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(1) What is the main contribution to the field? 

The emergency of surface defect would significantly influence the quality 

of MPCG (Mobile Phone Cover Glass). Efficient defect detection is highly 

required in the manufacturing process. In this paper, an automatic 

detection system is developed.  

The system adopts backlight imaging technology to improve the signal to 

noise ration and imaging effect. Then, a modified segmentation method is 

presented for defect extraction and measurement based on deep neural 

networks, overcoming the difficulties encountered in existing methods, 

such as imaging inconsistency and heavy requirement of training data. The 

system we designed has been used in actual production process and in real 

sense realized the application of computer vision in industry defect 

detection. 

 

(2) What is novel? In theory, in experimental techniques, or a 

combination of both? 

The innovation we made is mainly in experimental techniques. We 

originally applied the semantic segmentation methods into the field of 

high-precision defect detection and measurement. And for addressing the 

challenge, i.e., the requirement of huge labeled data, brought about by 

deep learning methods, a data generation algorithm combined with an 

augmentation process is proposed. With the data generation algorithm, the 

variety of defects’ morphologies and imaging inconsistency can be 

simulated as well. 

 

(3) Does your paper have industrial applications? If yes, who are the 

likely users? 

Yes, we have industrial applications and have already been applied into 

real industrial production. The users are mainly MPCG (Mobile Phone Cover 

Glass) manufactories. 
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Abstract—The emergency of surface defect would 

significantly influence the quality of MPCG (Mobile Phone 

Cover Glass). Therefore, efficient defect detection is highly 

required in the manufacturing process. Focusing on the 

problem, an automatic detection system is developed in this 

paper. The system adopts backlight imaging technology to 

improve the signal to noise ration and imaging effect. Then, 

a modified segmentation method is presented for defect 

extraction and measurement based on deep neural networks. 

In the method, a novel data generation process is provided, 

with which the drawback that huge amount of data is 

required for training deep structured networks can be 

overcome. Finally, experiments are well conducted to verify 

that satisfactory performance is achieved with the proposed 

method. 

Index Terms— mobile phone cover glass, defect inspection, 

deep learning, semantic segmentation. 

I. INTRODUCTION 

ETECTION of the surface defect is a significant 

concern in different manufacture processes and is 

still mainly accomplished by human workers. Recently, 

this time-consuming task is increasingly becoming the 

bottleneck of productivity. With the development of 

image processing technology and artificial intelligence, 

the replacement of manual labor using automatic 

detection is becoming possible. Several automatic 

detection systems are reported and are applied in the 

productions of such as stainless steel strip [1,2], the 

large-scale optical device [3,4], TFT-LCD (Thin Film 

Transistor Liquid Crystal Display) panel [5], and wafer 

detection [6]. 

As a special case of the above, the automatic 

detection of defect for MPCG is active, not only to cut 

labor costs but also to improve the detection accuracy. In 

[7], PCA (Principal Components Analysis) was utilized to 

analyze image patches, in which way the features could 

be obtained and then used to classify the test patches into 

the classes of the equivalent training samples. The defects 

were recognized and their sizes were measured by simply 

counting the number of pixels in them. As can be seen, 

the extracted features are too primitive and the measured 

accuracy cannot satisfy the requirement of practical 

applications. In [8], the OMP algorithm (Orthogonal 

Matching Pursuit) [9] was suggested for selecting an 

optimal subset (smallest size and least representative error) 

of the prespecified training dictionary. Then, a sparsity 

ratio, which was defined as the quotient of the number of 

non-zero coefficients and the image size, was calculated 

to determine whether the testing image is qualified. 

Compared to [7], the method in [8] is more robust to 

environmental changes such as alignment and lighting for 

images. With the same consideration of robustness 

improvement, [10] adopted a different strategy, template 

reference, to align the images. A subtraction and 

grayscale projection was then conducted on acquired 

images and template to extract defects. Additionally, a 

further IFCM (Improved Fuzzy c-means Cluster) 

algorithm was proposed to detect defects with ambiguous 

boundaries. [11] illustrated two problems encountered in 

MPCG defect detection, which respectively was high 

dimensionality of the defect feature and imbalanced 

defect examples. To address these two problems, an 

effective scheme was presented, demonstrating superior 

performance over other methods. 

