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a b s t r a c t 

This guest editorial introduces the twenty two papers accepted for this Special Issue on Articulated Mo- 

tion and Deformable Objects (AMDO). They are grouped into four main categories within the field of 

AMDO: human motion analysis (action/gesture), human pose estimation, deformable shape segmenta- 

tion, and face analysis. For each of the four topics, a survey of the recent developments in the field is 

presented. The accepted papers are briefly introduced in the context of this survey. They contribute novel 

methods, algorithms with improved performance as measured on benchmarking datasets, as well as two 

new datasets for hand action detection and human posture analysis. The special issue should be of high 

relevance to the reader interested in AMDO recognition and promote future research directions in the 

field. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Articulated motion and deformable objects (AMDO) is a chal-

enging research area which focuses on the automatic analysis of

omplex objects, such as the human body, exhibiting high variabil-

ties both in terms of spatial and temporal dimensions. AMDO is

f high interest in the fields of pattern recognition, computer vi-

ion, computer graphics, biometrics, machine learning and human-

omputer interface (HCI), to mention just a few. 

In the late 2016, contributions to a special issue on AMDO had

een invited for possible publication in the Patter Recognition jour-

al by an open call for papers. The scope of the special issue had

een defined so as to cover pattern recognition schemes on any

MDO related topics, including human motion analysis and track-

ng, human reconstruction, multimodal AMDO, 2D/3D deformable

odels, and new pattern recognition applications in the field of

MDO. All 48 manuscripts submitted to this SI were subject to the

ame rigurious review process assessing their overall quality and

ignificance. A total of 22 papers were accepted for publication in

his special issue. 

The rest of this guest editorial article is organized as fol-

ows. Section 2 provides a brief review of the state of the art

n four AMDO subtopics, namely, human motion analysis, hu-

an pose estimation, deformable segmentation, and face analysis.
∗ Corresponding author. 
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ection 3 summarises the papers accepted for the Special Issue. We

onclude with a brief outlook to the future in Section 4 . 

. Articulated motion and deformable objects 

We structure the review of the AMDO literature into four

ain topics, namely, human motion analysis, human pose estima-

ion, deformable shape segmentation, and facial analysis. For each

ubtopic, we review the commonly used benchmark datasets and

he main state-of-the-art methods published in the last two years.

he papers published in this special issue are referred to by their

nique number, e.g. SI 1 , SI 2 . 

.1. Human motion analysis 

The two main topics of human motion analysis are action and

esture recognition. Recently, the use of multimodal data in the

ontext of human motion analysis has received a lot of attention

n the literature. RGB, depth, and skeletal information are the com-

only considered modalities for multimodal action and gesture

ecognition. In this section, first, we provide a brief introduction to

ction and gesture recognition datasets. Then we review the state-

f-the-art methods in this topic area. 

.1.1. Benchmark datasets for action and gesture recognition 

Table 1 shows the commonly used datasets for isolated or con-

inuous action and gesture recognition, and summarises the key

tatistical attributes of these datasets, namely data modality, num-

er of classes, number of subjects, and number of samples. Each
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Table 1 

Statistics of popular benchmark datasets for human motion analysis in the field of AMDO. All 

datasets are used at least once by accepted manuscripts in this special issue. 

index Dataset Year Modality #Class #Subjects #Samples 

1 MSR Action3D, 2010 RGB 20 10 567 

[1] skeleton 

2 MSRC-12, 2012 skeleton 12 30 594 

[2] 

3 MSR Daily Activity 3D, 2012 RGB-D 16 10 320 

[3] skeleton 

4 UTKinect, 2012 RGB-D 10 10 200 

[4] skeleton 

5 SBU Kinect, 2012 RGB-D 7 8 300 

Interaction [5] skeleton 

6 NTU RGB + D, 2016 RGB-D 60 40 56880 

[6] skeleton 

7 DHG-14/28, 2016 RGB-D 14 20 2800 

[7] skeleton 

8 Montalbano V2, 2014 Depth 20 27 13858 

[8] skeleton 

9 MIVIA action, 2014 RGB-D 7 14 500 

[9] 

10 NATOPS gesture, 2011 RGB-D 24 20 9600 

[10] 
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dataset is used at least once in the manuscripts accepted for this

special issue. 

MSR Action3D [1] . It includes 567 sequences , including twenty

actions (namely, high arm waving, horizontal arm waving, ham-

mering, hand catching, forward punching, high throwing, drawing

x, drawing a tick, drawing a circle, hand clapping, two hand wav-

ing, side-boxing, bending, forward kicking, side kicking, jogging,

tennis serve, golf swing, pickup and throw), each action being per-

formed three times by ten subjects. The data is recorded from a

fixed point of view while the subjects are facing the camera. 

MSRC-12 [2] . It comprises thirty subjects performing twelve ges-

tures. These gestures are grouped into two categories: iconic and

metaphoric gestures. The iconic gestures directly correspond to

real world actions and represent first people shooter (FPS) gam-

ing actions. It contains six FPS gaming actions: crouching, shooting,

throwing, using night goggles, changing weapon and kicking. 

MSR DailyActivity3D [3] . This dataset contains sixteen daily hu-

man activities in a living room: drinking, eating, reading a book,

calling a cellphone, writing on a paper, using a laptop, using a

vacuum cleaner, cheering up, sitting still, tossing paper, playing a

game, laying down on a sofa, walking, playing a guitar, standing

up, sitting down. Ten subjects are recorded performing these ac-

tions while sitting on the sofa or standing close to the sofa. The

camera is fixed in front of the sofa. The dataset also provides depth

and skeleton data. 

UTKinect [4] . Ten types of human action are recorded twice by

ten subjects. The actions include walking, sitting down, standing

up, picking up, carrying, throwing, pushing, pulling, waving, clap-

ping hands. The actions were recorded from a variety of views. The

dataset is composed of 200 sequences, recording RGB-D data and

skeleton joint locations. 

SBU Kinect Interaction [5] . It has eight classes which are com-

monly used in two-person interactions, namely, approaching, de-

parting, pushing, kicking, punching, exchanging objects, hugging,

and shaking hands. This dataset is challenging because of the sim-

ilarity of some actions in terms of motion (e.g., exchanging object

and shaking hands). RGB and depth video with 15 frames per sec-

ond are provided, with an image resolution of 640 × 480. 

