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a b s t r a c t 

This paper investigates simultaneous arrival planning of multiple unmanned vehicles. Prob- 

lem of simultaneous arrival planning is introduced and formulated. First, a Temporal–

Spatial (T–S) Bezier curve is constructed by considering time as a one-dimensional vari- 

able of Bezier curve. Second, constraints of minimum curvature radius, tangent accelera- 

tion and velocity are addressed to design the suboptimal T–S Bezier curve. Subsequently, 

the suboptimal simultaneous arrival time for multiple unmanned vehicles is calculated and 

obtained. Finally, simultaneous arrival planning by using a T–S Bezier is summarized. Sim- 

ulations and comparisons are conducted to demonstrate the effectiveness of the proposed 

method. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Autonomy corresponds to the basic capacity of unmanned vehicles. Thus, autonomous systems and algorithms are rapidly

developed to substitute for human beings to accomplish different types of tasks including rescue [22] , reconnaissance and

surveillance [26] , search [10] , and strike [14] . In most tasks, it is necessary for unmanned vehicles to sail from one point to

another point. This requires path planning to generate a feasible trajectory that connects the two points. 

Recently, several numerical methods were employed for path planning. Mellinger et al. employed mixed-integer quadratic

programs to generate optimal paths for air vehicles by considering collision avoidance [15] . Portasa et al.provided the per-

formance comparisons of genetic algorithms, PSO algorithms, and differential evolution for UAV path planning [18] . Analo-

gously, Roberge et al. listed the comparisons and performance analysis of genetic algorithm and particle swarm optimization

algorithm, which were both devoted to producing feasible and quasi-optimal trajectories for fixed wing UAVs in a com-

plex 3D environment while considering the dynamic properties of a vehicle [20] . Ma et al.proposed improved PSO-based

methods Con-Per-PSO and SA-PSO for path planning of multiple mobile robots under the time-varying double-warehouse

environment [16] . Rashid et al. presented a visibility binary tree algorithm to generate the shortest path between the initial

point and the final point by considering circular obstacles [19] . Kothari et al. applied an exploring random tree algorithm to

design probabilistically robust path planning in uncertain environments with dynamic obstacles [9] . Moreover, A 

∗ algorithm

was applied to search for the optimal path. Lu et al. proposed an extension of the Lifelong Planning A 

∗ algorithm by using
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a multiscale decomposition of the environment, which solved dynamic shortest path-planning problems [12] . Analogously,

MacAllister et al. utilized an anytime planner based on A 

∗ algorithm to get close-to-optimal paths for a quadrotor [13] . Addi-

tionally, another method involves using smooth curves to achieve path planning. Lekkas et al. designed a path planner based

on a monotone cubic Hermite spline to realize better shape control and to avoid wiggles and zigzags [11] . Bianco et al. uti-

lized η3 -splines to accomplish path planning for wheeled mobile robots [1] . Ghilardelli et al. used a η4 -spline to shape a

smooth feasible curve between two arbitrary dynamic configurations of the articulated vehicle [6] . Brezak et al. employed a

clothoids curve, which corresponded to a G 

2 continuous path with linearly changing curvature, to smooth piecewise linear

paths [2] . Our group proposed a Real-time Dynamic Dubins-Helix (RDDH) method to achieve smooth transition between the

initial pose and the final pose [23] , and an autonomous approach to a moving ship for unmanned vehicles based on the

RDDH method was realized [24] . Furthermore, a type of curves with a closed-form expression of position such as B-splines

[5,8] and Bezier curves [3,25] were applied for path planning. 

This article focuses on the simultaneous arrival of multiple unmanned vehicles by path planning. It is necessary to satisfy

the physical constraints of unmanned vehicles to guarantee the feasibility for simultaneous arrival of multiple unmanned

vehicles. The acceleration constraint that is decomposed into centripetal acceleration and tangential acceleration should be

addressed. Centripetal acceleration constraint is closely related to curvature radius, and thus, the minimum curvature radius

constraint instead of centripetal acceleration constraint is usually taken into account. Furthermore, it is necessary to satisfy

the vehicle’s velocity constraint. 

