
 

Abstract—In this paper, a calibration method for line scan 

cameras with image distortion is proposed to perform high- 

precision planar measurement. The intrinsic parameter model is 

presented according to the imaging work principle of the line scan 

camera. Moreover, an improved camera model is proposed via 

integrating the perspective transformation with the extrinsic 

parameter model in the consideration of image distortion resulting 

from the non-parallelism of motion direction and object plane. On 

this basis, the parameters in above model are calibrated based on 

nonlinear damping least square method with a planar chessboard 

pattern. A set of measurement experiments are conducted and the 

results verify the effectiveness of proposed approaches.  

Index Terms—Line scan camera, camera calibration, distortion 

correction, visual measurement, planar measurement. 

I. INTRODUCTION 

Line scan camera is widely applied to various fields such as 

industrial defect detection, precision measurement, 

biotechnology, traffic flow detection etc. Due to its capability 

of providing larger field of view with high resolution compared 

to conventional area array camera [1-7]. Tao et al. designed a 

novel instrument based on line scan imaging system to detect 

the surface flaw for a large aperture optical element with size of 

810 mm×460 mm and achieved inspection precision is 3 𝜇𝑚 [2]. 

An automated measurement system using line scan cameras is 

developed to detect edges and measure lengths of steel strips 

[4]. In addition to the industrial field, a line scan camera is 

successfully applied for a real penetration measurement system 

to ensure the pile can support the weight of structure in the 

process of building [5]. Line scan cameras are also utilized to 

measure the isolated cardiac muscle cell length [6], and tree ring 

length [7]. 

Line scan camera employs linear arrays to provide extended 

viewing areas by virtue of scanning motion. Thus, the work 

modes of line scan camera imaging system are generally 

classified into two categories: (i) the camera is moving while 

the object is stationary (CMOS); (ii) the object is moving while 

the camera is stationary (OMCS). The existing methods always 

utilize CMOS mode to acquire the full image due to the 

inconvenience of moving the object such as telemetry. On the 

contrary, OMCS mode is often adopted to fit for those 

applications where the objects are fast moving and high 

resolution is desired such as production line. 

When it comes to use line scan camera for measurement, 

camera calibration is a necessary step to find the transformation 

relationship between the visual coordinate system and the 

measurement coordinate system. A two-step calibration method 
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was proposed by Horaud to estimate the projection parameters 

of a 3-D point onto a straight line [8]. However, the results of 

calibration depend on the precision of the calibration pattern’s 

displacements along Z-axis. Afterwards, improved calibration 

methods [9, 10] use a calibration pattern with 3-D façade whose 

coordinate of Z-axis is known in advance. Nevertheless, this 

type of approach needs a calibration pattern which is difficult 

to make. Besides, a two-stage calibration method for close-

range photogrammetric applications is proposed by rigidly 

coupling the line scan camera to an auxiliary frame camera 

whose intrinsic parameters have been obtained in advance [11]. 

It is noted that using the auxiliary camera is an additional source 

of errors. A novel linear method is presented to estimate the 

intrinsic and extrinsic parameters of a 1D camera using a planar 

object instead of 3D landmarks. But the proposed model cannot 

be straightforwardly applied to solve world coordinates through 

image coordinates [12]. The above available calibration 

methods need either auxiliary devices or strict requirements 

which limited the application of these methods. 

The motivation of this paper is to propose a calibration 

method for high precision 2-D measurement only using a planar 

chessboard. Different from the pin-hole model for the area array 

camera, the intrinsic parameter model of line scan camera is 

presented based on its imaging work principle. Moreover, an 

improved model integrating the perspective transformation is 

proposed to correct image distortion caused by the non-

parallelism of motion direction and object plane. Then a three-

stage approach based on nonlinear damping least square 

method is proposed to perform the calibration. The proposed 

calibration methods are verified on our designed imaging 

system. 

The remaining of the paper is organized as follows. Section 

Ⅱ introduces the line scan imaging system for the measurement. 

The line scan camera model is presented in Section Ⅲ. The 

calibration method for the model is introduced in Section Ⅳ. 

Section V shows the experiment results and error analysis. 

Finally, the paper is concluded in Section VI. 

II. IMAGING SYSTEM FOR HIGH PRECISION TWO-

DIMENSIONAL MEASUREMENT 

In this paper, an OMCS line scan camera imaging system is 

designed to perform 2-D planar measurement tasks with 

demand of high precision as shown in Fig. 1(a). The complete 

system includes a motion platform and a line scan camera visual 

system consist of a linear CCD and a spherical lens. The motion 
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Fig. 1. The structure of line scan camera system and its coordinate systems. 