As can be concluded, significant progress has been 

made on this topic. But there remains much scope for 

improvement, especially for the above-mentioned 

methods. For example, the performance of the method 

proposed in [8] is highly dependent on the sparsity ratio 

and is sensitive to noises. For the method in [10], it is 

insufficient for image distortion rectifying to consider 

only rotations and shifts. And thus, the extraction after 

subtraction is not accurate. The methods in [8] and [11] 

cannot measure the defects’ sizes, limiting the range of 

applications. Besides, in the methods, engineers 

commonly suffer from the heavy work of artificial feature 

design. There is no explicit guideline for choosing 

optimal features. As such, human experience is the key to 

the success. 

Recently deep networks have demonstrated 

remarkable ability to learn high-level features. The 

features would be certainly helpful to improve 

performance and are usually hard to design artificially. 

With the consideration, several attempts are made to use 

deep networks in surface defect detection. [12] applied a 

two-layer neural network to detect the defects on textured 

surfaces, whose inputs were statistical features extracted 

from randomly generated image patches. [13] designed a 

deep convolutional neural network, which performed well 

in the detection of rail defects, in part because of the 

beneficiary of the huge amount of image data. Another 

architecture of the deep convolutional neural network for 

surface defect detection was presented in [14], which was 

demonstrated to achieve higher performance than 

traditional detection methods. A generic method for ASI 

(Automated Surface Inspection) was proposed in [15]. In 

the method, the defect areas were predicted by 

thresholding the heat maps generated from the classified 

patches using a pre-trained deep learning network. 

Focusing on the specific task of MPCG defect 

detection, several difficulties which limit existing 

detection methods should be emphasized: (1) great 

variety of defects’ morphologies; (2) imaging 

inconsistency; (3) requirement of high-precision 

measurement of defects’ sizes. Considering the problems, 

an automatic MPCG detection system is developed in this 
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paper. A data generation algorithm is firstly proposed to 

synthesize labeled training images. Subsequently, an 

augmentation process is conducted, in which the 

transformations, such as Gamma transformation, rotation, 

shift, zoom, etc., are involved. The generation step 

generates various morphologies of defects while the 

augmentation step simulates the imaging inconsistency. 

Using the two algorithms, the uncertainty caused by (1) 

and (2) could be appropriately dealt with. Finally, a 

pixel-level segmentation network is presented to measure 

the sizes of the defects with satisfactory precision, which 

solves (3). 

 The remainder of this paper is organized as follows. 

A simple description of the inspection instrument is 

presented in Section 2. A detailed analysis of traditional 

methods and the motivation of this paper are stated in 

Section 3. Section 4 provides a detailed illustration of the 

defect segmentation network and Section 5 describes the 

data set generation algorithm. Section 6 shows the 

experiments and results. Finally, this paper is concluded 

in Section 7. 

II. IMAGE CAPTURE SYSTEM 

As illustrated in Fig. 1, we adopt backlight 

line-scanning imaging method. The reasons for that could 

be concluded as follows. Firstly, only one degree of 

freedom needs to be adjusted to ensure the imaging plane 

parallel to the surface of the cover glass. Secondly, in 

comparison with plane array camera at the same cost, 

line-scan camera would achieve higher resolution. In the 

detection process, the cover glass to be detected is 

perpendicular to the optical axis of the camera and 

parallel to the mask and backlight source. After 

illuminated by backlight source, the glass is transmitted in 

and all the areas of the glass will be successively exposed 

under the optical axis of the camera. The corresponding 

gray intensities are dependent on the amount of light 

penetrating through the glass.  

 

line-scan camera

backlight source

printing area

optical center

cover glass

light-noise-resistant mask

moving direction

moving direction

 
Figure 1: The principle of backlight line-scan imaging. The cover glass 

is parallel to the mask and backlight source and is perpendicular to the 
optical axis of the line-scan camera. The camera captures images line by 

line as the glass moves. 

 

 
Figure 2: Mechanical structure of experimental platform. 

 

According to the imaging principle, the mechanical 

structure of the experimental platform is designed and 

shown in Fig. 2. The platform primarily consists of 

transmission module and an imaging module. The 

transmission module is a motorized horizontal stage and 

the imaging module includes the line-scan camera and the 

backlight source. The camera is fixed on the platform and 

captures images when the glass, as well as the backlight 

source, is transferred by the transmission module through 

the view. 