NTU RGB + D [6] . It is a large scale dataset for human action

recognition, which consists of 56,880 action samples with four dif-

ferent data modalities for each sample: RGB videos, depth map se-

quences, 3D skeletal data, and infrared videos. It has 60 classes in

total, which are divided into three major groups: 40 daily actions
 a  
i.e., drinking, eating, etc.), 9 health-related action (i.e., sneezing,

taggering, etc.), and 11 interactions (i.e., punching, kicking, etc.). 

DHG-14/28 [7] . The dynamic hand gesture dataset DHG-14/28

as fourteen gesture classes. Each one is executed five times by

wenty participants in two ways, resulting in 2800 sequences. Ges-

ures are subdivided into the categories of fine and coarse£ºGrab

G, fine), Tap (T, coarse), Expand (E, fine), Pinch (P, fine), Rotation

W (R-CW, fine), Swipe Right (S-R, coarse), Swipe Left (S-L, coarse),

wipe Up (S-U, coarse), Swipe Down (S-D, coarse), Swipe X (S-X,

oarse), Swipe V (S-V, coarse), Swipe + (S- + , coarse), Shake (Sh,

oarse). 

Montalbano V2 [8] . This dataset was released for the ChaLearn

ooking at People Challenge 2014. It contains about 14,0 0 0 samples

rom a vocabulary of twenty Italian sign gesture categories in con-

inuous data series. It provides RGB, depth, mask body, and voice

nformation for each sample. 

MIVIA Action [9] . It consists of RGB-D videos of seven actions,

amely, opening a jar, drinking, sleeping, random motion, stopping,

nteracting with a table, and sitting, performed by fourteen sub-

ects. 

NATOPS gesture [10] . It consists of 24 aircraft handling signals

rom the Naval Air Training and Operating Procedures Standardiza-

ion (NATOPS) manual. These gestures are captured using a Kinect

ensor at 20 FPS with a resolution of 320 × 240. The location of

he skeletal joints in the upper body along with the hand sign are

vailable with the dataset. These 24 upper body gestures were per-

ormed by 20 subjects for 20 times, resulting in 400 observations

or each (subject, gesture) pair. 

.1.2. The state-of-the-art in human motion analysis 

Table 2 shows a comparison of different state-of-the-art meth-

ds on the ten datasets used by the papers on human motion anal-

sis accepted for the SI. Three main tasks are considered, namely,

ction detection, isolated action/gesture recognition, and continu-

us gesture recognition. For different tasks, the evaluation metrics

ary. They include accuracy for isolated action/gesture recognition,

1-score for action detection and Jaccard index (JI) for continuous

esture recognition. In Table 2 , we show the performance of state-

f-the-art methods in different datasets and provide the details of

he specific evaluation protocols for each cited paper. 

The listed methods in Table 2 can be grouped into two cate-

ories. The first category includes traditional methods for motion

nalysis, which consist of a pipeline commencing with feature ex-
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Table 2 

A Comparison of state-of-the-art methods on the benchmark action/gesture datasets listed in Table 1 . All cited papers have been published in 

the last two years. Protocol A: half of the subjects are used for training (i.e. odd subjects) and the rest for testing (i.e. even subjects); Protocol 

B: average over all splits; Protocol C: leave-one-subject-out; Protocol D: training with the first 5 subjects, testing with other 10 subjects; acc: 

accuracy; JI: Jaccard Index. 

Dataset Method Metrics Protocol and notes 

MSR Action3D [1] CNN + LSTM [ SI 1 ] acc(%) 95.7/96.0 A/ B 

DSRF [ SI 3 ] acc(%) 95.24 no specific mention 

Bag of Gesturelets [ SI 8 ] acc(%) 96.49 A 

Pose and Kinematics [ SI 19 ] acc(%) 96.77 A 

MIMTL [11] , 2017 acc(%) 96.37 A 

trajectorylet + exemplar-SVMs [12] , 2017 acc(%) 97.9 A 

DMMs [13] , 2016 acc(%) 90.5 A 

Riemannian Manifold [14] , 2016 acc(%) 96.97 A 

MSRC-12 [2] DSRF [ SI 3 ] acc(%) 95.64/95.36 C/ A 

Bag of Gesturelets [ SI 8 ] F1-score 89.8 C 

Clustered Spatiotemporal Manifolds [ SI 9 ] F1-score 77.3 C 

Enhanced Skeleton [ SI 11 ] acc(%) 96.62 A 

Pose Lexicon [ SI 18 ] acc(%) 92.03 - 

Pose and Kinematics [ SI 19 ] acc(%) 91.20 C 

View Invariant Information + CNNs [15] , 2017 acc(%) 96.62 A 

Trajectorylet + Exemplar-SVMs [12] , 2017 acc(%) 94.9/95.1 A/ C 

Encoded Spatial-temporal Information + CNN [16] , 2016 acc(%) 94.27 A 

Joint Trajectory Maps + CNNs [17] , 2016 acc(%) 93.12 A 

MSR Daily Activity 3D [3] CNN + LSTM [ SI 1 ] acc(%) 63.1 no specific mention 

DSSCA SSLM [18] , 2017 acc(%) 97.5 A 

Unsupervised training [19] , 2017 acc(%) 86.9 no specific mention 

MFSK + BOW [20] , 2016 acc(%) 95.7 C 

UTKinect [4] CNN + LSTM [ SI 1 ] acc(%) 99.0 C 

DSRF [ SI 3 ] acc(%) 97.85 A 

Geometric Feature + LSTM [21] , 2017 acc(%) 95.96 A 

VLDA + LMNN + k-NN [22] , 2017 acc(%) 98 C 

JSG (top-K RVJRDs) + JSGK [23] , 2017 acc(%) 98.3 C 

Triplet motion + LBP [24] , 2016 acc(%) 98.0 3-fold cross-validation 

Kinect Interaction [5] Motion Information + CNN [ SI 5 ] acc(%) 90.98 5-fold cross validation 

Geometric Feature + LSTM [21] , 2017 acc(%) 99.02 5-fold cross validation 

SkeletonNet [25] , 2017 acc(%) 93.47 5-fold cross validation 

Co-occurence feature + LSTM [26] , 2016 acc(%) 90.41 5-fold cross validation 

NTU RGB + D [6] CNN + LSTM [ SI 1 ] acc(%) 67.5/76.21 cross-subject/cross-view 

Enhanced Skeleton [ SI 11 ] acc(%) 80.03/87.21 cross-subject/cross-view 

DSSCA SSLM [18] , 2017 acc(%) 74.9 cross-subject 

Joint distance maps + CNN [27] , 2017 acc(%) 76.2/82.3 cross-subject/cross-view 

Part-aware LSTM Network [6] , 2016 acc(%) 62.03/70.27 cross-subject/cross-view 

DHG-14/28 [7] CNN + LSTM [ SI 1 ] acc(%) 85.6/81.1 C; acc of 14/28 gestures 

Geometric shape + fisher vector + SVM [7] , 2016 acc(%) 83.07/79.14 C; acc of 14/28 gestures 