Several types of feasible curves were used to achieve the simultaneous arrival of vehicles. Dai et al. devised parameter-

ized Cornu-Spirals for a group of vehicles to implement simultaneous arrival [4] . Shanmugavel et al. used Dubins curves to

achieve the simultaneous arrival of multiple unmanned vehicles [21] . Oh et al. presented path shaping with two constant

curvature segments to achieve simultaneous arrival, and this provided a path with longer length albeit increased flexibility

and fewer discontinuity points on a curvature command when compared with the widely-used Dubins path [17] . In the

above methods, the main idea for simultaneous arrival is to generate paths with the same length based on the assumption

that the speed of the vehicles is the same. 

The main contribution of this paper is to design Temporal-Spatial (T–S) Bezier curve for simultaneous arrival planning

of multiple unmanned vehicles. The T–S Bezier curve is constructed by considering time as a one-dimensional variable of

the Bezier curve. This novel design allows a vehicle to spend an assigned time sailing from the initial pose to the final one.

Another notable advantage of T–S Bezier curve is its smoothness in terms of curvature, heading angle, and velocity. Thus,

it is easy especially for fixed-wing UAVs to track the T–S Bezier. In order to obtain the suboptimal T–S Bezier curve (in

terms of path length), a genetic algorithm is employed by considering an unmanned vehicle’s physical constraints of min-

imum curvature radius, tangent acceleration and velocity. Moreover, the suboptimal simultaneous arrival time for multiple

unmanned vehicles is calculated. Simultaneous arrival planning is realized by planning T–S Bezier curves for each vehicle

once the suboptimal simultaneous arrival time is set. Comparisons are given to illustrate the feasibility of T–S Bezier curve

for simultaneous arrivals. 

The organization of the rest of the paper is given as follows. The problem of simultaneous arrival planning is stated

and the proposed solution is described in Section 2 . Section 3 details the T–S Bezier curve for simultaneous arrival planning.

The design and generation of T–S Bezier curve is presented in Section 3.1 . The suboptimal T–S Bezier curve that considers

physical constraints and the suboptimal arrival time are proposed and obtained in Section 3.2 and Section 3.3 , respectively.

Simultaneous arrival planning is subsequently summarized in Section 3.4. Simulations and comparisons of simultaneous

arrival are conducted in Section 4 . The conclusion is given in Section 5 . 

2. Problem statement 

The problem schematic is shown in Fig. 1 . N unmanned vehicles sail from their individual initial poses to the final poses.

The initial and final poses are assumed to be known a priori. It is necessary to implement the simultaneous arrival of

multiple vehicles. 

In order to achieve the simultaneous arrival of multiple vehicles, path generation is implemented. In a Cartesian coordi-

nate frame, the trajectory of an unmanned vehicle is generated based on the following equations: {
˙ x = v cos θ
˙ y = v sin θ

(1)

where v denotes the vehicle speed, θ denotes the heading angle. The feasible trajectory of the i th vehicle that connects its

initial pose to its final pose is given by path planning. This trajectory is represented by C i in which the length is represented

by s i . Hence, the problem formulation drawn from [17] is given as follows: 

F s,i ( x s,i , y s,i , θs,i , v s,i ) 
C i → F g,i ( x g,i , y g,i , θg,i , v g,i ) (2)

where F s,i denotes the initial configuration of the i th vehicle, F g,i denotes the final configuration of the i th vehicle, ( x s,i , y s,i ),

and ( x g,i , y g,i ) represent the initial position and final position of the i th vehicle, respectively, and θ s,i and θ g,i represent the

initial heading and final heading angles of the i th vehicle, respectively. v s, i and v g, i represent the initial and final speeds

of the i th vehicle, respectively. It is assumed that all the vehicles correspond to the same type, thus the values of physical

constraints are fixed. Each vehicle trajectory C should satisfy the correspond to following physical constraints. 
i 
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Fig. 1. Problem formulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Minimum curvature radius constraint. The curvature radius constraint is taken into account as follows: 

R i (s a,i ) ≥ R min (3) 

where s a,i denotes the curvilinear abscissa of the i th vehicle trajectory, R i denotes the curvature radius of the i th vehicle

trajectory, and R min denotes the minimum curvature radius. This constraint is closely related to the centripetal acceleration

constraint along the path. Evidently, the trajectory planned for the vehicle should be smooth, and the radius along the entire

path should be continuous. Big tracking errors exist when discontinuities occur [17] . 