 

platform is driven by a high-precision linear stage to help the 

camera acquire a full 2-D image. 

To describe the camera model clearly, three categories of 

frames should be established first, including world coordinate 

system, camera coordinate system, and image coordinate 

system. As shown in Fig. 1(a), the world coordinate system 

labeled as 𝑜 𝑥 𝑦 𝑧  is set up on the imaging plane which 

coincides with 𝑜 𝑥 𝑦  and is perpendicular with 𝑜 𝑧 . The 

camera coordinate system named as 𝑜𝑐𝑥𝑐𝑦𝑐𝑧𝑐 whose 𝑜𝑐𝑧𝑐 axis 

coincides with optic axis. 𝑜 𝑣 is image coordinate system 

whose axes 𝑜  and 𝑜𝑣  are parallel to 𝑜𝑐𝑥𝑐 and 𝑜𝑐𝑦𝑐 
correspondingly. 

To perform the planar measurement, it is essential to find the 

transform relationship between the image coordinate system 

and world coordinate system which is the main purpose of this 

paper. As shown in Fig. 1(b), the planar object is supported on 

the gripper which is mounted on the motion platform. In this 

case, the pose of planar object is decided on posture of gripper. 

Since the motion direction is inevitable non-parallel to the plane 

𝑜 𝑥 𝑦  due to machining and installing error, the object 

distance varies with scanning motion in the process of imaging 

which leads to image distortion. The solution to correct this 

distortion is presented in the following section. 

III. LINE SCAN CAMERA MODEL 

A. Ideal Line Scan Camera Model  

As described in the above section, the image distortion of the 

proposed line scan camera system is due to non-parallelism 

between the motion direction and the object plane. However, 

we first introduce ideal camera model which is in the condition 

that the motion direction is parallel to the plane 𝑜 𝑥 𝑦  

without considering the distortion. 

The complete ideal line scan camera model includes intrinsic 

parameter model and extrinsic parameter model. Concerning 

the intrinsic parameter model, the most widely used pin-hole 

model of area array camera is not suited to be used here. 

According to the imaging work principle of the line scan camera, 

the ideal intrinsic parameter model of line scan camera can be 

described as 

[

𝑧𝑐 
𝑣
𝑧𝑐
] = [

𝑘𝑥 0   
0 𝑘𝑦 0

0 0 1

] [

𝑥𝑐
𝑦𝑐
𝑧𝑐
]                      (1) 

where (u, v) and (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) are the coordinates of scene point 

in the image coordinate system and camera coordinate system 

respectively. 𝑘𝑥 is the focal length of spherical lens and    is 

the position of liner CCD’s principal point in imaging array. 

Note that coordinate 𝑣 only depends on the parameter 𝑘𝑦 which 

represents the constant velocity of the motion platform driven 

by a high precision controller. 

Then the extrinsic parameter model representing transform 

relationship between camera coordinate (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) and world 

coordinate (𝑥 , 𝑦 , 𝑧 ) of scene point is expressed as 

[

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

] = [
𝑹 𝒕
0 1

] [

𝑥 
𝑦 
𝑧 
1

] = [

𝑟11 𝑟12
𝑟21 𝑟22

𝑟13 𝑡1
𝑟23 𝑡2

𝑟31 𝑟32
0 0

𝑟33 𝑡3
0 1

] [

𝑥 
𝑦 
𝑧 
1

]      (2) 

where R and 𝒕 are the rotation matrix and translation vector 

respectively. 

Furthermore, combining (1) and (2), the ideal line scan 

camera model with matrix form is written as 

[

𝑧𝑐 
𝑣
𝑧𝑐
] = [

𝑘𝑥 0   
0 𝑘𝑦 0

0 0 1

] [

𝑟11 𝑟12
𝑟21 𝑟22

𝑟13 𝑡1
𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑥 
𝑦 
𝑧 
1

]     (3) 

Finally, as the coordinates 𝑧  of scene points on the planar 

object equal zero, the ideal line scan camera model is obtained 

as  

{
𝑚11𝑥 +𝑚12𝑦 +𝑚14 −𝑚31𝑥  + 𝑚32𝑦  −  = 0
𝑚21𝑥 +𝑚22𝑦 +𝑚24 − 𝑣 = 0                                         

  (4) 

where parameter vector m is written as 

𝒎 =

[
 
 
 
