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Abstract— This study explores the relationships between
noncontact capacitive sensing signals and continuous grasp
forces. It is a crucial step towards the volitional control of
robotic systems based on the noncontact sensing approach. We
firstly designed a measurement system including the capacitive
sensing front-ends, the grasp force sensor, the signal sampling
circuits and the graphic user interface. The capacitive sensing
front-end was specifically designed for human forearm signal
sampling, which was worn outside of the clothes. After im-
plementation of the system, we carried out experiments on
five healthy subjects, and the sensing bands were customized
with their arm shapes. The grasp force and the capacitance
signals were record simultaneously when the subjects gradually
increased the force according to instruction. Linear regression
and quadratic regression were used to evaluate the regulated
signals. For each subject, at least one channel of capacitance
signals were linear correlated to the normalized grasp force
with R2>0.85. We found there was inter-subject similarity on
the capacitance-force relationships. Cross validation on grasp
force estimation with capacitance signals were also carried
out, and the average relative estimation error was about 18%.
The results proved the feasibility of the noncontact capacitive
sensing method for human joint force estimation.

I. INTRODUCTION

Human machine interfaces (HMIs) based on muscle sig-
nals are attracting more and more attentions in robotic
research field. One critical issue of HMIs is bridging the
gap between human motion intentions and the robotic con-
trol systems. In human motions, the muscles behave as
the actuators of the sensory-motor system, the contractions
of which contains abundant motion intent information [1].
Human regulate muscle contraction forces in unpredicted
environment to stabilize the motion tasks [2], [3]. Perceiving
the muscle force information of human motion plays an
important role in robotic control [4]–[6].

Among the existing technologies in muscle signal re-
coding, sEMG-based sensing method is the most widely
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used. Due to its noninvasiveness to human body and the
physical significance of the signals, many studies were
conducted in mapping the sEMG signals to the specific
joint force information [7]–[12]. Although progressive results
were obtained, claimed by many studies, the limitations of
sEMG sensing methods are obvious and also problematic in
practical applications [13]. The sweats on the skin seriously
decrease the sEMG signal quality, due to the contacting
of the metal electrodes on human skin. To compensate
the limitations in the sensing principle, attempts are being
made on other signal sources [13], [14]. For example, the
ultrasound imaging methods provided a promising solution
for HMIs [13]. However, in measuring, the probe of the
ultrasound imaging system was also placed on human skin,
and ultrasound gel was needed to insure the signal quality
[15]. Above all, accurate and stable extraction of human
intent information is still a challenging task.

In our previous works, we proposed a noncontact capac-
itive sensing strategy for human motion intent recognition
[16]–[18]. In this method, the metal electrodes were fixed
on the inner surface of the sensing front-ends, and they
were insulated from human skin by a layer of cloth. When
there were muscle shape changes brought by human motions,
the gap between the human body and the electrode would
change, which accordingly changed the capacitance signals.
Our previous studies proved the effectiveness of the new
method for locomotion mode recognition [16], [17] and
gait phase estimation [18]. The capacitive sensing suggest
a promising solution for human intent recognition. However,
the previous studies only involved indirect motion mode or
state recognition, in which the tasks were predefined motion
patterns. The statistical characteristics of the capacitances
signals were extracted from the training data by algorithms.
The direct relationship between capacitance signals and joint
forces were unknown, which was also important for intent-
based robotic control [10].