III. ANALYSIS AND MOTIVATION  

A. Typical Defects 

An example of the upper half part of MPCG image 

is present in Fig. 3. As illustrated in the figure, an MPCG 

image can be divided into the printed region and view 

window region. The components, IR (Infrared Radiation) 

hole, Camera hole, and Receiver holes, are arranged 

inside of the printed region. Certainly, different defects 

would arise in different regions. Among them, the defects 

of IR hole are the most difficult to detect due to the 

ambiguous boundary and great variety of defects’ 

morphologies, which are the major concern of the paper. 
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Typical defects of IR holes are provided in Fig. 4. In the 

figure, it is worth to note that images at left column are 

apparently darker than those at the right column. It is 

what we mentioned as imaging inconsistency caused by 

the environmental changes (such as lighting), fabrication 

error and instruments inconsistency. 

 
Figure 3: The upper half part of MPCG image. The figure illustrates different components of the image. The dark area is the printed region. The white 
area surrounded by the printed region is the view window region. On the top of the image, three components inside the printed region are shown, which 

are infrared radiation hole, camera hole, and receiver holes, respectively. 

 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  
Figure 4: Typical defects of IR hole. The defects can be generally 
classified into (a) miss printing (b) black point (c) white point (d) 

contrast color and (e) peel-like appearance. The images illustrate the 

imaging inconsistency. The first column show the IR images with lower 
gray intensities while the second column are the ones with higher 

intensities. 

B. Analysis of traditional methods 

The IR defects are characterized by the differences 

of the gray value, i.e., they are usually darker or brighter 

than surrounded areas. We try to utilize traditional 

binarization methods and segmentation methods to solve 

the detection problem. The binarization methods could be 

classified into two categories, i.e., local methods and 

global methods. The difference between them is that 

global methods use only one threshold over the entire 

image while in local methods, multiple thresholds are 

involved. Local methods usually give more accurate 

results as compared to global methods especially in the 

conditions where the image is effected from bad shading, 

blurring, low resolution and non-uniform illumination. 

Both types of methods are employed to solve the problem. 

Two classical methods, Otsu’s thresholding method [16] 

and Wellner’s method [17], which respectively are the 

global method and local method, are first chosen. Besides, 

the segmentation methods provide another idea to solve 

the problem. The methods partition the image into 

disjoint regions which are homogeneous with respect to 

some properties, such as gray value or texture. Watershed 

method [18], which is well known to be a very powerful 

segmentation tool, is chosen as well to solve the detection 

problem. The results of the three chosen methods are 

shown in Fig. 5. 

It can be seen from the figure that all of the methods 

performed poorly on the defect images. In the Otsu’s 

method, the threshold was more apparently influenced by 

the background than the slight defects. Thus, what the 

threshold distinguished is actually the difference between 

foreground and background. Wellner’s method could rule 

out the affection of the background but was sensitive to 

the noise. Watershed method could effectively detect 

obvious defects but still cannot exclude the affection of 

noise. 

C. Motivation of the proposed method 

Performances of traditional detection methods highly 

depend on how well the representations can model the 

properties of defects. However, there is no guideline for 

designing optimal representations, and thus, expertise is 

the key to the success of these methods, limiting their 

wide applications in industrial detections. In recent years, 

deep learning methods have been achieving good 

performances in various vision tasks but rarely applied to 

defect detection problems. 

The difficulties encountered in defect detection, such 

as the great variety of defects’ morphologies and imaging 

inconsistency can hardly be dealt with by the 

representations employed in traditional methods. 

Therefore, we try to apply deep learning methods to solve 

these difficulties. And for addressing the challenge, i.e., 

the requirement of huge labeled data, brought about by 

deep learning methods, a data generation algorithm 

combined with an augmentation process is proposed. The 

data generation algorithm is proposed to synthesize 

labeled training images. Subsequently, the augmentation 

process is conducted, in which the transformations, such 

as Gamma transformation, rotation, shift, zoom, etc., are 

involved. The generation step generates various 

morphologies of defects while the augmentation step 
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simulates the imaging inconsistency. And considering the 

requirement of high-precision measurement of defects’ 

sizes, using pixel-level segmentation networks would be a 

good choice. Inspired by the idea of adversarial 

segmentation [19], we designed a segmentation network 

using adversarial training to obtain better robustness. 

 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    
Figure 5: Experimental results of traditional methods. (a) Defect images. (b) Ground truth. (c) Otsu’s method[16]. (d) Wellner’s method[17]. (e) 
Watershed method[18]. 

