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Noncontact Capacitive Sensing-Based Locomotion
Transition Recognition for Amputees With Robotic
Transtibial Prostheses

Enhao Zheng, Student Member, IEEE, and Qining Wang, Member, IEEE

Abstract—Recent advancement of robotic transtibial prostheses
can restore human ankle dynamics in different terrains. Automatic
locomotion transitions of the prosthesis guarantee the amputee's
safety and smooth motion. In this paper, we present a noncontact
capacitive sensing-based approach for recognizing locomotion
transitions of amputees with robotic transtibial prostheses. The
proposed sensing system is designed with flexible printed cir-
cuit boards which solves the walking instability brought by our
previous system when using robotic prosthesis and improves the
recognition performance. Six transtibial amputees were recruited
and performed tasks of ten locomotion transitions with the robotic
prosthesis that we recently constructed. The capacitive sensing
system was integrated on the prosthesis and worked in combina-
tion with on-prosthesis mechanical sensors. With the cascaded
classification method, the proposed system achieved 95.8% av-
erage recognition accuracy by support vector machine (SVM)
classifier and 94.9% accuracy by quadratic discriminant analysis
(QDA) classifier. It could accurately recognize the upcoming
locomotion modes from the stance phase of the transition steps.
In addition, we proved that adding capacitance signals could
significantly reduce recognition errors of the robotic prosthesis in
locomotion transition tasks. Our study suggests that the fusion of
capacitive sensing system and mechanical sensors is a promising
alternative for controlling the robotic transtibial prosthesis.

Index Terms—Capacitive sensing, locomotion transition recog-
nition, robotic prosthesis, transtibial amputees.

I. INTRODUCTION

RANSTIBIAL amputation severely influences the quality
of amputees' daily life, as the ambulation is limited by
the limb loss. The human ankle joint is important in ambulation
by changing quasi-stiffness characteristics at different speeds
[1] and adjusting angle changes at different terrains to meet the
gait requirements [2]. Passive prostheses can effectively mimic
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a human ankle at level walking by using a spring-damper struc-
ture [1]. However, during ambulation with different terrains
which requires motion transitions, the users have to make extra
effort to keep the balance and it causes unnatural gait patterns
[2], [3]- Recent developments in micro-controller controlled
robotic prostheses have greatly expanded the functions of the
passive ones [4]-[10]. The robotic prosthesis can better restore
the functions of missing limb(s) by adjusting the impedance pa-
rameters at different gait phases and/or providing extra torques
at powered plantar flexion period [8], [15]. It also has the ability
to regulate dynamic parameters at different terrains [3]. Thus,
amputees can accomplish more natural gaits during ambulation
with less metabolic cost by using robotic prostheses.

Current main control strategies of robotic prostheses in-
clude gait pattern generators [4], the muscle-skeletal control
method [6], finite-state control [7], and hierarchical control
strategy [12]. Among all the control methods, ambulation on
different terrains requires corresponding parameters [11], [12].
Therefore, automatic transition is necessary for smooth and
safe human motions. In order to accomplish accurate automatic
transitions with robotic prostheses, researchers attempt to
recognize the upcoming locomotion modes (for example, level
walking to stair ascending) relying on sensors (mechanical
sensors or neural sensors) and machine learning algorithms.
It is quite important since it provides judgment information
of locomotion transitions to the subsequent prosthetic con-
trollers. On this topic, there were a few studies solely relying
on mechanical sensors [12]-[14] integrated on prostheses. A
great many researchers studied neural signals, e.g., surface
electromyograph (SEMG) signals, on the residual limb for loco-
motion transition recognition [15]-[18] and combined sEMG
with on-prosthesis mechanical signals [19]-[22] to produce
more accurate results. Some of the studies implemented their
approaches on robotic transtibial prostheses. For example, in
[15], transitions between level walking and stair descent were
successfully identified by the volitional contractions of the
residual limb. In [16], a proportional EMG control method was
designed, and the amputee could control the push-offs during
stair ambulation. In [21], the authors combined SEMG signals
of four residual limb muscles with on-prosthesis mechanical
signals, and a detailed investigation with eight locomotion
transitions on five subjects was carried out.

However, the methods mentioned still have challenges in
recognizing locomotion transitions for controlling the pros-
thesis. Purely relying on mechanical sensors cannot meet the
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requirements of clinical use [13], especially when safety is the
most important factor for lower-limb motions. Adding sSEMG
signals could produce higher recognition accuracies [21] and
longer prediction time [ 19] than only using mechanical sensors.
But using SEMG sensors induced some practical problems
[13], [23], [24]. First, in long-time applications, the muscle
fatigue and the presence of sweat decreased the performance
of EMG signal sampling, which further failed the recognition
of locomotion transitions. Second, for lower-limb amputees,
especially for transtibial amputees who have smaller and fewer
muscles on residual limbs, SEMG signals may not exhibit
enough human motion information if there is muscle loss or
muscle atrophy. Third, SEMG signals rely on electrodes that
firmly contact the residual limb. The long-time pressure on
sensing spots may cause pressure sores on the residual limb,
which seriously influence the amputees' ambulation. Recently,
our group has developed a new capacitance-based sensing
approach for steady locomotion mode recognition [24]—[26].
In [24], we proposed a noncontact capacitance sensing system
(C-Sens) as an alternative to overcome the drawbacks of SEMG
sensors in steady locomotion mode recognition on passive
prostheses.