The contributions of this study are twofold. Firstly, we ad-
dressed the problems of relating the capacitance signals with
forearm joint force information. We designed a measurement
system that can simultaneously measure the capacitance
signals and the grasp forces in continuous tasks. Secondly,
we proved the feasibility of using noncontact capacitive sens-
ing method for joint force estimation. Regression methods
were investigated and evaluated on multiple subjects. It not
only extent the works of capacitive sensing based human
intent recognition, but also provided a promising alternative
solution to the existing muscle signal sensing methods.
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II. METHODS

A. Measurement system

The measurement system comprised the capacitive sensing
front-ends, the force sensor and the signal sampling circuits
(upper half of Fig. 1). The sensing front-ends were designed
to be dressed on human forearm. It was a C-shaped band
with the gap located at the medial side of the forearm
(bottom right of Fig. 1). Six copper films were fixed on
the inner surface (the side of human body), which served
as the electrodes of the capacitive sensing system. As the
sensing band was dressed outside of the cloth, each copper
film formed a plate capacitor with human body and the
cloth between them. When there were limb deformations
caused by muscle contractions, the distance between the
two equivalent electrodes (copper film and human body)
would change and it further lead to the capacitance value
changes. More detailed descriptions of the sensing principles
could be found in [16]. The sensing band was made of
thermoplastic material, and it was customized based on the
limb shape of the subject. A bandage was fabricated on the
gap of the sensing band to adjust the tightness. In order
to record the capacitance values, the sampling circuit was
designed to measure the charge-and-recharge cycle time of
the capacitors. A reference capacitor was used for converting
the cycle time to actual capacitance values. In order to
measure the grasp force, a force sensor was implemented
on the measurement system. The forces were measured
through the strain gauges placed on the middle part of the
sensor (bottom left of Fig. 1). The measuring range of the
force sensor was 0-800 N. As there was a resistance bridge
circuit inside the sensor, it required a direct current (DC)
excitation voltage of 10 V. The output signal was voltage
and the resolution was 2.068 mV/V. The voltage was linearly
amplified to the range of 0-3.3 V by the specifically designed
sampling circuit, then it was digitalized by a 12-bit analog-to-
digital converter (ADC). The data of capacitance signals and
grasp force were packaged by the designed control circuit in
each 10 ms. We designed a GUI to regulate the signals and
conduct the experiment.

B. Experiment protocol

In this study, five male healthy subjects were employed.
All of them were provided written and informed consent.
They had an average age of 23.6±3.1 years, an average
height of 177.2±7.2 cm, and an average weight of 74.6±10.7
kg. We measured signals from their right forearms. The aver-
age forearm length of the subjects was 23.6±1.8 cm, which
was the length between the stylion radiale and the radiale
(elbow joint) with the arm sagging naturally. The average
forearm circumference across the subjects was 25.0±1.4
cm which was measured from the most prominent part
of the forearm. Although the subjects had similar forearm
length and circumference, the individual difference of the
arm shape could influence the system setups. We therefore
customized the sensing band for each subject before the
experiment. The length of the sensing band was designed

Fig. 1. Experimental setups of the study (top half of the figure). The force
sensor (bottom left) and the capacitive sensing band (bottom right). In GUI,
the raw capacitance signals and the force signals were presented in real time.
During the measuring, the capacitive sensing band and the force sensor was
placed on the right arm. The sensing band was dressed outside of the clothes
of the subjects. The signal channels were distributed as the red font Cx, x
= 1,2,...,6. The DC power supply was used to provide voltage to the force
signal sampling circuit. The control circuit synchronized the signals from
the signal sampling circuits and transmitted them to the computer. The force
sensor record the grasp force by the strain gauges placed in the middle of
the mechanical structure, as shown in the blue circles in the bottom left of
the figure.

based on the forearm circumference. We set a 2-cm gap on
the medial side of the forearm for bandage fabrication. The
width of the band was 7 cm. During the experiments, the
subjects wore their own sensing bands outside of the clothes
and adjusted the bandage based on their own feelings. The
setups of the experiment was shown in Fig. 1. After the
familiarization procedure of several minutes, the subjects
were asked to gradually increase their grasp force to his
maximum contraction within 5 seconds and relaxed. The
procedure repeated ten times (trials) with the rest of 5 to
10 seconds between two successive contractions. In GUI,
the capacitance signals and the force sensor signals were
shown in separate panels for visual feedback to assist them in
controlling the contraction speed. The experiment procedures
were approved by the Institutional Review Board of CASIA.