 
 
 
 
𝑚11
𝑚12
𝑚14
𝑚21
𝑚22
𝑚24
𝑚31
 𝑚32]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
(𝑘𝑥𝑟11 +   𝑟31)/𝑡3
(𝑘𝑥𝑟12 +   𝑟32)/𝑡3
𝑘𝑥𝑡1/𝑡3 +   
𝑘𝑦𝑟21 

𝑘𝑦𝑟22
𝑘𝑦𝑡2
𝑟31/𝑡3
 𝑟32/𝑡3 ]

 
 
 
 
 
 
 
 

                    (5) 



B. Improved Line Scan Camera Model with Distortion 

Correction 

Considering the image distortion due to the non-parallelism 

of motion direction and object plane, a perspective 

transformation can represent the relationship between the real 

image coordinate ( 𝑟 , 𝑣𝑟) and ideal image coordinate ( , 𝑣) of 

scene points. To correct distortion, the transformation from real 

image point ( 𝑟 , 𝑣𝑟)  to ideal image coordinate ( , 𝑣)  is 

expressed as 

[
 
𝑣
] = [

 𝑟/(𝑎 𝑟 + 𝑏𝑣𝑟 + 1)
𝑣𝑟/(𝑎 𝑟 + 𝑏𝑣𝑟 + 1)

]                      (6) 

Through adding the distortion correction to ideal camera 

model as given in (4), the line scan camera model with 

distortion correction is written as 

{

(𝑎 𝑟 + 𝑏𝑣𝑟 + 1)[𝑚11𝑥 +𝑚12𝑦 +𝑚14] − 𝑚31𝑥  𝑟   
 +𝑚32𝑦  𝑟 −  𝑟 = 0                                                    

(𝑎 𝑟 + 𝑏𝑣𝑟 + 1)[𝑚21𝑥 +𝑚22𝑦 +𝑚24] − 𝑣𝑟 = 0       
 

(7) 

Essentially, calibration of a line scan camera aims to solve 

the model parameters for transforming image coordinate of 

scene points to their world coordinate. As shown in Fig. 1(a), 

the world coordinate system is set up on the imaging plane 

decided by the thickness of the planar calibration chessboard. It 

is noted that thickness of the planar object is always varied from 

the chessboard in practical application. Nevertheless, the plane 

𝑜 𝑥 𝑦  of chessboard’s world coordinate system is parallel to 

that of planar object. Therefore, in order to transform image 

coordinates of scene points on parallel object planes to their 

world coordinates through one calibration process, the extrinsic 

parameter 𝑡3 in (3) is extracted out from parameter vector. The 

improved model with extracting the key parameter is expressed 

as 

{

(𝑎 𝑟 + 𝑏𝑣𝑟 + 1)[𝑚11
′ 𝑥 /𝑡3 +𝑚12

′ 𝑦 /𝑡3 +𝑚14
′ /𝑡3 +   ]

 −𝑚31
′ 𝑥  𝑟/𝑡3 +𝑚32

′ 𝑦  𝑟/𝑡3 −  𝑟 = 0                       

(𝑎 𝑟 + 𝑏𝑣𝑟 + 1)[𝑚21
′ 𝑥 +𝑚22

′ 𝑦 +𝑚24
′ ] − 𝑣𝑟 = 0         

 

(8) 
where the final parameter vector 𝒙 of line scan camera model 

can be rewritten as 

𝒙 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑚11
′

𝑚12
′

𝑚14
′

𝑚21
′

𝑚22
′

𝑚24
′

𝑚31
′

 𝑚32
′

 𝑎
𝑏
𝑡3
  ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝑘𝑥𝑟11 +   𝑟31
𝑘𝑥𝑟12 +   𝑟32

𝑘𝑥𝑡1
𝑘𝑦𝑟21
𝑘𝑦𝑟22
𝑘𝑦𝑡2
𝑟31
 𝑟32
 𝑎
𝑏
𝑡3
  ]

 
 
 
 
 
 
 
 
 
 
 

                    (9) 

It is emphasized that parameter 𝑡3  characterizes the 

translation relationship between the plane 𝑜 𝑥 𝑦  of 

chessboard’s world coordinate system and planar object’s plane. 

Thus, for high precision parallel planar objects measurement 

tasks, only the parameter 𝑡3  need to be modified manually 

instead of recalibration when the thickness of the measured 

object is changed. 