(2) Tangent acceleration constraint. The tangent acceleration at any position along the path must be smaller than the

vehicle’s maximal tangent acceleration, which is expressed as follows: 

| a i,t (t) | ≤ a max ,t (4) 

where a i,t denotes the tangent acceleration of the i th vehicle, a max,t denotes the maximum tangent acceleration of the vehi-

cles. 

(3) Velocity constraint. 

v min ≤ v i (t) ≤ v max (5) 

where v i denotes the speed of the i th vehicle, v min and v max denote the minimum and maximum velocities of the vehicles,

respectively. 

(4) Minimum separation distance constraint. The distance between any two vehicles at the same time should exceed a

threshold value to avoid collision. Thus, the following expression is obtained: 

D (i, j, t) ≥ D sa fe . (∀ i, j, t. i, j ∈ [1 , N]) (6)

where D ( i, j, t ) represents the distance between the i th vehicle and the j th vehicle at any time t, D safe represents the safe

distance avoiding collision. 

In order to achieve the simultaneous arrival of multiple unmanned vehicles, the following equation constraint is ob-

tained: 

t g = t g, 1 = t g, 2 = · · · = t g,N (7) 

where t g denotes the arrival times of multiple vehicles, and t g,i (i = 1 , 2 . . . N) denotes the time spent by the i th vehicle to

sail from the initial pose to the target pose. The shortest simultaneous arrival time is considered as follows: 

min t g (8) 

3. T–S Bezier curve for simultaneous arrival planning 

There are N ( N ≥ 3) vehicles that sail to their respective target points at the same time and form a certain formation at the

end and subsequently maintain the formation. The T–S Bezier curve is designed by considering time as a one-dimensional

variable of the Bezier curve. This novel manner achieves the arrival of a vehicle at a fixed time. The vehicle’s physical

constraints are considered, and the suboptimal T–S Bezier path is obtained by selecting the control points by using genetic

algorithm. It contributes to the search for a suboptimal simultaneous arrival time. 
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Fig. 2. A cubic Bezier curve. 

Fig. 3. T–S Bezier curve. 

 

 

 

 

 

 

 

 

 

3.1. Design and generation of the T–S Bezier curve 

The n -degree Bezier curve with n + 1 control points (P 0 , P 1 . . . P n +1 ) is defined as 

P (τ ) = 

n ∑ 

k =0 

B k,n (τ ) P k , B k,n (τ ) = C n 
k (I − τ ) n −k τ k (9)

where τ ∈ [0, 1]. B i,n ( τ ) is Bernstein polynomials. Here, Bezier curve determined by the four control points is selected to

realize path planning of multiple unmanned vehicles. A cubic Bezier curve is depicted in Fig. 2 , where the four control

points (denoted as P 1 ∼ P 4 ) are marked. There are two important properties of a cubic Bezier curve that are useful for a T–S

Bezier curve: 

(1) Endpoint interpolation 

P (0) = P 0 
P (1) = P 3 

(2) Tangent vectors at endpoints 

P ′ (0) = 3( P 1 − P 0 ) 
P ′ (1) = 3( P 3 − P 2 ) 

The four control points of the i th vehicle Bezier curve are represented as ( P 0, i , P 1, i , P 2, i , P 3, i ). Time is considered as a one-

dimensional variable of the Bezier curve. Thus, a Temporal–Spatial Bezier curve is created. As illustrated in Fig 3 , the red

curve corresponds to the T–S Bezier curve, P 0, i represents initial position that is denoted as ( x s,i , y s,i , 0), and P 3, i represents

the target point denoted as ( x g,i , y g,i , t g,i ). P 1, i and P 2, i are the selected points which determine the shape of Bezier curve that

is denoted as ( x 1, i , y 1, i , t 1, i ) and ( x 2, i , y 2, i , t 2, i ), respectively. Hence, P 1 
1 ,i 

, P 1 
2 ,i 

, P 1 
3 ,i 

denote the projection points of P 1, i , P 2, i , P 3, i on
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the x − y plane, respectively. Therefore, the following expression is obtained: { 

x i (τ ) = a x,i τ
3 + b x,i τ

2 + c x,i τ + d x,i 

y i (τ ) = a y,i τ
3 + b y,i τ

2 + c y,i τ + d y,i 
t i (τ ) = a t,i τ

3 + b t,i τ
2 + c t,i τ + d t,i 

(10) 

