increase the generalization
capability and discriminative power of our feature represen-
tation, and avoid over-fitting to the scarce tracking data, our
SPCNet is pre-trained from scratch off-line on the training set
of the ILSVRC15 video object detection dataset [25]. This
training set consists of 7,911 objects and has little correlation
with OTB and VOT. In each video snippet of an object, we
collect each pair of frames within the nearest 10 frames, and
feed the cropped pair of target patches of 2× padding size to
the network, resulting in 5,507,660 pairs in total. The cropped
inputs are resized to a spatial resolution which is consistent
between the off-line training and on-line tracking phases. A
case study of the trade-off between the tracking accuracy and
speed suggests a resolution of 125× 125.

Network Setting. The feature extraction of our SPCNet
consists of 2 convolutional layers with kernel size set to 3×3
and a Relu layer appended at the end of each convolutional
layer. An LRN layer is also added to output the final feature
representation. There is no pooling layer and the final output
feature representation is forced to 32 channels. For the hyper-
parameters in the correlation filter layer, the regularization
coefficient λ is set to 10−4 and the Gaussian spatial bandwidth
is set to 0.1 for both on-line tracking and off-line training.
Similar to [28], we use a patch pyramid with the scale factors{
as|a = 1.01, s = b−S−1

2 c, b−S−3
2 c, ..., bS−1

2 c, S = 3
}

.
We apply stochastic gradient descent (SGD) with a mo-

mentum of 0.9 to train the network from scratch and set the
weight decay γ to 0.0005. The learning rate exponentially
decays from 10−2 to 10−5. The model is trained for 50
epochs with a mini-batch size of 32. SPCNet is implemented in
MATLAB with MatConvNet [29]. Experiments are conducted
on a workstation with an Intel Xeon 2630 at 2.4GHz and a
NVIDIA GeForce GTX 1080 GPU.

Benchmark Datasets. OTB is a standard benchmark for
visual tracking which contains 100 fully annotated targets with
11 different attributes. We follow the protocol of OTB and
report results based on success plots and precision plots for
evaluation. The success plots show the percentage of frames
in which the overlap score exceeds a threshold. The precision
plots show the percentage of frames where the center location



TABLE I: Ablation study of tracking components on OTB
using mean overlap precision (OP) at a threshold of 0.5, mean
distance precision (DP) of 20 pixels and mean speed (FPS).

Trackers OTB-2013 OTB-2015 FPS
OP DP OP DP

DCF [7] 61.6 72.8 54.8 68.9 292
DCFNet1s 67.7 79.1 63.7 76.8 187
SAMF [30] 67.7 78.5 64.0 74.3 12
DSST [11] 67.1 74.7 60.9 68.9 46
DCF+VGG 62.1 66.1 61.7 66.9 88

DCF+SiamFC 66.8 74.2 64.0 68.0 77
DCFNet 78.5 86.7 72.8 79.4 109
SPCNet 84.3 88.1 77.6 82.9 67

error is within a threshold. The VOT challenge is one of the
most influential and largest annual events in the tracking field.
On this benchmark, the expected average overlap (EAO) is
exploited to quantitatively analyze the tracking performance.