The contributions of this study can be listed as follows.
First, we improved the noncontact capacitance sensing system
including the electrodes and the measurement system. The
newly designed system both overcame the drawbacks of SEMG
systems and solved the problems of previous electrodes in
locomotion transition tasks using robotic prosthesis. Second,
we integrated capacitive sensing system with on-prosthesis
mechanical sensors to gain more accurate motion transition
recognition. Ten locomotion transitions and six locomotion
modes were investigated on six transtibial amputees using
robotic prosthesis. Third, we addressed problems in locomotion
transition tasks aiming for future clinical use. We trained the
amputees to perform transitions with either of their legs which
had never been achieved before. It is an important issue in clin-
ical use of a robotic prosthesis. With the cascaded classification
method, the system produced comparable results compared to
other related studies.

II. ROBOTIC TRANSTIBIAL PROSTHESIS

A. Robotic Prosthesis Prototype

The robotic transtibial prosthesis (PKU-RoboTPro) that we
recently proposed [3], consists of mechanical structure, con-
trol circuits, sensors and battery [see Fig. 1(a)]. We used a 50
W dc brushless motor from Maxon (EC 45-50 W) as the core
of the driving system and equipped it with a 5.8 : 1 reduction
gearbox. The total weight of the proposed prosthesis (excluding
the rechargeable Li-ion battery) is 1.3 kg. The average power
consumption of the prosthesis during one gait cycle is around
3.5 W, and a 0.28 kg rechargeable Li-ion battery can sustain a
duration of more than 12 hours or 20 000 steps.

There were two inertial measurement units (IMUs) on the
shank and the foot, respectively [see Fig. 1(a)]. Each IMU in-
cluded a tri-axis gyroscope and a tri-axis accelerometer. The
gyroscope has a full-scale range of 2000°/s and a resolution
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Fig. 1. (a) Structure of our designed robotic transtibial prosthesis
(PKU-RoboTPro). The total weight of the prosthesis (excluding the battery)
was 1.3 kg. (b) Electrodes of C-Sens. We built the C-Sens electrodes with
flex printed circuit boards (Flex-PCB). The size of the electrode was 3.5 cm
x 4.5 cm. The length of one electrode was 24 cm. The thickness was 0.5 mm.
(c) Placement of the system on an amputee. The C-Sens electrodes were fixed
inside the prosthetic socket. The sensor data were transmitted to the computer
via Bluetooth.
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of 0.06°/s while the accelerometer had a full-scale range of
157 m/s? and a resolution of 0.005 m/s?. A load cell (Inter-
face LBS) was fixed on the leg to measure the interaction force
between human body and the prosthesis. The single-axis load
cell (Interface LBS) had a measurement range of 0-250 Ibf .
An absolute angle sensor (Angtron-RE-25) was used to record
the ankle angle within the range from 25° dorsiflexion to 25°
plantar flexion.

B. Implementation of Damping Control

We used a damping control method to control the prosthesis
in the controlled flexion (CF) phase [3]. In ambulation, besides
powered plantar(PP), CF [can be further divided into controlled
plantar flexion(CP) and controlled dorsiflexion(CD)] is also
important, since in CF, the ankle absorbs heel-strike shocks,
stores energy, and provides proper resistance for smooth
moving forward. The damping of the prosthetic ankle was
controlled through changing the braking torque of the brushless
dc motor. The braking torque 7, was produced by the induced
voltage when the stator windings of the brushless motor were
shorted. Under this circumstance, 7, was proportional to the
motor speed 7.

By switching on/off the motor-winding-short with a pulse
width modulation (PWM) signal, the braking torque during the
switch-on period became very large and the ankle joint could
only rotate at a very low speed, while the braking torque during
the switch-off period would be very small and the joint rotated
quickly. With an appropriate on/off frequency, the braking
torque was positively correlated with the duty cycle D of the
PWM signal and the resulted equivalent braking torque 7ep
could be approximated as

Teb — den. (1)
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As the duty cycle D determined the relationship between the
torque and the speed, it could be regarded as the damping co-
efficient. k4 was the proportionality coefficient in the unit of
Nm/rpm.

According to (1), the ankle impedance during CF was sim-
plified as the damping coefficient D, and the control strategy
became designing the damping-angle relationship. At the early
stance, the ankle resistive torque was expected to be small to
enable shock absorbtion and foot-flat. At the middle stance,
the ankle torque was expected to increase to prevent the ankle
from dorsiflexing too fast. When the ankle reached the max-
imal dorsiflexion, the ankle resistive torque was expected to be
large enough to prevent the ankle from rotating. In this study,
the damping-angle relationship was designed as the hyperbolic
tangent function. The controller switched between the damping
function of the CP (D) and the damping function of the CD
(D3) according to the angular rate 4, if § < 0, D = Dy, else,
D = D,. The damping coefficients were calculated as

D1 =1- O5(tanh(51(0 — edl)) + ].)
Dy = 0.5(tanh(sz ((9 — Hdg)) + 1) 2)
where 8,41 was the threshold plantarflexion angle, § was the cur-
rent joint angle, s; was the sensitivity factor that decides the
slope of the function and the resulting ID; was the duty cycle of
the PWM signal that controls the motor terminal short. 840 was
the threshold dorsiflexion angle.

During the swing phase, we used the position control method
to control the prosthesis moving back to the equilibrium angle.
In different terrains such as ramps and stairs, we adjusted the
coefficients to meet the dynamical requirements. Details of the
control method applied in the robotic transtibial prosthesis can
be found in [3].