IV. MODEL CALIBRATION 

A. Calibration for Ideal Model 

For the ideal camera model in section III(A), least square 

method can be used to calibrate its parameter vector m with 

image coordinates and world coordinates of n scene points. The 

equation (4) can be written as 

𝑨𝒎 =  𝑩                                      (10) 

where 

𝑨 =

[
 
 
 
𝑥 1 𝑦 1 1
0 0 0

0 0 0
𝑥 1 𝑦 1 1

−𝑥 1 −𝑦 1 
0 0

… … …
𝑥 𝑛 𝑥 𝑛 1
0 0 0

0 0 0
𝑥 𝑛 𝑥 𝑛 1

−𝑥 𝑛 −𝑦 𝑛 
0 0 ]

 
 
 

 (11) 

𝑩 = [ 1 𝑣1 …  𝑛 𝑣𝑛]𝑇                   (12) 

Then, the parameter vector m is given as 

𝒎 = (𝑨𝑇𝑨)−1𝑨𝑇𝑩                            (13) 

B. Calibration for Improved Model Based on Nonlinear 

Damping Least Squares Method 

Now, using (8) and n sets image coordinates and world 

coordinates of n scene points, we can form 2n equations with 

unknown parameter vector 𝒙 . The nonlinear overdetermined 

equations are expressed as 

{
 
 

 
 𝑓11

(𝒙) = 0

𝑓21(𝒙) = 0…
𝑓1𝑛(𝒙) = 0

𝑓2𝑛(𝒙) = 0

                               (14) 

where 𝑓1𝑖(𝒙) = (𝑎 𝑟𝑖 + 𝑏𝑣𝑟𝑖 + 1)[𝑚11
′ 𝑥 𝑖/𝑡3 +𝑚12

′ 𝑦 𝑖/𝑡3 +
𝑚14
′ /𝑡3 +   ] − 𝑚31

′ 𝑥 𝑖 𝑟𝑖/𝑡3 +𝑚32
′ 𝑦 𝑖 𝑟𝑖/𝑡3 −  𝑟𝑖 , and 

𝑓2𝑖(𝒙) = (𝑎 𝑟𝑖 + 𝑏𝑣𝑟𝑖 + 1)[𝑚21
′ 𝑥 𝑖 +𝑚22

′ 𝑦 𝑖 +𝑚24
′ ] − 𝑣𝑟𝑖 . 

To solve these overdetermined equations precisely, they can be 

translated into a form of quadratic functional Θ(𝒙) as 

Θ(𝒙) =
1

2
𝑓(𝒙)𝑇𝑓(𝒙) =

1

2
∑𝑓𝑖

2(𝒙)

2𝑚

𝑖=1

              (15) 

Hence, the minimum value of function Θ(𝒙) denoted as 𝒙∗ is 

the least-squares solution of the over-determined equations 

𝑓(𝒙) = 0 and expressed as 

Θ( 𝒙∗) = min
𝑥∈𝑅𝑛

Θ(𝒙) = min
𝑥∈𝑅𝑛

1

2
𝑓(𝒙)𝑇𝑓(𝒙)         (16) 

Therefore, the solvent of the over-determined equations can 

be achieved by searching the minimum value of multi-function 

Θ(𝒙). If 𝑓(𝒙) is differential in the domain, the gradient of Θ(𝒙) 
denoted as 𝑔(𝒙) is set to be zero as follows: 

𝑔(𝒙) =⋰ Θ(𝒙) =
1

2
𝐷𝑓(𝒙)𝑇𝑓(𝒙) = 0               (17) 

where 

𝐷𝑓(𝒙)𝑇 =

[
 
 
 
 
 
 
 
𝜕𝑓11
𝜕𝑚11

′

𝜕𝑓12
𝜕𝑚11

′

𝜕𝑓11
𝜕𝑚12

′

𝜕𝑓12
𝜕𝑚12

′

⋯
𝜕𝑓2𝑛
𝜕𝑚11

′

⋯
𝜕𝑓2𝑛
𝜕𝑚12

′

⋮ ⋮
𝜕𝑓11
𝜕  

𝜕𝑓12
𝜕  

⋮ ⋮

⋯
𝜕𝑓2𝑚
𝜕  ]

 
 
 
 
 
 
 

 

The Taylor’s expansion of 𝑓(𝒙)  at the point 𝒙k can be 

expressed as 

𝑓(𝒙) ≈ 𝑓(𝒙k) + 𝐷𝑓(𝒙k)(𝒙 − 𝒙k)                (18) 



With substituting the above equation into (17) and adding the 

damping item 𝜇𝑘𝐼[13, 14], the iterative 𝒙k+1 can be obtained as  

𝒙k+1 = 𝒙k − 𝐺′(𝒙k)
−1
𝐷𝑓(𝒙k)

𝑇
𝑓(𝒙k)            (20) 

where  𝐺′(𝒙k) = 𝐷𝑓(𝒙k)
𝑇
𝐷𝑓(𝒙k) + 𝜇𝑘𝐼.  