 

IV. DETECTION WITH SEGMENTATION NETWORK 
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Figure 6: The abridged general view of the defect segmentation model 

training with the adversarial network. The segmentor uses the standard 

segmentation method that gives out synthetic label maps. The 
adversarial network estimating the probability of the label map 

belonging to ground truth is a CNN-based discrimination network. The 

input of adversarial network is a collection of binary map acquired from 
both synthetic label maps and the ground truths. 

A. Segmentation network 

The goal of segmentation task is computing 

pixel-wise labels of target images. Generally, 

max-pooling layers that usually involved in CNNs 

(Convolutional Neural Network) would result in loss of 

accurate spatial information, limiting the applications in 

segmentation tasks. Considering this, several 

improvements on the original architecture are suggested, 

leading to new types of CNNs, such as FCN (Fully 

Convolutional Network) [20], deep deconvolution 

network [21] and dilated convolution network [22]. 

In contrast to standard CNNs, the FCN [20] 

interpreted the fully connected layers in the standard 

CNNs as convolutions with large receptive fields and also, 

the model employed fewer pooling layers. But the 

resolution reduction and small receptive field 

simultaneously restricted further improvement on 

accuracy. The deep deconvolution network [21] 

composed of deconvolution and unpooling layers is 

advantageous to handle object scale variations by 

eliminationg the limitation of fixed-size receptive field in 

the FCN. The network contributes to gaining accuracy a 

lot, especially in large objects phase. Nevertheless, 

accuracy loss still had not been completely solved 

essentially because of series of downsampled interlayers. 

Plugging the dilated module into existing segmentation 

architectures reliably improves the accuracy based on the 

utilization of receptive fields with increasing sizes. 

According to the above analysis, we prefer to reduce the 

number of pooling layers and choose the dilated 

convolution as our fundamental operator. 

B. Dilated segmentation network 
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Figure 7: The first 5 layers of our network. The axis left computes 

receptive fields from the input layer while the right one only focuses on 

dilated layers. Conv, Pool, and D-conv respectively represent the 
convolutional layer, pooling layer and dilated convolutional layer. The 

right axis illustrates the receptive field size of the output layer w.r.t. 

Pool_1. 
 

Let 𝑓 : 𝕫+
2
→ ℝ  be a discrete function and 𝑔 : 

𝔻 → ℝ be a discrete two-dimensional filter, where 𝕫+ is 

positive integer field, ℝ  is the real field, and 𝔻 =

[−𝑟, 𝑟]2⋂𝕫+
2
. The discrete convolution is defined as 

 

(𝑓 ∗ 𝑔)(𝑛) = ∑ 𝑓(𝑖)𝑔(𝑛 − 1)𝑖     (1) 

 

The dilated convolution equation is 

 

(𝑓 ∗𝑑 𝑔)(𝑛) = ∑ 𝑓(𝑖)𝑔(
𝑛−1

𝑑
)𝑖     (2) 
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where ∗𝑑 represents a dilated operator with size 𝑑, 𝑑 ∈
ℤ+ . Particularly, the origin discrete convolution is 

1-dilated convolution with the respective field of size 

3 × 3. Cascading the dilated convolution as 

 

𝑓𝑖+1 = 𝑓𝑖 ∗2𝑖 𝑔𝑖 , for 𝑖 = 1,2, …+∞  (3) 

 

where the domain of 𝑔𝑖  is defined as 𝔻 =

[−1, 1]2⋂𝕫+
2
, and the size of the receptive field of each 

layer de as 𝑓𝑖 is (2𝑖 + 1) × (2𝑖 + 1). As expected, the 

receptive field is increasing exponentially.   

The segmentation problem we are facing is a 

high-precision pixel-level labeling task, namely dense 

prediction. The loss function we displayed here is in 

common use by state-of-the-art segmentation models. 

Since the labeling task aims at distinguishing defects 

from the background, we used the binary label for 

convenience. Therefore, the loss function is actually a 

binary cross-entropy 
 

𝐿(�̂�, 𝑦) = −∑ [�̂�𝑖𝑙𝑛𝑦𝑖 + (1 − �̂�𝑖) ln(1 − 𝑦𝑖)]
𝐻×𝑊
𝑖=1  (4) 

 

where �̂� and 𝑦 denote the predictions and ground truth, 

𝐻  and 𝑊  are the height and width of images we 

predicted. The main task is to minimize the loss function 

w.r.t. the weights. We used a fully convolutional 

architecture with one polling layer combined with dilated 

convolutions to obtain high accuracy pixel-level 

predictions.  