III. C-SENS MEASUREMENT SYSTEM

In this study, we redesigned the capacitive sensing system
for locomotion transition tasks using robotic prosthesis. The
electrodes of the capacitive sensing system was designed with
Flex-PCB [see Fig. 1(b)]. We integrated the electrode and the
shielded connecting cable on the Flex-PCB circuit, which made
the sensing front-ends much thinner (about 0.5-mm thickness)
than the previous copper mesh-made electrodes [24]. The
sensing method was still noncontact with human skin. The
electrodes (Flex-PCB) were placed between the stump sock and
the prosthetic socket, which measured the gap changes between
the residual limb and the socket during locomotion (Fig. 2).
We measured six spots on the residual limb with C-Sens.
The sensing positions comprised the downside of the mid
patella-tendon, the distal end of the residual tibia, the posterior
of the distal end, the residual gastrocnemius muscle, the medial
side of the thighbone (on the knee joint) and the lateral side
of the thighbone (on the knee joint). The designed sampling
circuit extracted C-Sens signals by measuring the capacitive
charging time. A two-stage digital filter was implemented on
the microcontroller unit (STMicroelectronics, Inc.) to remove
the baseline shifting and the high frequency noises. The first
stage filter was a second-order low-band-pass Butterworth filter
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Fig. 2. Structure and the sensing principle of the sensing front-ends of the
C-Sens. As shown in the figure, the transtibial prosthesis consists of the socket
(usually made from rigid material) and the stump socks (usually made from sil-
icon or rubber). The electrodes placed between the stump sock and the socket
(red circles in the figure) and human body formed the coupling capacitors. The
figure also shows the repeated-plotting signal of one gait cycle in level walking
for channel six. The blue line is the average capacitance while the red lines are
the standard deviation. Data were collected from TTA4.

(cut-off frequency 10 Hz). The second stage was the first-order
dc notch filter (for the filtered signals see Fig. 2).

We also designed the sensing hardware and a graphic user
interface, which enabled signal sampling in transition tasks
and increased the efficiency of the training procedure using
robotic prosthesis. In this study, more sensor data were sampled
including six-channel capacitance signals, four-channel Eular
angle signals (Pitch angle and Roll angle on the shank and
on the foot of the prosthesis) and six-channel acceleration
signals. The system preprocessed (two-stage filters for capac-
itance signals and limit filter for on-prosthesis sensors) and
transmitted (all sensor data were wirelessly transmitted to the
computer) the data packet in each 10 ms. We also designed
a graphic user interface (GUI) on the computer to store the
sensor data. The GUI received the data and presented real-time
signal curves. The GUI gave visual feedback of the prosthetic
signals (load cell signals, damping values, ankle angles) based
on the preferences on the interface, which assisted the coeffi-
cients tuning procedure. The GUI reduced the time needed to
get the subjects familiar with the robotic prosthesis. Besides
C-Sens and on-prosthesis mechanical sensors, we placed a
foot pressure insole in the amputated shoe to reaffirm the gait
events detected by the loadcell. There were four force sensitive
resistors (FSRs) on the insole to record the ground reaction
forces during ambulation (for details see [27]).

IV. METHODS

A. Experimental Protocol

In this study, we employed six transtibial amputees who
could finish the tasks in our experiment. All amputees were trau-
matic amputation. They could perform activities of daily living
with their own passive prosthesis. They all used patella-tendon
bearing prosthetic sockets for prostheses. Their activity level
was similar to K-3 in U.S. k-ranking system. The demographic
information of the subjects was shown in Table I. The residual
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TABLE 1
DETAILED INFORMATION FOR SIX SUBJECTS WITH TRANSTIBIAL AMPUTATION (TTA1-TTA6)

Age  Weight(kg) Height(cm) Gender  Years post-amputation  Measured leg  Residual limb length ratio  Prosthesis for daily use
TTA1 55 75 176 M 18 L 36% Teh Lin(SachFoot)
TTA2 29 72 172 M 7 R 36% Teh Lin BKTQ042
TTA3 52 78 170 M 6 L 32% Otto Bock 1C30
TTA4 45 71 170 M 8 L 40% Otto Bock 1S90
TTAS 53 80 192 M 34 R 38% Otto Bock 1S90
TTA6 31 65 172 M 6 L 31% Teh Lin BK6060
limb length ratio was calculated as the ratio between the length RARD<->W SAISD<->W
of the residual shank (the distance between patella to the ampu- i / ‘)
tated site) and that of the sound shank (measured from patella to \_," \ L SAISD<W
malleolus lateralis). We mounted their own prosthetic sockets  St->W  RARD<->W -1-4-‘&-“ ------ WA Ste->W
. . . -~ SN V1160 essmsssssssssssss| H 7N,
on our robotic prosthesis with connectors. The electrodes of /Y I 1 | —"||‘ | A
C-Sens were then fixed to the inner surface of the prosthetic ~ \ / \ —’-mm"—‘" \ /'
socket. There was also a reference electrode inserted arbitrarily ambulation ambulation
into the stump sock for circuit grounding. All subjects provided direction1 direction2

written and informed consent. The experiments were also
approved by the Local Ethics Committee of Peking University.