Here, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a x,i = −x s,i + 3 x 1 ,i − 3 x 2 ,i + x 3 ,i 
b x,i = 3 x s,i − 6 x 1 ,i + 3 x 2 ,i 
c x,i = −3 x s,i + 3 x 1 ,i 
d x,i = x s,i 
a y,i = −y s,i + 3 y 1 ,i − 3 y 2 ,i + y 3 ,i 
b y,i = 3 y s,i − 6 y 1 ,i + 3 y 2 ,i 
c y,i = −3 y s,i + 3 y 1 ,i 
d y,i = y s,i 
a t,i = 3 t 1 ,i − 3 t 2 ,i + t g,i 

b t,i = 6 t 1 ,i + 3 t 2 ,i 
c t,i = 3 t 1 ,i 
d t,i = 0 

(11) 

Based on the property of the Bezier curve, the second control point is located on the direction of the velocity at the initial

point, and this is determined by θ s,i . Moreover, the third control point is located on the direction opposite to the velocity at

the target point, and this is determined by θ g,i . Therefore, we can get 

( x 1 ,i , y 1 ,i ) = ( x s,i , y s,i ) + k 1 ,i × (cosθs,i , sinθs,i ) , k 1 ,i > 0 

( x 2 ,i , y 2 ,i ) = ( x g,i , y g,i ) − k 2 ,i × (cosθg,i , sinθg,i ) , k 2 ,i > 0 

(12) 

where 

k 1 ,i = 

√ 

( x 1 ,i − x s,i ) 
2 + ( y 1 ,i − y s,i ) 

2 
, 

k 2 ,i = 

√ 

( x g,i − x 2 ,i ) 
2 + ( y g,i − y 2 ,i ) 

2 
, 

(13) 

Moreover, the velocity of the vehicle is given as follows: 

v i (τ ) = 

√ 

v x,i 
2 (τ ) + v y,i 2 (τ ) 

= 

√ 

(3 a x,i τ 2 + 2 b x,i τ + c x,i ) 
2 + (3 a y,i τ 2 + 2 b y,i τ + c y,i ) 

2 

3 a t,i τ 2 + 2 b t,i τ + c t,i 

(14) 

By substituting τ = 0 and τ = 1 into (14) , we can obtain 

v s,i = 

√ 

c x,i 
2 + c y,i 2 

c t,i 

= 

√ 

( x 1 ,i − x s,i ) 
2 + ( y 1 ,i − y s,i ) 

2 

t 1 ,i 

= 

k 1 ,i 
t 1 ,i 

(15) 

v g,i = 

√ 

(3 a x,i + 2 b x,i + c x,i ) 
2 + (3 a y,i + 2 b y,i + c y,i ) 

2 

3 a t,i + 2 b t,i + c t,i 

= 

√ 

( x g,i − x 2 ,i ) 
2 + ( y g,i − y 2 ,i ) 

2 

t g,i − t 2 ,i 

= 

k 2 ,i 
t g,i − t 2 ,i 

(16) 
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Fig. 4. Crossover operator. Parent 1: k 1 = 255 , k 2 = 0 , Parent 2: k 1 = 0 , k 2 = 255 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, the final formula for the selection of the second control point and the third control point is obtained as

follows: 

P 1 ,i = ( x s,i + k 1 ,i × cosθs,i , y s,i + k 1 ,i × sinθs,i , k 1 ,i / v s,i ) 
P 2 ,i = ( x g,i − k 2 ,i × cosθg,i , y g,i − k 2 ,i × sin θg,i , t g,i − k 2 ,i / v g,i ) 

(17)

3.2. The suboptimal T–S Bezier curve considering physical constraints 

The optimization problem is considered to find a suboptimal T–S Beizer curve with physical constraints including curva-

ture radius constraint, tangent acceleration constraint, and velocity constraint. Thus, path length is selected as an optimiza-

tion objective. Hence, T–S Bezier curves are generated by controlling the four points, and the i th vehicle’s path length is a

function of k 1, i and k 2, i as follows: 

g = 

1 ∫ 
0 

√ (
d x i (τ ) 

dτ

)2 

+ 

(
d y i (τ ) 

dτ

)2 

dτ + λ · δ

= f (k 1 ,i , k 2 ,i ) 