 
Layers 1 2 3 4 5 6 7 8 

Name Conv_1 Pool_1 D-conv_1 D-conv_2 D-conv_3 D-conv_4 D-conv_5 Conv_2 

Dilation size 1  2 2 4 4 8 1 

Kernel size 3×3  3×3 3×3 3×3 3×3 3×3 3×3 

Kernel receptive field 3×3  5×5 5×5 9×9 9×9 17×17 3×3 

Kernel receptive field w.r.t. Pool_1   3×3 3×3 5×5 5×5 9×9 2×2 

Receptive field w.r.t. Pool_1   3×3 5×5 9×9 13×13 21×21 22×22 

Receptive field 3×3 4×4 12×12 20×20 36×36 52×52 84×84 88×88 

Table 1: Details of our dilation model. Considering the use of 2-dilated operator after layer Pool_1, the receptive field size of the output layer is the 

product of that w.r.t. Pool_1 (the right axis in Fig. 7) and receptive field size of Pool_1. Sizes of receptive fields are not gaining exponentially due to the 
alternative raising of convolution kernel size and dilation size. 

 

A proper receptive field size of the output layer is 

the crux of a segmentation task. Meanwhile, designing a 

suitable network satisfying the desired receptive field size 

is important. However, due to the mixed-use of pooling 

layer and various dilated convolutional layers, it is not 

easy to calculate the receptive field sizes. The input 

images in our work are 400 pixels wide and 200 pixels 

high and the sizes of defects are usually smaller than 1/5 

the width of the image, namely 80 pixels. Consequently, 

the ideal size of the receptive field should be no less than 

80, in practice, we choose 88. The details of calculating 

the receptive field size are shown in Fig. 7 and Tab. 1. 

 

C. Training with adversarial model 

 GANs (Generative Adversarial Networks) proposed 

by Goodfellow et al.[23] play an adversarial game 

between the generator 𝐺 and the discriminator 𝐷. The 

discriminator is a neural network 𝐷(𝑥) that computes 

the probability sample 𝑥  belongs to data distribution. 

Concurrently, the generator maps sample 𝑧  from the 

prior 𝑝(𝑧) to data space using another neural network 

𝐺(𝑧). 𝐷(𝑥) tells the samples generated by 𝐺(𝑧) from 

true data while 𝐺(𝑧) is trained to fit the data distribution 

and to confuse 𝐷(𝑥) into believing it. The optimization 

function to this game can be expressed as 

 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧~𝑝(𝑧)[𝑙𝑜𝑔(1 −

𝐷(𝐺(𝑧)))]       (5) 

 

GANs have been shown to produce state-of-the-art 

results and have been widely applied to several other 

tasks, such as semi-supervised learning, 3D modeling, 

semantic segmentation and self-driving [19,24-26]. 

Training segmentation network with the adversarial 

model was proposed at [19] of which the experiment 

results showed that adversarial training approach leads to 

improved accuracy on the Stanford Background and 

PASCAL VOC 2012 datasets. In this paper, we follow the 

idea of adversarial segmentation to make the 

segmentation model 𝑆 and the adversarial discriminator 

𝐷 play a minimax game. The goal of 𝑆 is producing 

label maps to cheat 𝐷  while the goal of 𝐷  is 

distinguishing the predictions of 𝑆 from the ground truth. 

The standard loss function of the segmentation model we 

described in (1) will be extended into a hybrid function 

that composed of two terms as 

 

𝐿 = {−∑ [�̂�𝑖𝑙𝑛𝑦𝑖 + (1 − �̂�𝑖) 𝑙𝑛(1 − 𝑦𝑖)]
𝐻×𝑊
𝑖=1 } −

𝜆{−[�̂�𝑙𝑛𝑧 + (1 − �̂�) 𝑙𝑛(1 − 𝑧)]}  (6) 

 

where the first term is the original segmentation loss 

function and the latter one estimates the loss of the 𝐷. 
�̂� and 𝑧 are binary numbers denoting whether the input 

data is the prediction or ground truth. 𝜆  is a 

hyperparameter that limits the effect of 𝐷. 

Training the adversarial model is equivalent to 

maximizing the loss function w.r.t. the second term, 

therefore, we train 𝐷 only depending on the latter loss 

term in case of producing the adverse impact on 𝑆. The 

loss will dramatically increase while 𝐷 discriminates the 

predictions of 𝑆 from the ground truth accurately. 
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(a) 

    

(b) 

    

(c) 

    

(d) 

    
Figure 8: Examples of real and synthesized defects and the labels. (a) Real defects. (b) Real labels (ground truths). (c) Synthesized defects. (d) 

Synthesized labels. 