Montalbano V2 [8] CNN + LSTM [ SI 1 ] JI 79.15 no specific mention; 

Moddrop [28] , 2016 JI 83 no specific mention; 

MIVIA action [9] Motion Information + CNN [ SI 5 ] acc(%) 93.37 C 

Key poses + CNN [29] , 2017 acc(%) 93.37 C 

String kernel framework [30] , 2016 acc(%) 95.4 C 

NATOPS gesture [10] Motion Information + CNN [ SI 5 ] acc(%) 72.58/86.58 D; top-1/top-2 accuracy 

Random forest [31] , 2017 acc(%) 88.1 no specific mention 
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t  
raction, through feature encoding, to classification. In order to ex-

rtact efficient features from image sequences/videos, some heuris-

ically designed descriptors are proposed, such as the Dual Square-

oot Function (DSRF) descriptor in SI 3 , Gesturelets in SI 8 , to com-

lement trajectorylet [12] , mixed features around sparse keypoints

MFSK) [20] , co-occurence feature [26] , triplet motion and local bi-

ary pattern (LBP) [24] . For feature encoding, the representative

ethods include bag of visual words (BoVW) [20] , vector of locally

ggregated descriptors (VLAD) [22] and fisher vector (FV) [7] . For

he decision-making stage, the popular classifiers applied to the

atasets in the Table 2 include KNN [20,22] , SVM [7,12] and ran-

om forest [31] . 

The second category comprises the deep learning based meth-

ds. It consists of Convolutional neural networks (CNNs), Long

hort Term Memory networks (LSTM) and mixed architecture

ased approaches. CNN-based methods typically encode image se-

uences or skeletons as dynamic images that capture the spatio-

emporal or skeleton-based motion information [15–17,27] , and
 t
hen apply CNN for image-based recognition. LSTM-based methods

xtract geometric or co-occurence features [21,26] from each frame

nd train a model which encodes the spatio-temporal information

ontent. Some approaches combine CNN and LSTM to realise an

ction recognition capability. For example, SI 1 combines CNN and

STM in a two-stage training strategy designed to optimise the pa-

ameters of a CNN + LSTM framework. 

For human motion analysis, there are many other CNN-based

ethods which are not mentioned in this section. For a more de-

ailed survey the reader is referred to [32–36] . 

.2. Human Pose Estimation 

.2.1. Benchmark Datasets for Human Pose Estimation 

Table 3 summarises the attributes of the human pose estima-

ion dataset used for evaluation by some of the work presented in

his special issue. 
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Table 3 

Statistics of the HumanEva dataset used for benchmarking human pose estimation algo- 

rithms. 

Index Dataset Year Modality #Class #Subjects #Samples 

1 HumanEva [37] 2010 RGB,skeleton 6 4 40,0 0 0 

Table 4 

A comparison of the state-of-the-art human pose estimation methods evaluated on 

the HumanEva [37] dataset. The protocol used to obtain the results in this table in- 

volves sequences S1, S2, S3, for training and the validation sequences of all subjects 

for testing. The evaluation metric is the average joint error in centimeter (cm). 

Method Metrics:jont error (cm) 

Walking Jogging Boxing 

Invariants moments [ SI _ 4 ] Only qualitative results provided 

Marker-less Motion Capture [42] , 2017 6.65 – 6.00 

Trainable Fusion [41] , 2017 2.44 – –

SMP [40] , 2016 3.81 3.68 –

SMPLify [38] , 2016 7.72 – 8.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Statistics of the key attributes of the popular benchmarking dataset for de- 

formable shape segmentation in the field of AMDO. The dataset is used at least 

once by the manuscripts accepted for this special issue. 

Dataset Year #Classes #Objects #Samples 

PSB [43] 2004 19 20 380 
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HumanEva [37] . This dataset contains six classes and about 40K

samples recorded by four subjects. It comprises synchronized im-

ages and motion capture data and is a standard benchmark for 3D

human pose estimation. The output pose is a vector of 15 3D joint

coordinates. 

2.2.2. The state-of-the-art in human pose estimation 

Table 4 shows some methods that use the HumanEva dataset.

All the listed papers have been published within the last two years.

In SI 4 , the authors build virtual humans via a professional free and

open-source 3D computer graphics software called Blender 1 and a

free software enabling the creation of realistic 3d human make-

human 

2 data. These avatars can be animated to simulate realistic

actions based on the motion capture data. One of the main advan-

tages is that one can automatically generate ground truth data. The

software thus saves a lot of effort by avoiding manual data collec-

tion and annotation. However, as the authors said “due to either

the lack of motion capture file for importation into the graphics

software or the lack of 3D ground truth, this makes a quantitative

evaluation and comparison on public datasets difficult”. Therefore,

only qualitative results on the HumanEva dataset are presented in

SI 4 . 

Table 4 lists the recently published papers based on deep learn-

ing. Federica et al. [38] present a SMPLify framework that falls

within the classical paradigm of bottom up estimation followed by

top down verification (generative model). For the bottom-up es-

timation, a CNN-based method called DeepCut is used to predict

the 2D body joint locations. The role of the top-down strategy is

to fit the body shape to the 2D joints via SMPL [39] . The objec-

tive function penalizes the error between the projected 3D model

joints and detected 2D joints. 

Zhou et al. [40] propose a sparseness meets deepness (SMP) al-

gorithm to address the challenge of 3D full-body human pose esti-

mation from a monocular image sequence. It consists of a novel

synthesis of a deep learning-based 2D part regressor, a sparsity

driven 3D reconstruction approach and a 3D temporal smoothness

prior. This joint consideration combines the discriminative power

of the state-of-the-art 2D part detectors, the expressiveness of 3D

pose models and regularization by way of aggregating information

over time. 

Bugra et al. [41] propose a trainable fusion scheme to fuse 2D

and 3D image cues for monocular body pose estimation. It con-

sists of two streams. The first CNN stream is used to predict the
1 https://www.blender.org/ . 
2 http://www.makehuman.org/ . 