We measured the data of six locomotion modes and ten
locomotion transitions for all subjects. The locomotion modes
we investigated included standing (St), walking (W), ramp
ascending/descending (RA/RD), and stair ascending/de-
scending (SA/SD). For locomotion transition investigation,
we measured transitions between standing and walking
(St & W, referred to as gait initiation and termination),
ramp ascending/descending and walking (RA/RD < W),
and stair ascending/descending and walking (SA/SD & W).
The subjects were asked to perform the tasks at a particularly
designed platform (Fig. 3). There was a four-step staircase
(14-cm high and 40-cm depth) and a 2.5-m ramp (11.6-degree
of inclination angle) on the platform. In our experiments, we
investigated the transition data with different transitioning
legs (the leg that first stepped onto the new terrain when there
was a locomotion transition ). We measured 15 groups of data
for each transitioning leg for every subject. In each group,
the subjects were asked to ambulate in two directions. As
denoted in Fig. 3(a), in ambulation direction 1, the subjects
started from standing to level walking, then upstairs and down
the ramp. In this direction, St = W, W = SA, SA = W,
W = RD, RD = W, and W = St could be measured.
The other five locomotion transitions were investigated in
direction 2 [from right to the left in Fig. 3(a)]. We tuned
the damping coefficients on every terrain for all the subjects
based on their verbal feedback. Before the experiments, the
subjects had a few hours to get familiar with the robotic
prosthesis and experimental protocol. Then all subjects could
learn how to perform a normal alternating leg pattern during
stair ascending/descending and continually switch locomotion
modes with either leg. During the experiment, the subjects
were encouraged to ambulate with their favorite pace and
speed. Based on their step length in initial trials, we pasted
landmarks on the platform for transitioning leg instruction.
We preset the walking cadences for the subjects to make the
prosthesis automatically determine the current locomotion
modes based on the step number. Therefore, we could auto-
matically obtain the labeled data. There were handrails along

Fig. 3. Structure of the experiment platform. Ten locomotion transitions could
be measured with two different ambulation directions in one group. The loco-
motion transitions were indicated in the figure.

the platform for safety. The subjects had a few minutes of
rest between several groups (three or five) based on their
request.

B. Data Segmentation and Labeling

In this study, we sampled six channels of C-Sens and the me-
chanical signals on the prosthesis, including three-axis accelera-
tion and two-axis Euler angles (pitch angle and roll angle) of the
shank and foot, respectively. The Euler angles were calculated
on the microcontrollers of the prosthesis based on direction co-
sine matrix (DCM) method. All data were sampled at 100 Hz.
We segmented the data stream into sliding windows, with the
overlap of 10 ms (one sample period) [24]. The amputee can
perform seamless transitions if the system successfully recog-
nizes the locomotion modes before the critical gait event during
ambulation. The gait phases in which transitions take place and
the critical gait events are shown in Table II. For each locomo-
tion transition, the first row presents the transition gait phase and
gait events when the amputated leg performed the transition.
While the second row shows that of the sound leg. Since there
were no gait phases in gait initiation and gait termination, we
did not show the transitions between standing (St) and walking
(W). We automatically labeled the data of ambulation based on
the critical gait event and gait phase in transitions. For training
the first layer classification, we labeled the first second and the
last second data of each trial as standing. We also manually reaf-
firmed the data of standing to insure there were no tendency of
motion. The data between the first foot-off and the last foot-con-
tact were labeled as ambulating.

C. Classification Method

In this study, we classified the locomotion transitions using
the cascaded method. We firstly recognized standing and
ambulation based on the data of C-Sens, then the data of am-
bulation were imported to another classification procedure. For
the ambulation data, we used phase dependent classification
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TABLE II
LABELING OF LOCOMOTION TRANSITIONS

Locomotion modes Gait phase in transition Critical gait event

W = SA swing = stance foot-contact on stair
stance = swing foot-off from level ground

W = SD swing = stance foot-contact on stair
stance = swing foot-off from level ground

W = RA swing = stance foot-contact on ramp
swing = stance foot-contact on ramp

W = RD swing = stance foot-contact on ramp
swing = stance foot-contact on ramp

SA = W swing = stance foot-contact on level ground
stance = swing foot-off from stair

SD = W swing = stance foot-contact on level ground
stance = swing foot-off from stair

RA =W swing = stance foot-contact on level ground
swing = stance foot-contact on level ground

RD = W swing = stance foot-contact on level ground

swing = stance foot-contact on level ground

method, similar to our previous study [24]. Two classifiers
were trained for the stance phase and the swing phase, respec-
tively. The sliding window method (mentioned previously)
was used to segment the data and calculate the feature sets.
We used the signal of on-prosthesis loadcell to detect the gait
events of foot-contact (FC) and foot-off (FO). A threshold was
determined individually based on initial measurements. Before
the experiment of each subject, we measured the signals of
on-prosthesis loadcell when the participant's amputated leg
rested freely above the ground for 10 seconds and stand still for
10 seconds. We averaged the loadcell data over 10 s of the two
measurements. The threshold was calculated as

(AVEstand - AVEl‘est)
10

where AVE, . stands for the average value of data when the
amputee's leg freely rested above the ground, while AVEgt,n4 1S
that of standing. The result was defined as the threshold to detect
gait events. We rechecked the results after the experiments and
found out that there were no misdetections.

Threshold = AVE, s +

(€))

D. Feature Set and Classifiers

We calculated several time-domain features on each sliding
window for C-Sens signals and on-prosthesis mechanical sig-
nals. There were six features for C-Sens and four features for
on-prosthesis mechanical sensors:

fer = avg(X), for = std(X),

fes = sum{abs(diff (X))),

fea = max(X), fos = min(X), fog = sum(abs(X)),

Fm1 = avg(X), fmz = std(X), fins = max(X),

fm4 = sum(X),
where fc¢; (1 = 1,2,...,6) stands for the features of C-Sens,
and fm; (i =1, 2,3,4) stands for the features of on-prosthesis
mechanical sensors. X is the N-length data vector of one anal-
ysis window. avg(X) and std(X) are the average value of X

and the standard deviation of X, respectively. diff (X) is the
difference of X, which is a (N — 1)-length vector and the :th el-
ement of diff (X) is X (i4+1)— X (¢). sum(X) is the summation
of X . abs(X) is the absolute value of X . The features concate-
nated a 76-dimension vector including 36 C-Sens features (six
features and six channels) and 40 mechanical features (2 IMUs
were implemented on the robotic prosthesis; in each IMU there
were pitch angle, roll angle and three-axis accelerations).