(18)

where λ corresponds to a very large number, and δ is calculated as follows: 

δ = 

{
0 , i f (3) − (5) are satis f ied 
1 , else 

(19)

Thus this problem can be written as follows: 

min 

k 1 ,i , k 2 ,i 

f ( k 1 ,i , k 2 ,i ) 

s.t. 0 ≤ k 1 ,i ≤ d i 
0 ≤ k 2 ,i ≤ d i 
0 < t 1 ,i < t 2 ,i < t g,i 

(20)

where d i denotes the distance between ( x s,i , y s,i ) and ( x g,i , y g,i ). 

In order to solve this, a genetic algorithm is employed [7] , which consists of the following three basic components: se-

lection, crossover, and mutation. A fitness function is selected as 1 
f (k 1 ,i ,k 2 ,i ) 

. The binary coding method is adopted to express

the population. The initial population that includes 20 individuals is randomly created, and this satisfies the bounds. In a

selection operator, Roulette Wheel Selection is utilized to locate the individuals, and the probability of individual selection

considered as proportional to the fitness of an individual. A crossover operator combines two parents to form a new in-

dividual in which Scattered Crossover is applied as illustrated in Fig. 4 . A binary vector is randomly generated. Genes are

selected from the first parent if the corresponding position of the binary vector is ’1’ while genes are selected from the

second parent if the corresponding position is ’0’. Thus, genes are combined to produce the child. The aim of a mutation

operator involves adding to the diversity of the population in which an adaptive operator is adopted. Hence, probability of

mutation decreases along with the increase of the fitness of the generation. 

3.3. Determination of the suboptimal arrival time 

As the optimization of the T–S Bezier curve considering path length is obtained, we can get the suboptimal arrival time of

the i th vehicle (denoted as t min,i ), which is summarized as Algorithm 1 . In Algorithm 1 , μ is a small value which reflects the

precision of the search for suboptimal arrival time. t ref,i serves as a lower bound of possible arrival time, which is discussed

as three cases based on two reference length values: s i ,1 and s i ,2 , which can be respectively calculated as follows: 

s i, 1 = 

v 2 max − v 2 
s,i 

2 a max 
+ 

v 2 max − v 2 
g,i 

2 a max 
, (21)

s i, 2 = 

| v 2 
g,i 

− v 2 
s,i 
| 

2 a 
. (22)
max 
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Algorithm 1 Determination of the suboptimal arrival time of the i th vehicle. 

1: Compute t re f,i according to (23); 

2: m = 0 ; 

3: while (1) do 

4: Get min f (k 1 , k 2 ) optimizing (20) using genetic algorithm when t g,i = t re f,i + μ ∗ m ; 

5: if min f (k 1 , k 2 ) > λ · δ then 

6: m = m + 1 

7: else 

8: Break; 

9: end if 

10: end while 

11: t min,i = t g,i ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d i is the distance between ( x s,i , y s,i ) and ( x g,i , y g,i ). t ref,i can be obtained as 

t re f,i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

√ 

a max d i + 
v 2 

s,i 
+ v 2 

g,i 
2 −v s,i 

a max 

+ 

√ 

a max d i + 
v 2 

s,i 
+ v 2 

g,i 
2 −v g,i 

a max 
, s i, 1 ≥ d i ≥ s i, 2 

t i, 1 + 

( d i −s i, 1 ) 
v max 

, d i > s i, 1 
| v g,i −v s,i | 

a max 
, d i < s i, 2 

(23) 

where t i ,1 is calculated as follows: 

t i, 1 = 

v max − v s,i 
a max 

+ 

v max − v g,i 

a max 
. (24) 

3.4. Summary for simultaneous arrival planning 

Simultaneous arrival planning of multiple vehicles is listed in Algorithm 2 . First, the suboptimal arrival time of each

Algorithm 2 Simultaneous arrival planning of multiple vehicles. 