2

 

d  

a  
D joint locations and the corresponding uncertainties. The second

ne leverages all 3D image cues by processes applied directly to

he input image. The outputs of these two streams are then fused

o obtain the final 3D human pose estimation. 

The work in [42] presents a robust marker-less human motion

apture algorithm that can track articulated joint motion in chal-

enging indoor and outdoor scenes. It combines the strengths of a

iscriminative image-based joint detection method with a model-

ased generative motion tracking algorithm through a unified pose

ptimization energy. The discriminative part-based pose detection

ethod is implemented using CNNs. It estimates unary potentials

or each joint of a kinematic skeleton model. These unary poten-

ials serve as the basis of a probabilistic extraction of pose con-

traints for tracking by using a weighted sampling from a pose

osterior that is guided by the model. In the final energy formula,

t combines these constraints with an appearance-based model-to-

mage similarity term. 

.3. Deformable shape segmentation 

.3.1. Benchmark datasets for deformable shape segmentation 

Princeton Segmentation Benchmark (PSB) Dataset [43] . This

ataset has been intensively used to evaluate 3D shape segmen-

ation and 3D shape retrieval algorithms. It has 19 different object

ategories with 20 objects for each category, which results in a to-

al of 380 models (see Table 5 ). 

In order to evaluate segmentation methods, some popular met-

ics are used including rand index, cut discrepancy, hamming dis-

ance and consistency error. Rand index measures the similarity

etween two segmentations of the same shape. From a mathemat-

cal point of view, rand Index is related to the accuracy, but is ap-

licable even when class labels are not used. Rand index error is

qual to one minus the Rand Index. Cut discrepancy is a boundary-

ased method evaluating the distance between different cuts. It

ums the distances from points along the cuts in the computed

egmentation to the closest cuts in the ground truth segmentation,

nd vice-versa. Hamming Distance is a region-based method which

easures the number of substitutions required to change the as-

ignment of one region into another. Hamming Distance is direc-

ional, hence it includes underdetection rate (Rm) and false alarm

Rf) distances. Consistency Errors, whether the global version (GCE)

r local version (LCE), are used to compute the hierarchical differ-

nces and similarities between segmentations. They are based on

he theory that the organisation of perceptual information by hu-

ans imposes a hierarchical tree structure on perceived objects.

or all four metrics, a smaller value indicates a better result. These

etrics are shown in Table 6 . 

.3.2. State-of-the-art on deformable shape segmentation 

Table 6 shows a comparison of different methods on the PSB

ataset [43] . Truc et al. [44] present a multi-view RNN (MV-RNN)

lgorithm for 3D mesh segmentation. It combines CNNs and a
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Table 6 

A comparison of the state-of-the-art methods on the PSB dataset [43] . The metrics include (refer to [46] for 

more details): Cut Discrepancy (CD), Hamming Distance (HD), Rand Index (RI) and Consistency Error (CE), 

Global Consistency Error (GCE), Local Consistency Error (LCE). Hamming Distance is directional, hence it in- 

cludes underdetection rate (Rm) and false alarm (Rf) distances. 

Paper Metrics 

0.149 0.090 0.118 0.124 0.065 

Multi-view RNN [44] , 2017 CD HD Hamming-Run Hamming-Rf GCE LCE 

0.144 0.075 0.061 0.089 0.060 0.041 

Stacked auto-encoders [45] , 2016 RI: 0.118 

Table 7 

The statistics of key attributes of popular benchmarking datasets for face analysis 

in the field of AMDO. All datasets are used at least once by accepted manuscripts 

in this special issue. 

Dataset Images Subjects Age groups Gender In the wild 

Adience [51] 26,580 2,284 8 Yes Yes 

IoG [52] 5,080 28,231 7 Yes Yes 

MORPH II [53] 55,134 13,0 0 0 Accurate ages Yes No 
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wo-layer LSTM to yield coherent segmentation of 3D shapes. The

mage-based CNN effectively generates the edge probability fea-

ure map while the LSTM correlates the edge maps across differ-

nt views and outputs a well-defined per-view edge image. From

able 6 , one can see that the performance of SI 7 is comparable to

hat of MV-RNN for different evaluation metrics. 

The work [45] proposes an unsupervised method for 3D shape

egmentation. After over-segmenting the shapes into primitive

hapes, it generates high-level features from low-level features of

ach patch by using stacked auto-encoders. High-level features are

hen used for segmenting a single shape or co-segmenting a group

f shapes. 

.4. Face analysis 

In the area of computer vision and patter recognition, face anal-

sis [47–50] is a popular and hot research direction. However, in

his section, we limit the review techniques and datasets used in

he papers contained in the special issue. 

.4.1. Benchmarking datasets for face analysis 

There are three popular benchmarking datasets related to age

nd gender analysis: Adience [51] , IoG [52] and MORPH II [53] .

ome key statistics of these three datasets are listed in Table 7 . 

The face images of Adience and IoG datasets are collected in

he wild. Both datasets contain age group and gender information.

or MORPH II dataset, 50 thousand images have been collected in

 controlled environment. Different from Adience and IoG datasets,

ORPH II dataset provides accurate age information for each face

mage. 

.4.2. The state-of-the-art in face analysis 

There are many subtopics of face analysis, such as face verifi-

ation and recognition [61,62] , facial expression recognition [63] ,

nd face attribute analysis [57] (i.e. age estimation, gender and

thnicity recognition), to mention just a few. Some solutions al-

eady achieve very promising performance that in many respects

xceeds that of human face perception [61,62] . It is out of the

cope of this editorial to provide a comprehensive coverage of the

ecent advances in the field of face analysis. We only focus on

ace attribute analysis, such as age estimation, ethnicity and gender

ecognition. Some recently published methods that were evaluated

n the above three datasets are listed in Table 8 . Unfortunately,

here is a lack of standardisation and different publications often

se different protocols for evaluation. For example, on MORPH II
ataset, MRNPE [55] and Soft softmax [57] evaluate their models

ith CBSR protocol while SI 10 and AgeED [54] use 80–20 protocol. 