Based on the above principles, specific steps for calibrating 

linear camera model system are as follows: 

1) Sample n sets of scene points with their world coordinate 

(𝑥 , 𝑦 ) and image coordinate ( 𝑟 , 𝑣𝑟) on an image of planar 

chessboard, and then form 2n equations according to equation 

(14). 

2) Calculate the iterative matrix 𝐺′(𝒙k). 

3) Solve unknown parameter vector x by applying the 

iteration formula (20). Specifically, the iterative process starts 

with a selected initial value and stops until the 2-norm of the 

two adjacent vectors’ error becoming smaller than threshold 

value. 

V. EXPERIMENTS 

To verify the calibration method we proposed, a series of 

experiments were implemented on the hardware platform as 

shown in Fig. 2, whose structure has been illustrated in Fig. 1. 

The pixel size, sensor size and the depth of field of the line scan 

camera in the platform are 12 𝜇𝑚×12 𝜇𝑚, 8192 pixels × 1 line 

and 1 mm respectively. In addition, the motion platform is 

driven by a high-precision linear stage to help the camera 

acquire a full 2-D image. 

Motion Platform

Line Scan 

Camera

 
Fig. 2. Structure of hardware platform of our imaging system. 
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Fig. 3. The image of chessboard and standard board: (a) the image of calibration 

chessboard, the dark rectangle in the center is a sucker to fix the chessboard on 

the linear motion stage; (b) the image of standard board. 

  
The planar chessboards with different thickness and a 

standard board are employed to perform the calibration and 

validation experiments. The specifications of the planar 

chessboards are given in the Table I and the images of 

chessboard and standard board are shown in Fig. 3. Specifically, 

based on the calibration steps presented in the above section, an 

image of no.1 chessboard is utilized to perform the calibration. 

By sampling the world coordinates and image coordinates of all 

the corner points, the parameter vector 𝒙∗ in (9) is obtained as 

𝒙∗ = [84.817, 0.357, 268.181, 0.480, 84.746, 4192.104, 

6.0828, 8.593e-005, 8.593e-007, 3.0917e-009, -3.152e-008, 

268.181, 0.996]T 

Furthermore, other planar chessboards with different 

thickness and standard board are utilized to do the further 

validation. Three groups of experiments are conducted in the 

following. Firstly, a contrast experiment for the distortion 

correction is performed on several images of no.1 chessboard. 

Secondly, the images of no.2 and no.3 chessboard are utilized 

to verify that our calibration method is suitable for multi-

parallel-planar measurement. Thirdly, the images of standard 

board are utilized to further verify the accuracy of our 

calibration method.  

A. Contrast Experiment for the Two Models  

Eight images are acquired to perform the experiment by 

placing the no.1 chessboard in eight random angles that from -

5 degrees to 5 degrees on plane 𝑜 𝑥 𝑦 . Using the above 

model parameter vector 𝑥∗ , we can calculate the world 

coordinates of the corner points in the images through the 

camera model with distortion correction (8). Correspondingly, 

the corner points’ world coordinates can also be obtained 

through the camera model without distortion correction (4) by 

using the model parameter vector 𝒎  in (5). The two 

measurement errors 𝑒𝑥𝑖  and 𝑒𝑦𝑖  are designed to verify the 

calibration method. Specifically, 𝑒𝑥𝑖 = ∆𝑥𝑖 − ∆𝑥𝑖
∗, where ∆𝑥𝑖 

is the Euclidean distance of 𝑥𝑖 and 𝑥′𝑖  marked in Fig. 3(a). 𝑥𝑖 
and 𝑥′𝑖  are the leftmost and rightmost corner points of the 

chessboard’s each row. ∆𝑥𝑖
∗ is the standard value of ∆𝑥𝑖 and i 

is the number of m rows. Similarly, 𝑒𝑦𝑗 = ∆𝑦𝑗 − ∆𝑦𝑗
∗, where 

𝑦𝑗  and 𝑦′𝑗  are the top and bottom corner points of the 

chessboard’s each column, j is the number of n columns. 