1: for i = 1 … N do 

2: Compute t min,i by Algorithm 1 ; 

3: end for 

4: t g = max (t min,i ) ; 

5: for i = 1 … N do 

6: Obtain k 1 ,i , k 2 ,i optimizing (20) using genetic algorithm in case that the simultaneous arrival time is t g ; 

7: Get the two control points of the i th vehicle by (17) and the corresponding T–S Bezier curve; 

8: end for 

9: if (6) is not satisfied then 

10: Search the new control points near the previous control points with regard to the intersected paths; 

11: end if 

12: Discretize and obtain position and velocity related to time. 

vehicle is obtained by Algorithm 1 . Thus, the suboptimal simultaneous arrival time of the multiple vehicles (denoted as t g )

is determined, and corresponds to the maximum of t min, i . Subsequently, the two control points of the i th vehicle are given by

the genetic algorithm in case that the simultaneous arrival time is set as t g . In order to avoid collision between unmanned

vehicles, Simultaneous arrival planning should satisfy (6) . If this equation is not satisfied, it is necessary to search the two

control points of responding intersected paths again to realize collision avoidance. 

Simultaneous arrival planning is implemented by T–S Bezier curve, which is designed by considering time as a one-

dimensional variable of the Bezier curve. The T–S Bezier curve is a feasible and safe path within the constraints of minimum

curvature radius, tangent acceleration, and velocity, which are taken into consideration by genetic algorithm. Therefore, the

path and velocity curves of vehicle are concurrently planned. This novel design allows the vehicle to spend an appointed

time sailing from the initial pose to the final pose. The simultaneous arrival of multiple unmanned vehicles corresponds to a

time-optimal problem. Therefore, the suboptimal simultaneous arrival time of multiple unmanned vehicles should be found.

Algorithm 1 depicts the search for the suboptimal arrival time of the i th vehicle. The search begins with an initial arrival

time until the suboptimal T–S Bezier curve meeting physical constraints is determined by a genetic algorithm. The initial

arrival time is computed by (23) . Hence, the maximum value of the suboptimal arrival times of all the vehicle is selected as
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Table 1 

The initial and final configurations of unmanned vehicles. 

F s, i ( x s, i , y s, i , θ s, i , v s, i ) F g, i ( x g, i , y g, i , θ g, i , v g, i ) 

Vehicle 1 (−100 , 0 , 0 ◦, 12 m/s ) (50 0, 30 0, 0 °, 20 m/s) 

Vehicle 2 (−10 0 , 30 0 , 0 ◦, 25 m/s ) (600, 450, 0 °, 20 m/s) 

Vehicle 3 (−10 0 , 60 0 , 0 ◦, 18 m/s ) (600, 550, 0 °, 20 m/s) 

Vehicle 4 (−10 0 , 90 0 , 0 ◦, 10 m/s ) (50 0, 70 0, 0 °, 20 m/s) 

Table 2 

Specific parameters of simultaneous arrival planning-a. 

t ref,i t min,i t g k 1, i k 2, i 

Vehicle 1 27.61 s 30.81 s 34.26 s 115.42 77.86 

Vehicle 2 28.74 s 29.74 s 34.26 s 125.07 136.99 

Vehicle 3 30.27 s 34.26 s 34.26 s 75.01 36.07 

Vehicle 4 26.30 s 29.69 s 34.26 s 147.33 110.30 

Table 3 

Specific parameters of simultaneous arrival planning-b. 

P 1, i P 2, i Path length 

Vehicle 1 (15.42, 0, 9.62) (422.14, 300, 30.37) 674.55 m 

Vehicle 2 (25.08, 300, 5.00) (463.01, 450, 27.41) 717.09 m 

Vehicle 3 (−24 . 99 , 600 , 4 . 17) (563.93, 550, 32.46) 701.82 m 

Vehicle 4 (47.33, 900, 14.73) (389.70, 700, 28.75) 635.37 m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the suboptimal simultaneous arrival time of multiple unmanned vehicles. Once t g is determined, the suboptimal T–S Bezier

curve for the i th unmanned vehicle is obtained by using a genetic algorithm. The proposed method that uses a T–S Bezier

curve is effective when the distance between initial and final poses are large. Otherwise, it is necessary to add way-points

between the initial and final poses, and two or more T–S Bezier curves may be used for path planning. 