Tan et al. [54] propose a group-based method for accurate age

stimation. First, they propose an age group-n encoding (AGEn)

ethod, where adjacent ages are merged into the same category.

ote that ages merged into the same group would be regarded as

ndependent classes in the training stage. On this basis, authors

ransform the age estimation problem into a series of binary clas-

ification sub-problems. Subsequently, deep CNNs realising multi-

le classifiers are trained for age group classification. For testing,

n age decoding stage is proposed to deduce the estimated age

rom the age group classification result. As shown in Table 8 , this

ethod achieves a MAE of 2.52 with the 80–20 protocol. 

The work in [57] proposes a soft softmax loss function for age

stimation, where each face image is labeled with a Gaussian label

istribution rather than a single label value in softmax loss func-

ion. Compared with the traditional definitions, the proposed soft

oftmax loss function considers not only the chronological age but

lso its adjacent ages. The authors show the effectiveness of their

roposal for age estimation achieving a MAE of 3.03 with a shallow

etwork (AlexNet) on the MORPH II dataset. 

Chen et al. [55] propose a Multi-Region Network Prediction

nsemble (MRNPE) for high-accuracy age estimation by leverag-

ng both global and local context information. The model in-

ludes multiple sub-networks, where each sub-network takes both

 global face image and a local region as input, e.g., face + eye, face

 mouth and face + nose. Then, the average over the predictions

f all sub-networks is reported as the final predicted age. One dis-

dvantage of this work is that it needs an ensemble of networks to

chieve high performance. 

Rothe et al. [56] propose a DEX (Deep EXpectation) framework

or real and apparent age estimation. They regard age estimation

s a deep classification problem followed by a softmax expected

alue refinement. DEX is a very popular method for age estima-

ion. It won the first place in the Chalearn LAP challenge 2015. In

his paper, Rothe et al. also introduce the largest public dataset of

ace images, IMDB-WIKI datatset, which contains age and gender

nformation for each face image. One drawback of this dataset is

hat its labels are noisy, as a result of being calculated based on

he date of birth of the corresponding celebrity and the year when

he photo was taken. Thus, this dataset is usually used for pretrain-

ng rather than evaluation. 

The work in [58] presents a coarse-to-fine framework for age

stimation in unconstrained environment. First, age group classifi-

ation is carried out to obtain a coarse age range, and then a fine-

rained refinement and an error-correcting stage follows to obtain

 more reliable prediction. 

Zhang et al. [59] propose a residual network of residual net-

orks (RoR) for age group classification and gender classification.

he proposed RoR architecture shows better optimization abil-

ty for age group and gender classification than alternative CNN

rchitectures. The authors evaluate their model on Adience and

oG datasets, achieving an impressive performance of 90.59% and

0.73%, respectively. 
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Table 8 

The key attribute statistics of popular benchmarking datasets used for age, gender and ethnicity analysis in the field 

of AMDO. 

Methods Adience [51] IoG [52] Morph II [53] 

Age Gender Protocol Age Gender Protocol Age Protocol 

Deep Attention [ SI 10 ] 0.6108 0.9300 – 0.6 0.8690 – 2.56 80–20 4 

AgeED 1 [54] , 2017 – – – – – – 2.52 80–20 

MRNPE [55] , 2017 – – – – – – 2.73 CBSR 5 

DEX 2 [56] , 2016 0.64 – – – – – 2.68 –

Soft softmax [57] , 2016 – – – – – – 3.03 CBSR 

Cascaded CNN [58] , 2016 0.5288 – FF-SECV 3 – – – – –

RoR [59] , 2017 – 0.9059 FF-SECV 3 – 0.9073 FF-SECV 3 – –

OR-CNN [60] , 2016, – – – – – – 3.27 –

[1] AgeED: Age Encoding + Decoding; [2] DEX: Deep EXpectation;[3] FF-SECV: five-fold, subject-exclusi ve cross- 

validation protocol; [4] 80-20: 80% for training and 20% for testing; [5] http://www.cbsr.ia.ac.cn/users/dyi/agr.html . 
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Niu et al. [60] define the problem of age estimation as an or-

dinal regression (OR) problem and propose an OR-CNN framework

to address it. In OR-CNN, the ordinal regression problem is trans-

formed into a series of binary classification sub-problems and then

a CNN with multiple binary classifiers is proposed to solve those

sub-problems, where each binary classifier is trained to predict

whether the age is larger than a specific value. The authors evalu-

ate their model on MORPH II dataset and achieve a MAE of 3.27. 

The work in [64] proposed a new APPA-REAL dataset. This

dataset includes large face images with both real and apparent age

annotations. The authors studied the realtionship between real and

apparent age, and developed a residual age regression method to

further improve the performance. 

3. Special issue papers 

In this section, we briefly introduce the 20 papers accepted for

this special issue. The papers are grouped in the above mentioned

four AMDO subtopoics (14 papers on human motion analysis, three

papers on pose estimation, one on deformable shape, and two on

face analysis). 

3.1. Human motion analysis 

SI 1 : The paper “Convolutional Neural Networks and Long Short-

erm Memory for Skeleton-Based Human Activity and Hand Ges-

ture Recognition” by Juan C. Nú ˜ n ez, Raúl Cabido, Juan J. Pantrigo,

Antonio S. Montemayor and José F. Vélez, proposes a deep

learning-based method for skeleton-based human activity and

hand gesture recognition. It combines CNN and Long Short-Term

Memory (LSTM) recurrent networks. A two-stage training strategy

is applied to update CNN + LSTM framework parameters. An ex-

haustive experimental evaluation on publicly available data bench-

marks (i.e. MSR Action3D, MSR DailyActivity3D, UTKinect, NTU

RGB + D, DHG-14/28, and Montalbano V2) is presented, showing

the proposed method to be competitive in relation to the state-

of-the-art alternatives. It relates to the work in [65] , which uses

a CNN + LSTM architecture for activity recognition in video se-

quences, but only using skeleton and achieving competitive results

on five datasets. 

SI 2 : The paper “Hand Action Detection from Ego-centric Depth

Sequences with Error-correcting Hough Transform” by Chi Xu, Lak-

shmi N Govindarajan and Li Cheng, presents an effective and ef-

ficient solution for hand action detection from mobile ego-centric

depth sequences. It proposes a novel error-correcting mechanism

to tackle the issue of incorrect votes generated by the Hough

transform. The authors also provide a comprehensive in-house

annotated ego-centric hand action dataset. We believe this will

open new research directions in ego-centric hand action detection.

The proposed method delivers favorable performance in real time
about 112 frame/s) on their proposed real-life dataset. It is related

o the work in [66] , which uses the concept ”snippets” for action

ecognition, but applied to Ego-centric hand detection. Moreover,

he released real-life dataset of this paper is also likely push the

tate of the art in Ego-centric hand detection research. 