B. Ablation Studies

Evaluations on Individual Components. The tracking perfor-
mance comparisons with some baselines and our tracker’s vari-
ants, e.g., DCF (linear correlation filter version of [7]), SAM-
F [30], DSST [11], DCFNet-1s, DCF+VGG, DCF+SiamFC,
DCFNet, and SPCNet are shown in TABLE I. DCFNet-1s is
a variant of SPCNet without considering scale factors in both
training and tracking process. DCFNet enhances DCFNet-1s
with scale estimation at 3 adjacent scale levels only in the
tracking process. Compared to the traditional CF based tracker
DCF using hand-crafted features, our variant DCFNet-1s using
the self-learnt features and linear correlation filters obtains a
DP gain of 6.3∼7.9% and an OP gain of 6.1∼9.9%, while
retaining real-time tracking speed. By extending the search
space from a single position space to the joint scale-position
space, DCFNet significantly boosts the tracking performance
and outperform the traditional multi-scale trackers SAMF and
DSST by a large margin. DCF+VGG and DCF+SiamFC use
the original feature extraction in VGG [22] and SiamFC [19]
to replace the feature extraction in DCFNet. Compared with
them, our specifically learnt feature representation in DCFNet
leads to superior tracking performance by a notable margin.
Thus, the feature representation learnt from the end-to-end
network pre-training is effective for tracking. Our complete
version SPCNet carries out appearance modeling in the joint
scale-position space both in the training and tracking process
and ranks first using all the precision metrics.
Evaluations of Run Times. To highlight the trade-off which
we can make between the tracking accuracy and speed, we
additionally compared two kinds of different settings of the
proposed SPCNet model: one kind is pre-trained using 4
different input spatial resolutions and the other is pre-trained
using 5 different numbers of final output feature channels.
The tracking AUC accuracy and speed analyses of these
SPCNet family and some other real-time trackers are reported
in Fig. 3. From our experiments, we observe that decreasing
input spatial resolution can cause a large reduction in the
AUC accuracy, although it can provide a significant speedup.
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Fig. 3: The tracking speed and AUC performance on OTB-2013.
The tracking speed ranges from 60 FPS to 190 FPS with different
input spatial resolutions and different number of the output feature
channels. SCPNet-CX-SY stands for a member in the SPCNet family
consisting of X output feature channels and Y ×Y input resolution.

The AUC performance of a small number of output feature
channels only falls by 4% while the run time cost is reduced
by a factor of 3. Compared with recent fast trackers [7], [31],
[14], [32], [33], [19], [20], [34], we find that the proposed
SPCNet family achieve better performance both in accuracy
and speed. According to the different computational resources
available, a member in the SPCNet family with tracking speeds
ranging from 60 FPS to 190 FPS can be used.

C. State-of-the-Art Comparison

Comparison on OTB. Fig. 4 shows the results of SPCNet on
OTB-2013 and OTB-2015. From Fig. 4(a) and Fig. 4(b) we
find that, our automatic feature learning and appearance corre-
lation modeling in the joint scale-position space are effective
and lead to AUC gains of more than 11% in the success plots
of OPE on OTB-2013 and OTB-2015 compared with KCF and
DSST that exploit HOG features and do not consider the scale
factor in the training process. Although our feature learning
network only contains two convolutional layers and is much
shallower than [13], [18], we can achieve superior performance
with much faster speed. Furthermore, our algorithm is orders
of magnitude faster (100×) than the recent top ranked CF
based tracker MCPF [35], while achieving a comparable
performance. With a more adaptive online update strategy, the
proposed method works better than the recent SINT [24] and
SiamFC [19]. Compared to CFNet [20] which is end-to-end
pre-trained in the position space, SPCNet achieves an AUC
gain of more than 6% because it is learnt end-to-end in the
joint scale-position space and a more appropriate regression
loss is used.
Comparison on VOT. SPCNet is compared with the 62
participating trackers in the VOT2015 challenge as shown in
Fig. 5. The horizontal dashed line is the VOT2015 state-of-the-
art bound. SPCNet is ranked within the Top-10 trackers in the
overall performance evaluation based on the expected average
overlap (EAO) measure, while compared to the rest of the
Top-10 trackers, it has the fastest tracking speed based on the
speed evaluation unit called equivalent filter operations (EFO).
Compared to CF based trackers such as DeepSRDCF [17],
MUSTer [37] and KCF [7], we find that our SPCNet can
achieve an excellent balance between performance and speed.
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Fig. 4: Success plots on OTB-2013, OTB-2015 compared with
CF based trackers: KCF [7], DSST [11], HCF [13], SRDCF [12],
HDT [18], CFNet [20], MCPF [35] and others: TGPR [36], Sta-
ple [14], SINT [24], SiamFC [19].
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Fig. 5: An illustration of the expected average overlap plot on the
VOT2015 challenge. The Top-11 trackers are listed in the legend and
their tracking speeds are shown in EFO values.

IV. CONCLUSION

A SPCNet tracker is proposed to unify the feature repre-
sentation learning and CF based appearance modeling within
an end-to-end learnable framework. This framework is based
on a joint scale-position space, which enables feature learn-
ing in order to obtain accurate predictions of object scale
and position. SPCNet is quite efficient benefiting from the
lightweight feature learning network and the Fourier frequency
domain based fast correlation modeling in the correlation filter
layer. Evaluations on several benchmarks demonstrate that our
tracker is faster, stronger and much more compact than several
state-of-the-art deep learning based trackers.
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