C. Data processing

All signals were sampled at 100 Hz. The capacitance
signals went through a 4-th order Butterworth low-band-pass
filter with the cut-off frequency of 5 Hz. For the force signals,
we firstly designed a five-point median filter to remove the
random noise. Then a 1st-order lag filter was implemented to
further smooth the force signals. The filtered force signals
were normalized from 0% MVC to 100% MVC for each
subject. Filtered signals were shown as Fig. 2. With initial
trials, we found the subject difficult to control the grasp
force decreasing speed, which was also reported by other
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related studies [19]. We therefore extracted the signals of
force increasing period, i.e. the period from 0% MVC to
100% MVC.

D. Evaluation method

Fig. 2. The filtered capacitance signals (upper figure) and the normalized
force signal (bottom figure) of one trial. The data were collected from the
first trial of subject2.

We used linear regression and quadratic regression to
fit the capacitance signals with the normalized grasp force
signals. To evaluate the performances, square of the corre-
lation coefficient (R2) and relative root mean square errors
(RRMSE) were calculated for each subject. The RRMSE was
expressed as:

RRMSE =

√√√√∑M
i ( ˆY (i)− Y (i))2∑M

i Y (i)2
, (1)

where ˆY (i) was the i-th calculated data point by the regres-
sion model, Y (i) was the i-th actual data point, and M was
the number of points in total. The value changed between 0
and 1, with smaller values indicating better results.

Fig. 3. The phase plot of the capacitance signals and the normalized force
signal. The horizontal axis was the capacitance signals, and each sample was
denoted as the blue circles. The red line was the fitted curve by quadratic
regression. The data were collected from the 3rd channel of the capacitive
sensing system of subject2.

TABLE I
REGRESSION RESULTS OF FIVE SUBJECTS WITH LINEAR FITTING.

Channel number

Subject number C1 C2 C3 C4 C5 C6
Subject1 0.01 0.16 0.89 0.00 0.68 0.79

0.55 0.51 0.19 0.55 0.31 0.26
Subject2 0.01 0.90 0.84 0.88 0.85 0.05

0.49 0.15 0.19 0.17 0.19 0.48
Subject3 0.00 0.59 0.91 0.24 0.59 0.15

0.56 0.36 0.17 0.49 0.36 0.52
Subject4 0.00 0.00 0.85 0.00 0.01 0.45

0.50 0.50 0.19 0.50 0.50 0.37
Subject5 0.00 0.87 0.00 0.47 0.04 0.08

0.46 0.17 0.46 0.34 0.45 0.45

TABLE II
REGRESSION RESULTS OF FIVE SUBJECTS WITH QUADRATIC FITTING.