SI 3 : The paper “A Flexible Trajectory Descriptor for Articulated

uman Action Recognition” by Yao Guo, Youfu Li and Zhanpeng

hao, proposes an articulated skeleton representation by model-

ng the skeleton information as interconnections of multiple rigid

odies for action recognition. In this method, six-dimensional rigid

ody motion trajectories are represented by the invariant Dual

quare-Root Function (DSRF) descriptor. The concept of Virtual

igid Body (VRB) configuration is introduced to produce compact

id-level features for representing the movement of each body

art. The Most Informative Part (MIP) trajectory is then used to

elect a subset of consistency and activity body parts in the fi-

al skeletal representation. The experimental results obtained on

hree datasets (MSR Action3D, MSRC-12, and UTKinect) show that

he proposed method outperforms various existing skeleton-based

epresentations in terms of recognition accuracy. It is related to the

quare Root Velocity Function [67] (SRVF), which is usually used in

hape analysis, but here it is applied to Articulated Human Action

ecognition. The proposed DSRF descriptor includes SRVF of the 3-

 point trajectory and 3-D angular trajectory. 

SI 5 : The paper “Human Action Recognition in RGB-D videos us-

ng Motion Sequence Information and Deep Learning” by Earnest

aul Ijjina and Chalavadi Krishna Mohan combines motion se-

uence information and deep learning to recognize human ac-

ion from RGB-D data. It proposes a new motion representation,

hich is computed in various temporal regions in the RGB and

epth video streams. The new representation puts emphasis on

he key poses associated with each action. The derived motion

epresentation feeds into a CNN to learn discriminative features.

he proposed approach, extensively evaluated on various action

nd gesture datasets, is shown to advance the state of the art.

ore specifically, it has achieved 93.37% accuracy (evaluation pro-

ocol: leave-one-subject-out) on the MIVIA action dataset , and

6.58% top-2 accuracy on the NATOPS gesture dataset (evalua-

ion protocol:training on the first 5 subjects, testing on the other

0 subjects). 

SI 6 : The paper “A Deep Convolutional Neural Network for Video

equence Background Subtraction” by Mohammadreza Babaee,

uc Tung Dinh and Gerhard Rigoll, proposes a deep CNN ar-

hitecture (namely DeepBS) for background subtraction from

ideo sequences. The input frame along with the correspond-

ng background image are patch-wise processed. During train-

ng, the hypotheisised foreground segmentation is compared with

roundtruth segmentation and cross entropy is adopted as the loss

unction. In the test phase, after merging the individual patches

nto a single output frame, the output frame is post-processed,
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ielding the final output segmentation. The proposed method is

valuated on different data-sets, and shown to outperform the ex-

sting algorithms as measured by the average ranking in terms of

ifferent evaluation metrics proposed in CDnet 2014. It is similar to

he CNN-based work of [68] which uses a fixed background model.

owever [68] is defined for a concrete video scenario and will re-

uire re-training for other scenes with scene-specific data, while

I 6 can handle various video scenes. 

SI 8 : The paper “Motion Analysis: Action Detection, Recogni-

ion and Evaluation based on Motion Capture Data” by Fotini Pa-

rona, Anargyros Chatzitofis, Dimitrios Zarpalas and Petros Daras,

resents a motion analysis framework for real-time action de-

ection, recognition and evaluation of motion capture data based

n the pose and kinematics information. First, automatically com-

uted dynamic weighting is applied, controling the joint data sig-

ificance based on action involvement. Then the bag of gesturelets

BoG) model is employed for data representation of each sample

nd kinetic energy based descriptor sampling is performed before

 codebook construction. The automatically segmented and recog-

ized action samples are subsequently fed into a framework eval-

ation stage. The experimental results provide evidence that the

roposed framework can effectively be used for unsupervised ges-

ure/action training. This work is similar to bag of visual words

odel [20,69] widely used in video-based recognition, but here be-

ng specifically designed for a motion analysis task. 

SI 9 : The paper “Linear Latent Low Dimensional Space for On-

ine Early Action Recognition and Prediction” by Victoria Bloom,

asileios Argyriou, and Dimitrios Makris, utilizes joint motion data

or recognizing actions in linear latent spaces. It operates online

nd in real time. It is based on supervised learning and dimension-

lity reduction techniques, which derive a representation for high

imensional nonlinear actions in a linear laten low dimensional

pace. The proposed method is evaluated on well-know datasets.

ompared to the state of the art methods, the proposed approach

xhibits high accuracy and low latency properties. Previous works

70–72] considered early action recognition, online action recogni- 

ion and action prediction as independent events, while SI 9 tack-

es these three tasks jointly with the proposed Clustered Spatio-

emporal Manifolds. 

SI 11 : The paper “Enhanced skeleton visualization for view in-

ariant human action recognition” by Mengyuan Liu, Hong Liu,

nd Chen Chen, proposes a new enhanced skeleton visualization

ethod for action recognition. The authors develop a sequence-

ased view invariant transform, based on spatio-temporal loca-

ions of skeleton joints to eliminate the effect of view variations

ased on spatio-temporal locations of skeleton joints. The method

ncodes the spatio-temporal information conveyed by the trans-

ormed skeletons to generate a series of color images. Last, a CNN

odel is adopted to extract robust and discriminative features

rom the color images and the final predicted results are obtained

y decision level fusion of the deep features. The experimental

valuation carried out on challenging datasets demonstrates the

uperiority of the method. It relates to the works in [17,73] where

keleton sequences are described as color images used by CNNs

odel for classification. Compared with [17,73] , SI 11 can capture

ore of the abundant spatio-temporal cues, since the generated

olor images extensively encode both spatial and temporal cues. 

SI 13 : The paper “Estimating 3D Trajectories from 2D Projections

ia Disjunctive Factored Four-Way Conditional Restricted Boltz-

ann Machines” by Decebal Constantin Mocanu, Haitham Bou Am-

ar, proposes a novel deep learning-based method referred to as

isjunctive factored four-way conditional restricted Boltzmann ma-

hine (DFFW-CRBM). It introduces a novel tensor factorization ca-

able of driving a fourth order Boltzmann machine for high dimen-

ional time series modelling to considerably lower energy levels.

ts evaluation on both simulated and real-world data has shown its
ffectiveness in predicting and classifying complex ball trajectories

nd human activities. It is related to Factored Four-Way Conditional

estricted Boltzmann Machines (FFW-CRBMs) [74] . However, FFW-

RBMs require three-dimensional labeled information for accurate

redictions which is not typically available. 