In this study, we evaluated the performance of quadratic
discriminant analysis (QDA) classifier, support vector machine
(SVM) classifier (kernel based), linear support vector machine
(linear-SVM) and logistic regression (LR). QDA estimated
its classification parameters based on the multivariate normal
(Gaussian) distribution model. It was proved to be effective in
steady locomotion mode recognition [24]. It produced accurate
results with a simple model and was also computationally
efficient in real-time implementation. A kernel-based SVM
classifier constructed an optimal hyperplane to separate the
training data in high dimensional feature space via nonlinear
kernel function. It was reported to perform better than LDA and
artificial neural networks (ANN) in EMG-based human motion
recognition [19], [28]. By comparison, the hyperplane of the
linear-SVM was built in the original data space. The kernel
function was the inner product. For the two SVM classifiers in
this study, we used one-against-one (OAO) binary classification
structure to fulfill multi-class classification. There were ten
binary SVM classifiers for each gait phase of ambulation mode
recognition. The C-support vector machine (C-SVC) was used
as our SVM optimization model. The weight penalty method
was also used to balance the training data. We chose polyno-
mial function as the kernel function for the nonlinear SVM
classification. For LR, we used softmax function [29] to deal
with multi-classes. The discriminant function was expressed as

5 1 0T (D T (8 0T £ (i)
h(xm):W[ P E S I £ }T (4)
e’i
9
where 07,0%,...,0F are the parameters of the model. z(*) is

one sample of the data. The element that has the largest value
in the result vector indicates the class. To obtain the parameters,
the cost function is expressed as

m k 9T (D)
1 i . e’i
J(0) = m § E Hy' =j}log 0T 20D
i=1 j=1 d.ed

3

where A is the decay factor to make the cost function strictly
convex. In our study, we used the limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method to optimize the
parameters. The decay factor was setas 10 %, and the maximum
iteration number was 200 (the training procedure usually termi-
nated at 150—180 iteration times).
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E. Evaluation Method

In this study, N-fold cross-validation (LOOCV) were used
for the training and testing of the classifiers. In this procedure,
data of one fold were used as the testing set, and the remaining
data were used as the training set. The process was repeated N
times until all the folds were used for testing set. We used sliding
windows to segment the data stream and recognize locomotion
transitions. Thus, the overall recognition error (RE) was defined
as

Nmis

total

RE =

x 100% (6)
where N5 is the number of misrecognized testing data and
Niotal 18 total number of testing data. We separately evaluated
the gait initiation and termination and ambulation modes. For
ambulation mode evaluation, we used a confusion matrix to
better illustrate the recognition performance of certain loco-
motion modes. A detailed definition of a confusion matrix can
be found in [24]. In this study, repeated measures analysis of
variance (ANOVA) and pair t-test were conducted for analyses
of the recognition errors. The significance level was 0.05 («
= 0.05). In one-way ANOVA, the independent factor was
sliding window length and the dependent factor was the av-
erage recognition error rate. In two-way ANOVA, the indepen-
dent factors were classifiers and sliding window length, while
the dependent factor was the average recognition error rate.

V. RESULTS

A. Classification of Standing and Ambulation

In this study, we used a cascaded classification method, in
which we firstly classified the data into standing and ambula-
tion, then we made another classification on ambulation data to
recognize other locomotion modes. Compared with classifica-
tion locomotion modes, distinguishing standing and ambulation
was much easier. We utilized the data of C-Sens and on-pros-
thesis mechanical sensors (excluding loadcell signals). With ini-
tial tests, we picked out avg(X) +std(X )+ max(X ) +min(X)
as C-Sens feature set and avg(X) + std(X) for mechanical
sensor feature set. We used QDA classifier and 250-ms sliding
window length for classification. For all the subjects, we could
accurately (100% recognition accuracy) recognize the ambula-
tion from the first FO to the last FC. Note that the classifier also
successfully recognized the procedure of gait initiation and ter-
mination (representative results of one trial in Fig. 4). There-
fore, we utilized the ambulation data classified by the first layer
of classifier for subsequent analysis.

B. Classifiers and Sliding Window Length

The recognition performance was influenced by the classi-
fiers and the sliding window length (Fig. 5). Statistical anal-
ysis demonstrated that there were significant effects of clas-
sifiers on average recognition errors (F(1.14,5.71) = 15.88,
p = .007, Greenhouse-Geisser correction, two-way repeated
measures ANOVA). Among the four classifiers, softmax (LR)
produced the highest recognition errors while SVM (kernel-
based) produced the lowest (see Fig. 5). Linear-SVM and QDA

400 T

= = =recognition judgements
3000 ——foot pressure signals
200F =0 gmemsimemnepinee el ...

A

400

= = =recognition judgements
300} ——foot pressure signals

A

]
time(s)

Q
S

foot pressure signals

Fig. 4. Representative pseudo results of recognition between standing and am-
bulation. The data were collected from the first trial of TTA6. Two ambulation
cadences are shown. The dashed horizontal lines denote the summation of foot
pressure insole signals as the reference. The dotted horizontal lines denote the
recognition judgments. The gray vertical lines show the gait events of foot-con-
tact (dashed line) and foot-off (dotted line).