As shown in Fig. 4(a) and (b), using the model without 

distortion correction, the measurement errors 𝑒𝑥𝑖 and 𝑒𝑦𝑗  are in 

the range of [-0.030, 0.005] mm and [-0.025, 0.0] mm 

respectively. Contrastively, the model with distortion 

correction is proved to have good performance of controlling 

the measurement errors 𝑒𝑥𝑖  and 𝑒𝑦𝑗  in the range of [-0.006, 

0.012] mm and [-0.005, 0.0] mm respectively.

 
TABLE I 

SPECIFICATIONS OF CHESSBOARDS 

No. Thickness Number of Checks and Size 

1 0.5mm 45×45 checks of 2×2mm 

2 0.7mm 45×45 checks of 2×2mm 

3 1.0mm 45×45 checks of 2×2mm 
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Fig. 4. Results of contrast experiment for the distortion correction: (a) errors of ∆𝑥𝑖  without distortion correction; (b) errors of ∆𝑦𝑗  without distortion correction; 

(c) errors of ∆𝑥𝑖  with distortion correction; (d) errors of ∆𝑦𝑗  with distortion correction. 
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Fig. 5. Result of verification of the calibration method on parallel-planes: (a) errors of ∆𝑥𝑖  on no.2 chessboard; (b) errors of ∆𝑦𝑗  on no.2 chessboard; (c) errors 

of ∆𝑥𝑖  on no.3 chessboard; (d) errors of ∆𝑦𝑗  on no.3 chessboard.



  

B. Model Verification on Parallel Planes 

The above experiment results reveal that the line scan camera 

model could have good performance in the measurement task 

on the one fixed 2-D plane calibrated. Moreover, as the 

parameter 𝑡3 can be extracted from our model depicted in (8), 

the relative measurement error caused by different thickness of 

planar objects can also be eliminated. Similar to the above 

experiment, eight images of no.2 chessboard and six images of 

no.3 chessboard are acquired respectively to perform the 

experiment by placing the chessboards in different random 

angles. As shown in Fig. 5, the absolute errors of all  ∆𝑥𝑖  and  

∆𝑦𝑗 are less than 0.010 mm. 
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Fig. 6. Result of verification of the calibration method using standard board 

 

C. Test on Standard Board 

To ensure our calibration method be suitable for the 

applications for high-precision measurement, verification 

experiment of calibration method is performed on standard 

board. Five images are acquired to perform the experiment by 

placing the standard board in five random angles that from -5 

degrees to 5 degrees on plane 𝑜 𝑥 𝑦 . Sizes of all the ten 

elements marked in the image of standard board shown in Fig. 

3(b) are calculated by using the line scan camera model and 

model parameter vector that obtained by the image of no.1 

chessboards. Table II and Fig. 6 shows the standard value of the 

elements’ sizes and the measurement errors. In all cases, as the 

pixel size of the line scan camera is 12 𝜇𝑚×12 𝜇𝑚, the absolute 

errors that are less than 0.010 mm that can meet the requirement 

of most industry high-precision measurement tasks.  

VI. CONCLUSION  

A line scan camera calibration method with distortion 

correction for high-precision planar measurement is developed 

in this paper. The intrinsic parameter model for line scan 

cameras is presented. Furthermore, an improved measurement 

model combining with perspective transformation is proposed 

to correct image distortion caused by the non-parallelism of 

motion direction and object plane. A three-stage calibration 

method only using a planar chessboard is presented. The 

obtained parameters are used to solve world coordinates from 

image coordinates. Experiments demonstrate the effectiveness 

of the proposed method. The planar measurement accuracy is 

10 𝜇𝑚. 
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TABLE II 
MEASUREMENT RESULTS OF STANDARD BOARDS 

Elements Standard value measurement errors  

𝑑1 30mm 0.002mm ~ 0.009mm 

𝑑2 18mm 0 ~ 0.001mm 

𝑑3 9.5mm -0.001mm ~ 0.004mm 

ℎ
1
 14.5mm -0.004mm ~ 0.006mm 

ℎ
2
 8mm 0.001mm ~ 0.002mm 

ℎ
3
 8mm 0.002mm ~ 0.005mm 

𝑤1 9mm -0.004mm ~ -0.001mm 

𝑤2 18.5mm 0 ~ 0.002mm 

𝑤3 24mm -0.001mm ~ 0.001mm 

𝑤4 40mm 0 ~ 0.003mm 

 