SI 14 : The paper “Spatio-Temporal Union of Subspaces for

ulti-body Non-rigid Structure-from-Motion” by Suryansh Kumar, 

uchao Dai, and Hongdong Li, proposes a unified framework to

ointly segment and reconstruct multiple non-rigid objects. It ex-

loits the structure of the scene along the temporal and spa-

ial directions, modelled in terms of 3D non-rigid deformations.

he spatio-temporal representation not only provides competi-

ive 3D reconstruction but also outputs a robust segmentation

f multiple non-rigid objects. The resultant optimization problem

s solved using the Alternating Direction Method of Multipliers

ADMM). The experimental results show the superiority of the

ethod, compared to the state-of-the-art. Compared with other

imilar methods [75,76] , the proposed method of SI 14 can learn

he affinity matrices to exploit efficient spatio-temporal clustering

tructures. 

SI 16 : The paper “Adaptive Compressive Tracking based on Lo-

ality Sensitive Histograms” by Sixian Chan, Xiaolong Zhou, Junwei

i, and Shenyong Chen, proposes an adaptive compressive tracking

lgorithm which is locality sensitive, and thus robust to illumina-

ion variations. A new update mechanism is used to preserve stable

eatures while avoiding noisy appearance variations during track-

ng. Furthermore it includes a trajectory rectification method to re-

ne the tracking accuracy. The experimental results conducted on

 benchmarking dataset show that the tracker achieves the state-

f-the-art performance. It is related to the works [77,78] on com-

ressive tracking with color information. Compared to [77,78] , SI 16 

resents an updating mechanism to preserve stable features. 

SI 18 : The paper “Semantic Action Recognition by Learning a

ose Lexicon” by Lijuan Zhou, Wanqing Li, Philip Ogunbona, and

hengyou Zhang, proposes a semantic representation, exploiting a

ose lexicon, for action recognition. Each action is represented by

 sequence of semantic poses extracted from an associated tex-

ual instruction. A visual pose model, defined as a Gaussian mix-

ure, is learned from training samples to characterize the likelihood

f an observed visual frame being generated by a visual pose. A

ose lexicon model is learned using an extended Hidden Markov

odel (HMM) to encode the probabilistic mapping between hid-

en visual poses and semantic poses sequences. With the lexi-

on, action classification is formulated as a problem of finding

he sequence of semantic poses that best fits the sequence of vi-

ual frames as measured in terms of posterior probability. The ef-

cacy of the proposed method is evaluated on different datasets

i.e. MSRC-12, WorkoutUOW-18, and Combined-17 action datasets)

sing cross-subject, cross-dataset and zero- shot protocols. SI 18 is

n extension of the work in [79] . Compared with [79] , SI 18 jointly

enerates visual pose sequences and aligns them to semantic pose

equences. 

SI 19 : The paper “Motion Analysis: Action Detection, Recognition

nd Evaluation based on motion capture data” by Fotini Patrona,

nargyros Chatzitofis, Dimitrios Zarpalas, and Petros Daras, pro-

oses a new framework for real-time action detection and recog-

ition. Automatic and dynamic weighting, altering the joint data

ignificance based on the involved action, and Kinetic energy-

ased descriptor sampling, are employed for efficient action seg-

entation and labeling. The automatically segmented and recog-

ized action instances are subsequently fed to the action evalua-

ion stage of the framework. It compares them with the reference

nstances, estimating their similarity. The experimental results ob-

ained on MSR-Action3D and MSRC12 datasets, provide evidence

hat the proposed method outperforms state-of-the-art methods

y 0 . 5 − 6% in all datasets. SI 19 is similar to the work in [80] .
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Compared with [80] , automatic feature weighting at the frame

level is employed in SI 19 which also uses all 20 joints. 

SI 20 : The paper “Active garment recognition and target grasp-

ing point detection using deep learning” by Enric Corona, Guillem

Alenya, Antoni Gabas, and Carme Torras, proposes a new method

that first identifies the type of garment and then performs a search

for the two grasping points that allow a robot to bring the garment

to a known pose. The experiments conducted with real robots

show that most of the errors are due to unsuccessful grasps and

not to the localization of the grasping points, thus a more ro-

bust grasping strategy is required. SI 20 is similar to the work in

[81] which makes use of a physics engine to create a training

database. However, SI 20 aims at avoiding costly re-grasping, which

is not considered in [81] . 

SI 21 : The paper “Rasabodha: Understanding Indian classical

dance by recognizing emotions using deep learning” by Aparna

Mohanty and Rajiv R. Sahay, proposes a CNN-based method to de-

cipher the meaning of Navarasas associated with Indian classical

dance (ICD). The proposed method is the first to use deep lear-

ing for recognizing Navarasas in order to semantically understand

videos of ICD. Moreover, to evaluate the proposed method, authors

also release RGB-D videos both under controlled laboratory condi-

tions and unconstrained environments. 

3.2. Human pose estimation 

SI 4 : The paper “A Very Simple Framework for 3D Human Pose

Estimation Using a Single 2D Image: Comparison of Geometric

Moments Descriptors” by Dieudinn ́e Fabrice Atrevi, Damien Vivet,

Bruno Emile and Florent Duculty, uses geometric moments to an-

alyze the human silhouette from a single image. The proposed

framework extracts the 3D human posture from a single 2D image

in real time. The approach makes use of the learned correspon-

dences between silhouettes and skeletons, extracted from synthetic

3D human models. The main contribution of this paper is the pro-

posed technique to estimate 3D human motion via 3D synthesis

software, which avoids the labour intensive manual data collection

and annotation. Extensive experimental results on both synthetic

and real-world datasets demonstrate the superior performance of

the proposed framework compared with state-of-the-art methods.

SI 4 is similar to the works in [82,83] recovering 3D human pose

from single 2D images. However SI 4 uses shape-from-silhouette

method to find 3D pose from a single image, being robust even

in the case of noisy silhouettes. 

SI 12 : The paper “Generation of Human Depth Images with Body

Part Labels for Complex Human Pose Recognition” by K. Nishi and

J. Miura, develops a method for generating body-part annotated

depth images of various body shapes and poses. The method is

guided by a flexible human body model and a motion capture

system. Based on the proposed method, the authors constructed

a dataset of 10K images with eight body types for various sit-

ting poses. The effectiveness of the generated dataset is verified

by solving the part-labeling tasks using a convolutional network

(FCN). SI 12 extends the work in [84] from hand-level activities to

finger-level hand activities analysis. 