SVM classifier QDA classifier
5 O swi 10 -
swing phase O swing phase
45 () stance phase 8 { stance phase
: O average O average

error rate(%
N

3.5
3 2
150 200 250 300 150 200 250 300
LR classifier linear—-SVM classifier
20 - 12 -

O swing phase O swing phase
8N { stance phase { stance phase
o 10
o 15 O average O average
© 8
S 10
= 6
()

5

4
150 200 250 150

window length /ms

300 200 250

window length /ms

300

Fig. 5. Recognition performance with sliding window length changing from
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results of the swing phase (circles) and the stance phase (diamond shape) are
shown. The average errors of the two phases are shown as the squares. Data are
averaged across the six subjects; error bars represent average = SEM.

performed comparably well, but Linear-SVM required much
longer time for training. Therefore, we selected SVM (kernel
based) and QDA for the subsequent classification. In order to
test the influence of the sliding window length, we conducted
one-way repeated measure ANOVA. There were significant ef-
fects of sliding window length on average recognition errors for
both SVM (F(1.13,5.64) = 14.59, p = .009, Greenhouse-
Geisser correction) and QDA (F(1.01,5.05) = 13.20, p =
.015, Greenhouse-Geisser correction). We then compared the
recognition error rates of 300-ms window length (lowest error
rate) with that of other window lengths by pair t-test. For SVM,
the difference of the average recognition errors became insignif-
icant when the sliding window length was larger than 270 ms.
The critical window length was 240 ms for the swing phase and
230 ms for the stance phase (although not consistent), respec-
tively. For QDA, there were no clear trends indicating the recog-
nition errors settled, as all the average errors were significantly
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TABLE III
CONFUSION MATRIX (MEAN) FOR SIX AMPUTEES WITH SVM CLASSIFIER(%)

Estimation modes

Gait phase | Targets W SA SD RA RD
W 959 | 0.2 0.1 2.3 1.5

swing SA 1.1 979 | 0.1 0.8 0.1
SD 1.4 03 | 971 0.2 1.1

RA 5.7 0.6 0.1 936 | 0.1

RD 4.9 0.0 0.5 0.1 94.5

W 932 | 42 2.0 0.2 0.4

stance SA 42 | 944 | 07 0.4 0.3
SD 4.2 1.0 | 94.1 0.1 0.6

RA 0.8 0.4 0.1 98.7 | 0.0

RD 1.3 0.1 0.1 0.0 | 98.5

TABLE IV
CONFUSION MATRIX (MEAN) FOR SIX AMPUTEES WITH QDA CLASSIFIER(%)

Estimation modes

Gait phase | Targets w SA SD RA RD
w 92.9 0.2 0.4 3.6 2.9

swing SA 0.7 97.9 0.3 1.0 0.7
SD 0.4 0.0 99.2 0.1 0.2

RA 7.8 0.6 0.1 91.4 0.1

RD 5.1 0.1 1.7 0.1 93.0

W 92.4 34 3.0 0.7 0.4

stance SA 4.5 94.2 0.3 0.9 0.1
SD 6.8 0.7 92.1 0.0 0.4

RA 1.5 0.1 0.0 98.3 0.0

RD 1.8 0.1 0.6 0.0 97.6

higher than that of the 300-ms window. We therefore selected
the optimal window length based on SVM. For SVM, the statis-
tical analysis revealed that the errors settled from 230 to 270 ms.
Larger window length leads to lower recognition error rates, but
longer response time and larger computational loads. By trading
off between these factors, we took 250 ms as a compromising
window length for the subsequent analysis.

C. Overall Recognition Accuracy

The overall recognition accuracies of every locomotion mode
are shown in Tables IIT and IV. We calculated the recognition re-
sults with SVM classifier and QDA classifier. The results of the
15-fold LOOCV were presented. We observed from the recog-
nition accuracies that SVM produced slightly better results than
QDA classifier (95.8% average accuracy versus 94.9% average
accuracy). For both classifiers, swing phase and the stance phase
yielded the same average accuracies. But recognition results
of the specific locomotion modes were different between gait
phases and showed similar trends for the two classifiers. During
the swing phase, ambulation on stairs (SA/SD) could be more
accurately recognized than ambulating on ramps (RA/RD), but
the results of the stance phase were quite the opposite. Among
all the locomotion modes, the lowest recognition accuracy took
place in stair descending of QDA classifier (92.1%).

We also evaluated the influence of the transitioning legs
to overall recognition performance. The average accuracies
dropped at least 5% for both QDA and SVM, if the data of only
one transitioning leg were trained. Therefore, training with
both transitioning legs was indispensible to obtain satisfactory
recognition results.

D. Contributions of C-Sens to Recognition Performance

We firstly calculated recognition performance with C-Sens
signals and on-prosthesis mechanical signals separately. The
classification parameters were the same as those mentioned pre-
viously (15-fold LOOCYV, 250-ms sliding window length). Both
transitioning legs were taken into consideration. Results showed
that on-prosthesis mechanical sensors could provide more ac-
curate recognition results than C-Sens signals for continuous
ambulation (except TTA6). Using C-Sens signals alone pro-
duced 32.3% average error rate with QDA classifier and 45.4%
error rate with SVM classifier. C-Sens signals could not re-
place on-prosthesis mechanical sensors in locomotion transition
recognition, but combining C-Sens signals could significantly
reduce recognition error compared with purely using on-pros-
thesis mechanical sensors. The fusion of C-Sens and mechan-
ical sensors yielded the lowest error rate.

