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Abstract. In this paper, we present a novel deep learning framework
that derives discriminative local descriptors for 3D surface shapes. In
contrast to previous convolutional neural networks (CNNs) that rely on
rendering multi-view images or extracting intrinsic shape properties, we
parameterize the multi-scale localized neighborhoods of a keypoint into
regular 2D grids, which are termed as ‘geometry images’. The benefits of
such geometry images include retaining sufficient geometric information,
as well as allowing the usage of standard CNNs. Specifically, we leverage
a triplet network to perform deep metric learning, which takes a set of
triplets as input, and a newly designed triplet loss function is minimized
to distinguish between similar and dissimilar pairs of keypoints. At the
testing stage, given a geometry image of a point of interest, our network
outputs a discriminative local descriptor for it. Experimental results for
non-rigid shape matching on several benchmarks demonstrate the supe-
rior performance of our learned descriptors over traditional descriptors
and the state-of-the-art learning-based alternatives.
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1 Introduction

Designing local descriptors for 3D surface points is within common interests in
both computer vision and computer graphics communities. Typically, a local
descriptor refers to an informative representation stored in a multi-dimensional
vector that describes the local geometry of the shape around a keypoint. It plays
a crucial role in a variety of vision tasks, such as shape correspondence [1, 2],
object recognition [3], shape matching [4, 5], shape retrieval [6, 7], and surface
registration [8], to name a few.

Over the last decades, a large number of local descriptors have been actively
investigated by the research community. Despite the recent interests, however,
designing discriminative and robust descriptors is still a non-trivial and challeng-
ing task. Early works focus on deriving shape descriptors based on hand-crafted
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Fig. 1. Our non-rigid shape matching results using a set of landmark points (red and
green spheres). The Dog shapes (21 correct matches from 22 keypoints) are from
TOSCA [9] and Face shapes (13 correct matches from 15 keypoints) are from [10].
The incorrect correspondences are drawn using red lines.

features, including spin images [11], curvature features [12], heat kernel signa-
tures [13], etc. Although these descriptors can represent the local behavior of
the shape effectively, the performance of these methods is still largely limited by
the representation power of the hand-tuned parameters.

Recently, convolutional neural networks (CNNs) have achieved a significant
performance breakthrough in many image analysis tasks. Inspired by the re-
markable success of applying deep learning in many fields, recent approaches
have been proposed to learn local descriptors for 3D shapes in an either ex-
trinsic or intrinsic manner. The former usually takes multi-view images [14] or
volumetric representations [15] as input, but is suffers from strong requirements
on view selection and low voxel resolutions. While the latter kind of methods
generalizes the CNN paradigm to non-Euclidean manifolds [16], they are able
to learn invariant shape signatures for non-rigid shape analysis. However, since
these methods learn information relating to shape types and structures that vary
from different datasets, their generalization ability is defective. As a result, these
methods perform unstable on different domains.

In this paper, we propose another novel approach for local descriptors learn-
ing, that can capture the local geometric essence of a 3D shape. We draw in-
spiration from the recent work of [17] which used geometry images for learning
global surface features for shape classification. Different from their work, we con-
struct a small set of geometry images from multi-scale local patches around each
keypoint on the surface. Then, the fundamental low-level geometric features can
be encoded into the pixels of these regular geometry images, on which standard
CNNs can be applied directly. More specifically, we train a well-known triplet
network [18, 19] with a pre-training phase and an improved triplet loss function.
The objective is to learn a descriptor that minimizes the corresponding points
distance while maximizes the non-corresponding points distance in descriptor
space. In summary, our main contributions are the following:

– We develop a new 3D keypoint descriptor based on specially designed triplet
networks, which is dedicated to processing local geometry images encoding
very low-level geometric information.
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– We design a novel triplet loss function that can control the dispersion of
anchor-positive descriptor distance, thus improving the performance of our
descriptor effectively.

– We show that the proposed concise framework has better generalization ca-
pability across different datasets than existing descriptors.

2 Related Work

A large variety of 3D local feature descriptors have been proposed in the litera-
ture. These approaches can be roughly classified into two categories: traditional
hand-crafted descriptors and learned local descriptors.