SI 15 : The paper “A Hybrid Framework for Automatic Joint De-

tection of Human Poses in Depth Frames” by Longbo Kong, Xi-

aohui Yuan, and Amar Man Maharjan, proposes a novel frame-

work to detect joints automatically by using depth camera. The

proposed method categorizes the joints into implicit or dominant

joints, where implicit joints are the torso (i.e., neck and shoulders)

and dominant joints are elbows and knees. In this framework, a

loose skeleton model is used to locate implicit joints and data-

driven method is applied to detect dominant joints. It uses a hier-

archy of three CNNs with different levels of specialization, trained

both with synthetic and real images. The results demonstrate that
he proposed work can deliver stable and accurate detection re-

ults of joints. Overall, SI 15 combines a human body model and

eodesic features of the human body together to detect and esti-

ate the position of joints, achieving more accurate joint detection

han related works in [85,86] . 

SI 22 : The paper “Deep Unsupervised Learning of Visual Similar-

ties” by Artsiom Sanakoyeu, Miguel A. Bautista, and Bj ̈o rn Ommer,

roposes a single optimization problem to extract batches of sam-

les with mutually consistent relations and uses weak estimates of

ocal similarities. Learning visual similarities is then framed as a

equence of categorization tasks. The CNN then consolidates tran-

itivity relations within and between groups and learns a single

epresentation for all samples without the need for labels. The

roposed unsupervised approach has been shown to achieve com-

etitive performance on detailed posture analysis and object clas-

ification challenges. SI 22 extends the unsupervised feature learn-

ng work of [87] with CNNs. However, CNNs for example ar-based

earning have been rare [87] due to the limitations of the com-

only used cross-entropy loss, the imbalance of data sets with

any negative samples, and the unknown relationships between

amples. SI 22 overcomes these shortcomings by updating similari-

ies and CNN parameters. 

.3. Deformable shape segmentation 

SI 7 : The paper “Scale Space Clustering Evolution for Salient Re-

ion Detection on 3D Deformable Shapes” by Xupeng Wang, Fer-

ous Sohel, Mohammed Bennamoun, Yulan Guo and Hang Lei,

etects a salient region, based on clustering of a data set in a

cale space generated by an auto diffusion function. The proposed

ethod is called Scale Space Clustering Evolution (SSCE). It con-

ists of three parts: scale field construction, shape segmentation

nitialization and salient region detection. The auto diffusion func-

ion is used to extract shape features at multiple time scales. The

nitial segmentation of the shape is obtained using persistence-

ased clustering. The salient regions are detected during the evo-

ution of the scale field. The experimental results obtained on pop-

lar datasets show a very promising performance of the proposed

ramework. SSCE inherits the merits of persistence-based cluster-

ng [88] and clustering assessment [89] for the benefit of salient

egion detection on 3D deformable shapes, and thus improving

ccuracy. 

.4. Face analysis 

SI 10 : The paper “Age and Gender Recognition in the Wild

ith Deep Attention” by Pau Rodriguez L ́o pez, Guillem Cucurull

reixens, Josep M Gonfaus, Francesc Xavier Roca Marvá and Jordi

onz ́a lez Sabat ́e , proposes a feedforward attention mechanism for

ge and gender classification. In this paper, a model that consists

f an attention network is employed to discover the most informa-

ive and reliable patches for age and gender classification. These

atches are then further processed in a patch network in higher

esolution to improve accuracy. With such attention mechanism,

he model is able to discover the most informative and reliable

arts in a face image even under deformation and occlusion. Ex-

erimental validation on the Adience, IoG and MORPH II dataset

emchmarks show that including attention mechanisms enhances

he performance of CNNs in terms of robustness and accuracy. SI 10 

s biologically inspired and benefits from the recent successes of

ttention mechanisms [90] . 

SI 17 : The paper “Gaussian Mixture 3D Morphable Face Model”

y Paul Koppen, Zhen-Hua Feng, Josef Kittler, William Christmas,

iao-Jun Wu, and He-Feng Yin, presents a Gaussian Mixture 3D

orphable Face Model (GM-3DMM) to represent a global pop-

lation of 3D faces as a mixture of Gaussian subpopulations. It
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xtends the traditional 3DMM [91] naturally by adopting a shared

ovariance structure to mitigate small sample estimation problems

ssociated with data in high dimensional spaces. Experiments in

tting the GM-3DMM to 2D face images to facilitate their geomet-

ic and photometric normalisation for pose and illumination invari-

nt face recognition demonstrates the merit of the proposed mul-

iple cohort 3D face model. 

. Conclusion 

The aim of this guest editorial was to introduce this special is-

ue on Articulated Motion and Deformable Object Recognition. The

0 papers accepted for the special issue cover four of the main

ubtopics of AMDO: human motion analysis (action/gesture), hu-

an pose estimation, deformable shape segmentation, and face

nalysis. The papers were introduced in the context of the recent

evelopments in the field reviewed in this editorial. 

Limitations and Challenges of AMDO. Although the accepted pa-

ers push the boundaries of the state of the art, there are still

ome limitations and challenges. First of all, there is a scope for

xploring hybrid deep learning networks, as pioneered in SI 1 , to

apture spatial-temporal structure information more comprehen-

ively. Second, the problem of fusing multiple modalities remains

n open issue. Thanks to the recent trends in the development of

heap sensors, which provide complementary sources of informa-

ion, multimodal data analysis will continue to grow in importance.

ne can therefore expect that future efforts in this direction will

ncrease dramatically. 

Finally, although deep learning-based methods have been

emonstrated to show impressive promise in the field of AMDO,

he need to collect large scale labeled data is an unwelcome

bstacle. Training from only a few samples is still a challeng-

ng problem in machine learning. Although some previous works

20,69,92] have attempted zero/one-shot learning in the field of

MDO, the results achieved are not yet accurate enough. There-

ore, a few-shot (i.e. one-shot or zero-shot) learning is a research

irection where new advances can be expected in a foreseeable

uture. 

We hope the contributed papers in this special issue, together

ith the survey of the recent developments presented in this edi-

orial, paint a broad picture of the state of the art in the subject

rea of AMDO that will jointly promote future developments in

his exciting field. 
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