We conducted a pair t-test on average recognition error rates
to test the statistical significance. Adding capacitance signals
could produce lower error rates than purely using mechanical
sensors for all the locomotion modes (t(5) = —4.89, p = .005
for SVM; t(5) = —15.17, p = .001 for QDA, pair t-test).
We also compared the recognition results in details to analyze
the contribution of C-Sens to recognition results using robotic
transtibial prosthesis (Fig. 6). The capacitive sensing system
could provide more enhancements on SA/SD for SVM. In the
swing phase of SD, t(5) = —3.18, p = .025, and in the stance
phase of SA, t(5) = —4.65, p = .006. For QDA, the capac-
itive sensing system significantly reduced the error rate in W
(t(5) = —4.46, p = .007 in the swing phase; t(5) = —3.44,
p = .018 in the stance phase), SD (t(5) = —4.35, p = .007 in
the swing phase; t(5) = —5.13, p = .004 in the stance phase)
and RA (t(5) = —2.63, p = .047 in the stance phase). Although
no statistical evidence, the improvement on W in the stance
phase of SVM and SA of QDA was obvious, in which C-Sens
reduced the error rate by 30% to 50%. The results proved that in
locomotion transition recognition tasks using robotic transtibial
prosthesis, where accuracy was crucial for safety, the fusion of
C-Sens and mechanical sensors were necessary to obtain the
highest recognition accuracy.

E. Analysis of Pseudo-Real-Time Recognition

We evaluated pseudo-real-time results to analyze the recog-
nition performance more precisely. Most recognition errors oc-
curred near the critical gait events (Fig. 7). The recognition
parameters were the same as those mentioned before (250-ms
window length, 15-fold LOOCYV). Both transitioning legs were
taken into consideration. For each subject, we selected the better
classifier for classification. From TTA1 to TTAS we chose SVM
for classification and for TTA6 we chose QDA. In this study,
ninth-order majority voting was used to remove the random er-
rors in the raw results, which was shown as the blue lines in
Fig. 7. We checked the results of all subjects. The recognition
judgments quickly reached the correct values during transitions
between level walking and stair ascending/descending, while
there were more errors in transitions between ramps and level
walking.

We then calculated the majority voting results for the three
gait phases: Pre-FC (9 judgments), Post-FC (9 judgments) and
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Pre-FO (15 judgments). We summed up the number of steps
which were different from the reference motion labels (see
Table V). There were 60 steps in each column of the table.
We observed from the results that almost all the recognition
judgments could reach correct values during the stance phase
of the transition steps. For the results of Pre-FO, all subjects
excluding TTA1 could successfully recognize all the transition

TABLE V
MAJORITY VOTING OF RECOGNITION JUDGMENTS FOR THREE GAIT PHASES

Locomotion transitions
Gait phase | Subjects | W—SA W—SD W—RA  W—RD

TTAI1 2(1) 4(2) 5 11
TTA2 3(2) 2 9(1) 4(1)

Pre-FC TTA3 1 1 4(2) 4
TTA4 2(2) 7(12) (1) (1)
TTAS 6(5) 9(5) 10 15
TTA6 0 3(2) 4 13(3)
TTAI1 5(1) 5(1) 8 7
TTA2 2(1) 2 10(2) 3(1)

Post-FC TTA3 0 0 1 7
TTA4 4 7(1) 10(5) 4(1)
TTAS 3(1) 3(3) 2 8
TTA6 0 1(1) 2 10(2)
TTAI1 0 2 0 0
TTA2 0 0 0 0

Pre-FO TTA3 0 0 0 0
TTA4 0 0 0 0
TTAS 0 0 0 0
TTA6 0 0 0 0

steps. Most of the errors occurred at the foot-contact of the tran-
sition steps when the amputated leg performed the transitions
(see the error steps of PreFC and PostFC). There were more
error steps in transitions between level walking and ambulation
on ramps when the amputated leg performed the transition.
A substantial part of errors were due to confusions between
RA/RD and SA/SD (number of steps is shown in the brackets).
The rest of the error steps were misclassified to the locomotion
modes before the transition.

VI. DISCUSSION

The proposed noncontact capacitive sensing method is
promising as an EMG-alternative in the control of the robotic
prosthesis. It overcame the drawbacks of EMG-based sensing
systems and meanwhile produced comparable recognition
performance. The studies of [15] and [16] showed promising
results of direct EMG-based control, but the performances
were limited. The EMG signals generated by the volitional
contractions acted as a trigger for binary mode control (level
walking and stair descending [15]; push-off and no push-off
[16]). No systematic locomotion experiments on multisubjects
were conducted to validate the effectiveness. In [21], the system
produced about 95% average accuracy across three discrete
analysis windows, by fusing the information of EMG signals
and mechanical signals. By comparison, our noncontact sensing
strategy produced comparable results (95.8% accuracy) for six
locomotion modes and ten locomotion transitions. In our study,
the amputees performed transitions with either of their legs,
which were more difficult tasks than [21]. Thus, our designed
capacitive sensing strategy produced comparable results with
SEMG-based systems and at the same time freed human skin
from contacting with electrodes.