4. Numerical results 

4.1. Results of simultaneous arrival planning 

The proposed method for the simultaneous arrival of multiple unmanned vehicles is evaluated by using numerical simu-

lations. The four unmanned vehicles 1–4 are selected to achieve simultaneous arrival from their respective initial configura-

tions to corresponding final configurations, which are tabulated in Table 1 . The physical constraints are selected as follows: 

R i ( s a,i ) ≥ 30 m , 

| a i,t (t) | ≤ 5 m / s 2 , 

5 m/s ≤ v i (t) ≤ 25 m/s , 

D (i, j, t) ≥ 15 m . (∀ i, j, t. i, j ∈ [1 , N]) . 

(25)

The suboptimal arrival time of i th vehicle (denoted as t min,i ) should be obtained by Algorithm 1 beginning with an initial

value t ref,i . The suboptimal simultaneous arrival time is subsequently calculated ( t g = 34 . 26 s ). Thus, the two control points

of the i th vehicle are given by a genetic algorithm, and the suboptimal T–S Bezier curve is generated for the i th unmanned

vehicle as seen in Fig. 5 . t g denotes the simultaneous arrival time of multiple vehicles. The T–S Bezier curve of the i th vehicle

connects the respective initial pose to the respective final pose smoothly (See Fig. 5 (d)). Additionally, t ref,i , t min,i , t g , k 1, i , and

k 2, i are tabulated in sequence in Table 2 . P 1, i , P 2, i , the length of T–S Bezier curve planned for the i th vehicle are tabulated

in Table 3 in sequence. Fig. 6 gives the description of the T–S Bezier curve including time history of curvature, heading

angle, velocity and tangent acceleration. Evidently, the generated trajectory satisfies the constraints of minimum curvature

radius, tangent acceleration, and velocity. Moreover, the trajectory is smooth in terms of radius curvature, heading angle and

velocity. The four vehicles can satisfy the respective final configurations including the final poses and the final velocities.

Hence, T–S Bezier curve is effective in achieving simultaneous arrival of multiple vehicles. 

4.2. Comparisons and discussions 

To the best of the authors’ knowledge, only a few studies applied path planning methods to achieve the simultaneous

arrival of multiple unmanned vehicles. Shanmugavel et al. applied Dubins curves with the same path length to realize simul-

taneous arrival of multiple unmanned vehicles, which can satisfy the radius curvature constraint [21] . When compared with
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Fig. 5. T–S Bezier curves for simultaneous arrival. (a) T–S Bezier curves for the multiple vehicle at a constant arrival time corresponding to t g . (b) The pro- 

jected trajectories of T–S Bezier curves on the X − Y plane. (c) The projected trajectories of T–S Bezier curves on the X − T plane. The projected trajectories 

of T–S Bezier curves on the Y − T plane. 

Table 4 

Final configurations of vehicles-a. 

Vehicle 1 Vehicle 2 

P g ,1 θ g ,1 v g , 1 P g ,2 θ g ,2 v g , 2 

1 (80 0, 30 0) 300 ° 20 m/s (80 0, 40 0) 300 ° 20 m/s 

2 (50 0, 30 0) 0 ° 20 m/s (600, 450) 0 ° 20 m/s 

3 (50 0, 30 0) 0 ° 20 m/s (50 0, 40 0) 0 ° 20 m/s 

4 (90 0 , −20 0) 300 ° 20 m/s (70 0 , −20 0) 300 ° 20 m/s 

5 (20 0, 10 0 0) 45 ° 20 m/s (450, 10 0 0) 45 ° 20 m/s 

6 (10 0 0 , −60 0) 315 ° 20 m/s (10 0 0 , −40 0) 315 ° 20 m/s 

7 (80 0, 50 0) 45 ° 20 m/s (60 0, 50 0) 45 ° 20 m/s 

8 (10 0 0, 50 0) 45 ° 20 m/s (80 0, 50 0) 45 ° 20 m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dubins curves, the method in [17] provides a path with more flexibility and fewer discontinuity points on a curvature com-

mand although with a longer path length. Therefore, the simultaneous arrival time obtained by Shanmugavel et al. [21] is

shorter than the one obtained by Oh et al. [17] on the same conditions. Here we just give the comparisons of the proposed

method and the method in [21] , which are evaluated by simultaneous arrival time. The initial poses of multiple vehicles are