V. DATA GENERATION 

The traditional limitation of deep network is that a 

huge amount of labeled data is required in the training. 

The limitation has proven more serious in our work. Note 

that the common defect rate of MPCG is no higher than 

10%. This means that to discover the expected number of 

defect samples, we have to manually inspect ten times the 

amount of MPCGs. Besides, with the defect samples, 

labeling them accurately would be another burden. 

 To overcome this drawback, many ways have been 

presented, such as data augmentation, semi-supervised 

learning, and transfer learning. Data augmentation can be 

seen as a data preprocess skill. Concerning the topic of 

image processing, random rotations, shifts, zooms, and 

flips are commonly employed. Semi-supervised learning 

is a midway technique between supervised and 

unsupervised learning. Over and above the supervision 

information, the semi-supervised algorithm can produce a 

more competitive model when provided with unlabeled 

data. [27] extended ELMs (Extreme Learning Machines) 

with semi-supervised tasks based on manifold 

regularization. [28] exploited the power of generative 

models, which recognize the semi-supervised learning 

problem as a specialized missing data imputation task for 

the classification problem. [29] studied the more 

challenging problem of learning deep convolutional 

neural networks for semantic image segmentation from 

either (1) weakly annotated training data such as 

bounding boxes or image-level labels or (2) a 

combination of few strongly labeled and many weakly 

labeled images, sourced from one or multiple datasets. As 

described in those papers, semi-supervised techniques 

with significantly less annotation effort can learn models 

delivering competitive results on many kinds of machine 

learning tasks. Transferring learning has broken the 

assumption which may not hold in real-world applications 

that the distribution and feature space must be the same of 

training and future data in machine learning and data 

mining [30]. It is a technique that utilizes knowledge 

gained on solving a pre-existing problem with sufficient 

training data for another related problem and can greatly 

improve the performance of learning by avoiding much 

expensive data labeling efforts. In medical processing, 

obtaining big datasets with comprehensive annotations is 

particularly challenging. To avoid the difficulty while 

keeping satisfactory accuracy, [31]adopted the models 

which were firstly pre-trained on natural images and then 

fine-tuned on small annotated datasets. [32] developed a 

weakly supervised approach to detector training where 

the object location is not manually annotated but 

automatically determined based on binary (weak) labels 

indicating if a training image contains the object. [33] 

presented self-taught learning structure that can improve 

the performance on classification tasks based on transfer 

learning from unlabeled data randomly downloaded from 

the Internet. 

In this section, we propose a data generation 

algorithm consisting of two steps, defect superposition, 

and data augmentation. The superposition step overlays 

defects on a chosen defectless image in randomly selected 

locations with stochastic sizes, shapes, and severities. The 

defect images generated from single one template would 

naturally have the same scale, shape, and background 

color, making them not accord with the actual situation. 

Therefore, the augmentation step is applied followed the 

superposition step to augment the variety of the generated 

defect images. 

The pseudo-code is shown in Algorithm 1. In our 

algorithm, 𝑁𝑡  is denoted as the number of training 
samples, 𝒬𝑠 = {𝑞1, 𝑞2, … , 𝑞𝑛}  is the criteria set for 

defect detection, where 𝑞𝑖  represents the 𝑖th criterion. 

For each defect in synthesized images, 𝑙𝑜𝑐 denotes the 

location, 𝑠  denotes the size, 𝑆𝐸  denotes the severity 

and 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑛}  denotes the shape. For each 

training image 𝐼𝑚𝑖, we initialize its corresponding label 

map 𝑙𝑎𝑏𝑒𝑙𝑖  to 0 and use an 𝑹𝑵𝑮 (Random Number 

Generator) to stochastically select the number 𝑁𝑑  of 

defects that will be superposed. The defect exported by 

function 𝑫𝑬𝑭𝑬𝑪𝑻 depending on 𝑙𝑜𝑐𝑗 , 𝑠𝑗 , 𝑆𝐸𝑗 , 𝓈𝑗 will be 

labeled as 1 if any criteria in 𝒬𝑠 are violated. 
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Algorithm 1 Defect superposition 