In this study, we made great improvements compared with
our previous work [24]. First, the newly designed capaci-
tance electrodes (Flex-PCB based) solved the problems of
our previous ones in locomotion transition tasks using robotic
prosthesis. The electrodes were as thin as 0.5 mm, which
increased the fitness inside the prosthetic socket. The copper
mesh-made electrodes had a thickness of 1 mm and produced
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satisfactory steady mode recognition results on passive pros-
theses. However, the 1-mm thick sensing front-ends negatively
affected the ambulation when using a robotic prosthesis. In our
initial tests for locomotion transition recognition using robotic
prosthesis, we employed TTA4 and used the copper mesh-made
electrodes. During the experiment, the subject stated that the
robotic prosthesis was not stable enough on his leg after the
electrodes were placed inside. Since the robotic prosthesis was
heavier than the passive one, the slight influence caused by the
electrodes increased the risks of dropping. We then calculated
the results using the collected data (the subject was TTA4 and
all the transitions with both legs were included) with copper
mesh-made electrodes and compared them with the results of
using Flex-PCB ones. The control parameters (damping coeffi-
cients and load-cell thresholds) and the classification schemes
(QDA and SVM, 250-ms window length, 15-fold LOOCYV and
feature set) were all the same. QDA produced 73.1% accuracy
at swing phase and 72.8% accuracy at the stance phase, while
SVM produced 78.8% accuracy and 77.8% accuracy at the
swing phase and the stance phase, respectively. The accuracies
were much lower than that of using Flex-PCB electrodes for
TTA4 (QDA: swing phase 93.8%, stance phase 95.2%; and
SVM: swing phase 94.7%, stance phase 96.8%). Besides, all
subjects reported there were no uncomfortable feelings during
the ambulation. Second, in this study, we addressed the prob-
lems in locomotion transition tasks using robotic prosthesis.
Our previous study focused on the evaluation of the capacitive
sensing system, and the tasks were steady locomotion modes
with passive prostheses. By comparison, in this study, the loco-
motion transition tasks were performed with either leg with a
robotic prosthesis, which had never been achieved before by the
amputees. With cascaded classification and a postprocessing
method, the system produced satisfactory results which could
be used as reference in future clinical use.

Recognition accuracy was crucial for the safety of the
lower-limb prosthesis control. The recognition results of this
study indicated that on-prosthesis mechanical sensors mainly
contributed to the recognition performance (over 90% recogni-
tion accuracy), which was in conformity with the related studies
[13], [14]. However, the recognition performance was directly
linked to ambulation safety. Any reduction of the recognition
errors could further reduce the risks of fall and injury. C-Sens
could significantly (p < 0.01) reduce the average error rates
made by mechanical sensors. The error reduction made by
capacitive sensing system was more effective in level walking,
stair ascending and stair descending (Fig. 6).

We observed from pseudo-real-time results that for transi-
tions between W and SA /SD, most of the transitions were suc-
cessfully recognized at the critical gait event of the transition
step. We also found that almost half of the error steps in W
& SA/SD were confused with W < RA /RD (as was shown
by the numbers in the brackets of Table V). If excluding ramps,
the system could produce more accurate recognition judgments.
However, the misclassifications between W and RA /RD were
more than that of SA/SD. Most errors occurred in transitions of
RD < W and W < RA when the amputated side performed
the transition. There are two possible reasons based on our post
hoc analysis. First, RA = W and SA = W showed similar gait

patterns during the swing phase, where both locomotion modes
required amputees to drag the foot upwards to the level ground.
The damping coefficients of the robotic prosthesis were similar
between these two locomotion modes. The case was similar in
RD = W and SD = W. Second, in W = RD, we observed
the subjects placed most of their body weight on the sound leg
which was still on the ground. It made the gait patterns more
similar to level walking at the PreFC and PostFO, which caused
the delay. The case was similarin W = RA. Actually in our ex-
periments, the damping coefficients of the easily confused tran-
sitions also showed similar values. In future clinical use, the
error near FC will change the damping curve of CP phase. But,
it will not cause sudden changes on ankle stiffness or motion
directions. The safety of the amputees can still be insured.

There are several limitations in this study. First, there were no
quantitative metrics as a measure to tune the prosthetic damping
coefficients on different terrains. Before the experiments, we set
the damping control coefficients based on the verbal feedback of
the amputees. However, the subjects have become accustomed
to their passive prostheses for years. Although all the amputees
finished our tasks after a few hours of training, quantitative met-
rics were still needed for reliable use. Second, although we im-
proved C-Sens signal quality by newly designed electrodes. It
was still limited by the materials of the stump sock which acted
as the dielectric of the coupling capacitors. The more elastic
the stump sock, the more information C-Sens could convey.
Among all the subjects, TTA3 and TTA6 used silicon-made
socks while TTA1 and TTAS used hard materials. This differ-
ence in stump socks was reflected in recognition performance.
TTA3 and TTA6 produced lower error rates than TTA1 and
TTAS in recognition results.

Future work will be done in the following aspects. First,
quantitative metrics on gait patterns like gait symmetry will
be exploited to evaluate the effectiveness of the damping
coefficients. In future experiments, we will tune the prosthetic
parameters based on the objective metrics. Second, experiments
on real-time control of the robotic prosthesis will be carried
out. The practical problems in real-time control, especially
the problems of ramp ambulation, will be addressed. Third,
further attempts will be made on developing custom prosthetic
socket embedded with C-Sens electrodes. Moreover, we will
explore the potentials of C-Sens for volitional control. It is
worth exploring whether the amputee can volitionally generate
a particular signal pattern in some certain locomotion modes.

VII. CONCLUSION

In this study, we have implemented the noncontact capaci-
tive sensing system C-Sens on our designed robotic transtibial
prosthesis for locomotion transition recognition. The C-Sens
sensing system was redesigned solving the problems of our pre-
vious system in locomotion transition tasks using robotic pros-
theses. Six locomotion modes and ten locomotion transitions
were investigated on six subjects. Moreover, transitions with ei-
ther leg were taken into consideration. The integration of C-Sens
on robotic prostheses could significantly reduce the recognition
errors. With our selected classification strategies, our system
produced comparable recognition performance with sSEMG-me-
chanical fusion-based studies. We also verified that data of both
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transitioning legs should be trained for reliable recognition. We
believe the fusion of C-Sens with mechanical sensors can be
a good alternative to SEMG-mechanical fusion for controlling
robotic transtibial prosthesis. Future endeavors will be focused
on real-time control of robotic prosthesis and validating the per-
formance of the proposed system in clinical applications.
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