the same as shown in Section 4.1 , and the initial velocities of all the vehicles are 20 m/s. Eight sets of data with final con-

figurations of vehicles are tabulated in Tables 4 and 5 . The simultaneous arrival times calculated by the proposed method

and method in [21] are listed in Table 6 . The differences e (%) in Table 6 are given to compare simultaneous arrival times

computed by the proposed method with the ones computed by using the approach proposed by Shanmugavel et al. [21] . As

depicted in Fig. 7 , both the simultaneous arrival curves generated by the two methods are planned according to the first line

of the data in Tables 4 and 5 . Fig. 8 illustrates the time history of the curvature of these two kinds of curves for simultaneous

arrival. The T–S Bezier curve is continuous in terms of curvature. However, the Dubins curve is composed of two arcs and

a tangent line between arcs, and thus two discontinuities in curvature occur (See Fig. 8 (b)). Hence, the Dubins curve is not

desirable especially for fixed-wing UAVs because they follow an approximated continuous trajectory and do not precisely
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Fig. 6. The description of the T–S Bezier curve. (a) Time history of curvature. (b)Time history of heading angle. (c) Time history of velocity. (d) Time history 

of tangent acceleration. 

Table 5 

Final configurations of vehicles-b. 

Vehicle 3 Vehicle 4 

P g ,3 θ g ,3 v g , 3 P g ,4 θ g ,4 v g , 4 

1 (80 0, 50 0) 300 ° 20 m/s (80 0, 60 0) 300 ° 20 m/s 

2 (600, 550) 0 ° 20 m/s (50 0, 70 0) 0 ° 20 m/s 

3 (50 0, 50 0) 0 ° 20 m/s (50 0, 60 0) 0 ° 20 m/s 

4 (50 0 , −20 0) 300 ° 20 m/s (50 0 , −20 0) 300 ° 20 m/s 

5 (70 0, 10 0 0) 45 ° 20 m/s (950, 10 0 0) 45 ° 20 m/s 

6 (10 0 0 , −20 0) 315 ° 20 m/s (10 0 0, 0) 315 ° 20 m/s 

7 (60 0, 70 0) 45 ° 20 m/s (80 0, 70 0) 45 ° 20 m/s 

8 (80 0, 70 0) 45 ° 20 m/s (10 0 0, 70 0) 45 ° 20 m/s 

Table 6 

The comparison of the two methods. 

Simultaneous arrival time 

The proposed method method in [21] e (%) 

1 45.25 s 48.04 6.17% 

2 29.84 s 35.80 s 19.97% 

3 29.83 s 33.59 s 12.60% 

4 50.92 s 58.96 s 15.79% 

5 47.06 s 52.82 s 12.24% 

6 59.75 s 71.14 s 19.06% 

7 43.18 s 51.52 s 19.31% 

8 50.33 s 60.45 s 20.11% 
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Fig. 7. T–S Bezier and Dubins curves for simultaneous arrival of multiple unmanned vehicles, respectively. 

Fig. 8. Time history of the curvature of two types of curves for simultaneous arrival. (a) Time history of the curvature of T–S Bezier curve. (b)Time history 

of the curvature of Dubins curve. 



W. Yu et al. / Information Sciences 418–419 (2017) 34–45 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

track trajectories with discontinuous curvature [17] . With respect to the comparisons, the following is summarized: Under

the same conditions, the simultaneous arrival time calculated by the proposed method is shorter than the one calculated

by the methods proposed by Shanmugavel et al. [21] . Moreover, discontinuity curvature doesn’t occur on the path provided

by the proposed method while discontinuous curvature command occurs twice on the path proposed by Shanmugavel et al.

[21] and once on the path proposed by Oh et al. [17] . 

5. Conclusion 

In this paper, we have presented a novel curve named Temporal–Spatial (T–S) Bezier for simultaneous arrival of multiple

unmanned vehicles. Optimization is adopted to search for the shortest T–S Bezier curve within the constraints of minimum

curvature radius, tangent acceleration and velocity. The suboptimal time of simultaneous arrival achieved by T–S Bezier

curves is determined. Numerical results have proved that T–S Bezier curve is effective and feasible to achieve the simulta-

neous arrival of multiple unmanned vehicles. 
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