Input: ℐ𝓂, 𝑁𝑡, and 𝒬𝑠 
PROCEDURE IMAGE SYNTHESIZING 

FOR each 𝑖 ∈ (1,2,… , 𝑁𝑡) DO 

        𝐼𝑚𝑖 ← ℐ𝓂, 𝑙𝑎𝑏𝑒𝑙𝑖 ← 𝟎, 𝑁𝑑 ← 𝑹𝑵𝑮 

        FOR each 𝑗 ∈ (1,2,… , 𝑁𝑑) DO 

            𝑙𝑜𝑐𝑗 , 𝑠𝑗 , 𝑆𝐸𝑗 , 𝓈𝑗 ← 𝑹𝑵𝑮 

            𝐼𝑚𝑖 ← 𝐼𝑚𝑖 + 𝑫𝑬𝑭𝑬𝑪𝑻(𝑙𝑜𝑐𝑗 , 𝑠𝑗 , 𝑆𝐸𝑗 , 𝓈𝑗) 

            IF 𝑙𝑜𝑐𝑗 , 𝑠𝑗 , 𝑆𝐸𝑗 , 𝓈𝑗 ∉ 𝒬𝑠 DO 

                𝑙𝑎𝑏𝑒𝑙𝑖 ← 𝑙𝑎𝑏𝑒𝑙𝑖 + 𝟏(𝑙𝑜𝑐𝑗 , 𝑠𝑗 , 𝑆𝐸𝑗 , 𝓈𝑗) 

            ENDIF 

        ENDFOR 

    ENDFOR 

END PROCEDURE 

Output: {(𝐼𝑚1, 𝑙𝑎𝑏𝑒𝑙1);(𝐼𝑚2, 𝑙𝑎𝑏𝑒𝑙2); … ; (𝐼𝑚𝑁𝑡
, 𝑙𝑎𝑏𝑒𝑙𝑁𝑡

)} 

VI. EXPERIMENTS 

A Experimental System 

 
Figure 9: Experimental system. 

 

In accordance with the scheme provided in Section 

II, the established experimental system was illustrated in 

Fig. 9. As stated, the system consists of the motion 

module, the vision module, and the industrial control 

computer. The location accuracy of the motorized 

horizontal stage was 1 μm. The vision module included 

the camera and the light source. In the module, Dalsa 

line-scan camera was adopted for better imaging 

precision. Its resolution was 8192 pixels and the pixel 

size was 10×10 μm2. The size of MPCG was 140 mm long 

and 68 mm wide. To ensure integrity, 20000 lines were 

captured along the long side of MPCG during the 

detection process. The CPU of the computer was Intel 

Core i5 with a frequency of 3.2 GHz, and the GPU was 

NVIDIA GeForce GTX 1060. 

B. Evaluation methodology 

To evaluate our algorithm, we borrowed the metrics 

that commonly used in semantic segmentation and scene 

parsing evaluation, which were pixel-level accuracy and 

IoU (region Intersection over Union). It was worth to note 

that accurate determination of whether or not an MPCG is 

acceptable was a major concern and was of particular 

importance in practical applications. Here, we adopted 

another metric to measure the accuracy of the binary 

classification. The definitions of the metrics are: 

 IoU =
Ω𝑇𝑃

Ω𝐹𝑃+Ω𝑇𝑃+Ω𝐹𝑁
 

 pixelaccuracy =
Ω𝑇𝑃+Ω𝑇𝑁

Ω𝑇𝑃+Ω𝑇𝑁+Ω𝐹𝑃+Ω𝐹𝑁
 

 binaryclassificationaccuracy =
∑ 𝑆𝑖𝑖𝑖

∑ ∑ 𝑆𝑖𝑗𝑗𝑖
=

𝑆00+𝑆11

𝑆00+𝑆01+𝑆10+𝑆11
 

where 𝑆𝑖𝑗  represents sample 𝑖 classified to class 𝑗 and 

other symbols are explained in Fig. 10. 

 

Segmented 
contour

Ground-truth 
contour TP FP FN TN

 
Figure 10: Schematic of segmentation result that shows the definition of 

crux elements for performance computing. The solid line circle stands 
for segmented contour and the dotted line denotes the ground-truth 

contour. Ω𝑇𝑃 , Ω𝐹𝑃 , Ω𝐹𝑁  and Ω𝑇𝑁  are true-positive, false-positive, 
false-negative and true-negative sets of the segmented points, 

respectively. 