Hand-crafted local descriptors. Early works focus on deriving shape de-
scriptors based on hand-crafted features[20, 21]. A detailed survey is out of the
scope of this paper, so we briefly review some representative techniques. For rigid
shapes, some successful extrinsic descriptors have been proposed, for example,
spin images (SI)[11], 3D shape context (3DSC)[22], MeshHOG descriptor[23],
signature of histogram of orientations (SHOT)[24], rotational projection statis-
tics (RoPS)[25]. Obviously, these approaches are invariant under rigid Euclidean
transformations, but not under deformations. To deal with isometric deforma-
tions, there have been some intrinsic descriptors based on geodesic distances[26]
or spectral geometry. Such descriptors include heat kernel signature (HKS)[13],
wave kernel signatures (WKS)[27], intrinsic shape context (ISC) [28] and optimal
spectral descriptors (OSD)[29]. However, both extrinsic and intrinsic descriptors
rely on a limited predefined set of hand-tuned parameters, which are tailored for
task-specific scenarios.

Deep-learned local descriptors. Recently, deep learning based methods have
attracted large attention because they tend to automatically learn features from
raw input data, so as to avoid manually engineered features. Wei et al.[30] em-
ploye a CNN architecture to learn invariant descriptors in arbitrary complex
poses and clothings, where their system is trained with a large dataset of depth
maps. Zeng et al.[15] present another data-driven 3D keypoint descriptor for
robustly matching local RGB-D data. Since they use 3D volumetric CNNs, this
voxel-based approach is limited to low resolutions due to the high memory and
computational cost. Qi et al. [31] propose a deep net framework, named Point-
Net, that can directly learn point features from unordered point sets to compute
shape correspondences. Khoury et al. [32] present an approach to learn local
compact geometric features (CGF) for unstructured point clouds,by mapping
high-dimensional histograms into low-dimensional Euclidean spaces. Huang et
al.[14] recently introduce a new local descriptor by taking multiple rendered
views in multiple scales and processing them through a classic 2D CNN. While
this method has been successfully used in many applications, it still suffers from
strong requirements on view selection, as a result the 2D projection images are
not geometrically informative. In addition, whether this approach can be used
for non-rigid shape matching is somewhat elusive.



4 Wang et al.

Negative
ConvNet

shared 
parameters

Triplet
Loss

Positive
ConvNet

Anchor
ConvNet

�Y

128-d descriptor

Geometry images Triplet architectureLocal patch

�Y

�Y

shared 
parameters

Fig. 2. Overview of our local descriptor training framework. We start with extracting
local patches around the keypoints (shown in purple color), and generate geometry
images for them. Then a triplet is formed and further processed throu gh a triplet
network, where we train this network using an objective function (t riplet loss function).

Another family of methods are based on the notion ofgeometric deep learn-
ing[33], where they generalize CNN to non-Euclidean manifolds. Various frame-
works have been introduced to solve descriptor learning or correspondence learn-
ing problems, including localized spectral CNN (LSCNN)[34], geodesicCNN
(GCNN)[35], Anisotropic CNN (ACNN)[36], mixture model networks (MoNet)[16],
deep functional maps (FMNet)[37], and so on. Di�erent from this kind of meth-
ods, our work utilizes geometry images to locally atten the non-Euclidean patch
to the 2D domain so that standard convolutional networks can be used.

3 Methodology Overview

Given a keypoint (or any point of interest) p on a surface shapeS � R3, our
goal is to learn a non-linear feature embedding functionf (p) : R3 ! Rd which
outputs a d� dimensional descriptor X p 2 Rd for that point. The embedding
function is carefully designed such that the distance between descriptors of ge-
ometrically and semantically similar keypoints is as small as possible.In this
paper, we use theL 2 Euclidean norm as the similarity metric between descrip-
tors: D (X p i ; X p j ) = jjX p i � X p j jj2.
Geometry image. Due to space limitations, here we just briey review the
concept of the geometry image, which is a new kind of mesh representation
technique introduced by Gu et al. [38]. It represents an irregular mesh as a 2D
image by parametrizing it onto a square domain. Using this parametrization, the
geometric properties of the original mesh can be resampled and encoded into the
pixels of an image. In order to parametrize arbitrary mesh onto a square, the
mesh should be �rstly cut into a topological disk.
Pipeline. The core part of our approach is a newly proposed learning frame-
work as illustrated in Fig. 2. At o�-line training phase, we propose to learn the




