Channel number

Subject number C1 C2 C3 C4 C5 C6
Subject1 0.04 0.18 0.89 0.31 0.72 0.79

0.54 0.50 0.18 0.46 0.29 0.25
Subject2 0.02 0.91 0.86 0.88 0.85 0.16

0.48 0.15 0.18 0.17 0.19 0.45
Subject3 0.01 0.63 0.91 0.36 0.62 0.28

0.56 0.34 0.17 0.45 0.35 0.48
Subject4 0.01 0.48 0.85 0.15 0.08 0.49

0.50 0.36 0.19 0.46 0.48 0.36
Subject5 0.01 0.88 0.36 0.53 0.77 0.28

0.46 0.16 0.37 0.32 0.22 0.39

III. RESULTS

We evaluated the performance by linear regression (Table
I) and quadratic regression (Table II) for all the signal chan-
nel (C1 to C6 in the tables) and the five subjects. The data of
all the trials were used for curve fitting. One typical fitting
result was shown in Fig. 3. We could see from the tables
that different signal channels produced various regression
results. For subject1, C3 produced the best results (highest
R2s and lowest RRMSE), for both regression methods. While
the best channels for subject2 and subject3 were C2 and C3,
respectively. Among the subjects, S2 produced better results
than the others. The R2s of four channels (C2, C3, C4 and
C5) were larger than 0.84. For all the subjects, C1 performed
the worst results (R2 = 0.1). We compared the results of
the two regression methods, there were large differences for
most of the signal channels. However, for the best channel
of each subject (C3 for subject1, subject3 and subject4, C2
for subject2 and subject5), the values of R2 and RRMSE
were similar. For RRMSE, the lowest values were 0.19, 0.15,
0.17, 0.19 and 0.17 for the best channels of five subjects
respectively.

We also investigated the performance with N-fold leave-
one-out-cross validation (LOOCV). In LOOCV, the data of
one fold (trial) served for testing, while the rest data were
training set. The training data were fitted with the regression
method (linear and quadratic), the fitted curve was tested
on the testing data set. The procedure was repeated for N

3924



times until all the data were used. In this study, N was set to
be ten. The best channels of the subjects were selected for
LOOCV analysis. With linear regression method, the average
R2 across five subjects was 0.86±0.03, and the average
RRMSE was 0.18±0.02. The average R2 and RRMSE across
five subjects with quadratic regression was the same as that
of linear regression.

IV. DISCUSSION AND CONCLUSION
In this study, we investigated the relationships between the

noncontact capacitive sensing signals and the grasp forces si-
multaneously. Results can be summarized as follows. Firstly,
for each subject, there were at least one signal channel
that was linearly correlated with the grasp forces (R2>0.85)
when the subject continuously increased his forearm muscle
contractions. Secondly, there were obvious individual dif-
ferences of the overall regression results (see Table I and
Table II). However, the best channels selected for the subjects
(with the highest R2 and lowest RRMSE) were concentrated
on channel2 and channel3, which were distributed on the
brachioradialis and extensor carpus radialis. Thirdly, we
evaluated the feasibility of continuous grasp force estimation
by capacitance signals. With off-line LOOCV, the tested
RRMSE and R2 were similar to that of the whole data used.

The novelties of the results are two fold. First, as an
alternative solution to the muscle signal sensing, capacitive
sensing approach could measure muscle signals with a
noncontact way. This study extent our previous works by
proving the feasibility of the sensing approach on continuous
voluntary muscle contraction estimation. Compared with
the existing sEMG-based studies [7]–[10], the noncontact
capacitive sensing method produced similar regression re-
sults. The yielded R2 with sEMG signals on wrist joint
torque estimation was about 0.9, being the same level as our
study (>0.85). Second, the inter-subject similarity on signal
channels could benefit future applications on intuitive control
of robotic devices. It offered an opportunity to accelerate the
configuration procedure for new individuals.

On the other side, this is a preliminary study and the results
are limited in the following aspects. In this study, only five
healthy subjects were employed and only off-line estimation
task was evaluated. The performances of the sensing sys-
tem with disturbances including the re-wearing procedure,
the inter-day use and long-term monitoring remain to be
addressed. The regression models used in this study were
simple. The estimation error rate (about 18% of RRMSE
with LOOCV) was also a little higher than the sEMG-based
studies (error rate <10%) [7]–[10].
be explored. What’s more, on-line estimation method will

Nevertheless, the results were still promising and the
direction was worth being exploited. In the future, more
extensive experiments on more subjects will be conducted.
In addition to continuous grasp forces, more complicated
tasks with multiple joint degree of freedoms (DoFs) will
be addressed. More regression models will be designed to
get more accurate joint force estimation. In addition to
joint forces, the relationships of capacitance signals with
other joint information (such as joint stiffness) will also

be designed for robotic device control. We envisioned that
in future application scenarios, the noncontact capacitive
sensing approach can be used with other sensors and provide
human motion intent recognition for robotic control.
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