C. Defect detection Experiment 

We manually labeled 170 defect samples and chose 

60 defectless samples to evaluate the performance of the 

proposed method. In Fig.11, we give an illustration of the 

segmentation results from the network with and without 

adversarial training. The segmentation results are heat 

maps that denote the probabilities of pixels belonging to 

defects. We added the heat maps to the red channels of 

the images for better view. The results show that the 

adversarial training could better enforce spatial 

consistency among the labels and smoothen and 

strengthen the class probabilities over areas. In the 

training process, we firstly trained the adversarial 

discriminative network and the segmentation network 

independently, ensuring the meaningness of the 

adversarial loss. Then, we re-trained the two networks 

under the loss to fine-tune the weights for further 

improvement. However, these steps will make the training 

unstable after just a few epochs. We found that using an 

alternating scheme is more effective. We experimented 

with both fast and slow alternating schemes. At the fast 

scheme we alternate between updating the segmenting 

network’s and the adversarial network’s weights at every 

iteration of SGD (Stochastic Gradient Descent) and at the 

slow one, we alternate only after 100 iterations of each. 

We found the second scheme lead to the more stable 

training.  

We applied a binarization process on the predicted 

heat map to obtain pixel prediction accuracy, classify 

accuracy and mean IoU on the manual labeled sets. 

Compare the results of adversarial training with the 

dilated segmentation, we obtained a mean IoU of 68.68 

over 55.94. And the performances of all three metrics on 

the validation data reflect the superiority of adversarial 
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training. The evaluations are listed in Tab. 2, and the classified results are provided in Tab. 3. 

 

    

    

    

    

    
(a) (b) (c) (d) 

Figure 11: Results of the defect detection. (a) are the acquired samples; (b) are the ground truth; (c) and (d) are respectively segmentation results from 

the dilated network and the adversarial trained network. 

 
 Mean IoU Pixel acc. Classify acc. 

Dilated segmentation 55.94% 97.41% 96.52% 

Adversarial segmentation 68.68% 98.80% 98.26% 
Table 2: Segmentation accuracy on the manual labeled dataset. 

 

 
Determined class 

Defect Ok 

True classes 
Defect 169 1 

Ok 3 57 
Table 3: Classification results on the manual labeled dataset. 

D. Defect Size Measurement Experiment 

Index 

 Dilated Segmentation (𝜇𝑚)  Adversarial Segmentation (𝜇𝑚)  

Actual (𝜇𝑚) 
 Size  Error  Size  Error  

1  30 × 20 −1 × −13  30 × 30 −1 × −3  31 × 33 

2  40 × 40 −22 × 0  50 × 40 −12 × 0  62 × 40 

3  130 × 70 8 × −15  130 × 80 8 × −5  122 × 85 

4  200 × 230 −41 × −43  210 × 250 −31 × −23  241 × 273 

5  380 × 50 −150 × 21  490 × 40 −40 × 11  530 × 29 

6  460 × 330 −13 × −11  460 × 340 −13 × −1  473 × 341 

7  2610 × 80 65 × −7  2580 × 80 35 × −7  2545 × 87 

8  2790 × 40 −75 × −13  2830 × 40 −35 × −13  2865 × 53 

Table 4: Results of the size measurement of defects. 

 

Experiments were conducted as well to verify the 

effectiveness of the developed network in measuring the 

sizes of the defects. For this purpose, 8 typical defects at 

different scales were selected and measured. Considering 

the difficulties in measuring the sizes of defects with 

various shapes, we used the heights and widths of the 

corresponding MERs (Minimum Enclosing Rectangle) to 

represent the sizes for convenience in the experiment. The 

measuring results are shown in Tab. 4. In the table, the 

maximum error in our proposed method was about 40 μm 

while that in dilated segmentation method was 150 μm. 

As can be concluded, the proposed method achieved great 

improvement on measuring accuracy compared to the 

similar dilated segmentation method. 

VII. CONCLUSION 

In this paper, we presented a novel MPCG defect 

detection instrument using backlight line-scanning 
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imaging method. Focusing on the detection of defects, we 

introduced a modified segmentation method based on 

deep learning and discussed the idea of training the 

networks with adversarial ways. Additionally, to 

overcome the drawback of the requirement of a huge 

amount of training data, a data generation process was 

provided. Finally, considerable manual labeled real 

images were collected and used to verify the proposed 

detection method. Experimental results show that the 

proposed method has high detection accuracy for the 

defects on MPCGs. In the future, we will focus on the 

research of applying unsupervised deep learning methods 

to synthesizing images with annotations. 
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