
978-1-5386-7848-0/18/$31.00 ©2018 IEEE

A Partition and Interaction Combined Model for

Social Event Popularity Prediction
Guandan Chen1,2, Qingchao Kong1,* , Wenji Mao1,2, Daniel Zeng1,2

1The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,

Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China

{chenguandan2014, qingchao.kong, wenji.mao, dajun.zeng}@ia.ac.cn

Abstract—Social media platforms make the spread of social

event information quicker and more convenient. Some of these

social events may become hot topics, which highlights the

importance of event popularity prediction in public management，

decision making and other security related applications. Due to the

complexity of social event itself, it has two unique characteristics

which most previous popularity prediction work has ignored: (1)

the discussion of an event itself may consist of several components,

e.g. different sub-events, different stances or different user

communities; (2) the popularity of an event can be influenced by

other related events. To address its unique characteristics, we

propose an event popularity prediction model combining partition

and interaction. We employ reinforcement learning to

automatically partition an event into components and recognize

related events. Then we predict event popularity by modeling

component information and interactions between related events.

Experimental results on a real world dataset show that our

proposed model can outperform the competitive baseline methods.

Keywords—popularity prediction, information cascade,

reinforcement learning

I. INTRODUCTION

The development of social media greatly facilitates
information cascade, and fast information delivery has brought
new challenges to security informatics, public management and
business. Among many social events discussed in social media
platforms, only a small number of them will become popular.
Event popularity prediction aims to forecast popular events in an
early time. It can help our understanding of the trends and
tendency of public opinions behind user behaviors and
facilitates many applications in the security related domain. For
example, it can support emergency response and decision
making by knowing the potential impact of natural disasters and
social unrest. It can also provide valuable information in
business domain.

Given the importance of popularity prediction in many
applications, there are a branch of related works on this topic in
recent years. The representative research on popularity
prediction primarily falls into three categories: feature-
engineering based models [1, 2], generative models [3, 4], and
deep learning based models [5-7]. Feature-engineering based
models extract features from text content, user information and
time series. These models usually require domain knowledge
and time-consuming feature engineering to design useful
features. Generative models try to explain popularity trends
using stochastic processes. Hawkes processes based model [4]
is the state-of-the-art generative model for popularity prediction.

It explains popularity evolutions using user influence, self-
exciting mechanism and time-decay effect. However, these
generative models usually have strong hypotheses, and mainly
focus on information of diffusion processes, ignoring text
content information. Recently, some deep learning based
models demonstrate good performances in popularity prediction.
The key insight of these models is to learn strong feature
representations in an end-to-end manner, and do not rely on
feature engineering or any strong hypothesis. For example,
DeepHawkes [6] uses Gated Recurrent Units (GRU) to encode
each cascade path, and employs weighted average pooling to
combine features from all cascade paths.

However, there are some unique characteristics of social
event popularity that previous works have not considered.
Firstly, the discussion of an event itself may consist of several
components, e.g. different sub-events, different stances or
different user communities. Secondly, the popularity of an event
may be influenced by other related events. Most previous works
have ignored these event structures (e.g. different sub-events,
different stances etc.), and interactions between different events.
To address these unique characteristics, in this paper, we
propose an Event Popularity Prediction (EPP) model for social
media event combining partition and interaction. EPP learns to
partition an event into components and recognize related events.
It then predicts popularity by modeling component information
and interactions between the related events. Specifically, for
partition, considering that separating a set of tweets or users into
several components is a combinatorial problem and non-
differential, we employ reinforcement learning technique in the
model design.

Our work makes several contributions:

 We propose a novel popularity prediction model
considering event components and interactions
between related events.

 We are among the first to apply reinforcement learning
to model different components of events for popularity
prediction.

 Experimental results on a real world dataset show that
our proposed model outperforms strong baseline
methods.

II. RELATED WORK

A wide variety of models have been proposed for popularity
prediction. These methods fall into three main categories:
feature-engineering based models, generative models and deep

* Corresponding author: Qingchao Kong

learning based models. We provide a brief discussion of the
representative works here.

One branch of popularity prediction research tries to design
useful features for popularity prediction. These works [1, 2, 8]
have found some features about text, user, time series helpful for
popularity prediction. For example, Tsur et al. [1] propose many
lexicon features, and some topic, user, time series related
features. Aiello et al. [2] adopt features such as topic distribution
of text content, divergence of probabilistic language models etc.
Weng et al. [8] have found some useful features about user
network and user communities. These methods usually require
careful engineering and need much domain knowledge.

Generative models try to explain popularity trends using
stochastic processes [4, 9, 10]. Hawkes processes based model
[4] is the state-of-the-art generative model for popularity
prediction. It explains popularity evolutions using user influence,
self-exciting mechanism and time-decay effect. However, these
generative models usually have strong hypotheses, and mainly
focus on information of diffusion processes, ignoring text
content information.

Recently, some deep learning based models show good
performances. These models learn to predict popularity in an
end-to-end manner, and do not rely on feature engineering or
any strong hypothesis. DeepCas [5] is a two-stage approach. It
firstly takes random walks on the local network, then uses Gated
Recurrent Units (GRU) and attention mechanism to predict
popularity. DeepHawkes [6] uses Gated Recurrent Units (GRU)
to encode each cascade path, and employs weighted average
pooling based on time decay effect to combine features from all
cascade paths. ANPP [7] is an attention-based deep neural
popularity prediction model, which uses three encoders to
extract features from text content, user and time series, then fuse
them to predict popularity. In general, deep learning based
popularity prediction models outperform other models.

The popularity of social event has two unique characteristics.
Firstly, the discussion of an event itself may consist of several
components, e.g. different sub-events, different stances or
different user communities. Secondly, the popularity of an event
may be influenced by other related events. However, most
previous works have ignored these event structures (e.g.
different sub-events, different stances etc.), or interactions
between different events. Our model uses an end-to-end method
to capture these two unique characteristics in social event
popularity prediction.

III. PROPOSED MODEL

A. Problem Formulation

We define the popularity of a social event as the number of
tweets discussing the event. Considering most applications do
not require the accurate value of popularity, we transform the
popularity prediction problem into predicting whether the future
popularity of an event will exceed a given threshold.
Specifically, after observing an event during a time period
[𝑇𝑠, 𝑇𝑠 + 𝑡𝑜], we make a prediction of whether the number of
tweets discussing the event during [𝑇𝑠, 𝑇𝑠 + 𝑡𝑝] will exceed a

given threshold, where 𝑇𝑠 is the start time of the event discussion,

and 𝑡𝑜 is observation time that measures how long we observe,
and 𝑡𝑝 (usually we have 𝑡𝑝 > 𝑡𝑜) is the lifecycle of the event.

B. Structure of the Proposed Model

The proposed model consists of four parts, namely basic
encoder, component encoder, related event encoder and fusion
layer. The basic encoder encodes users, text content and time
series to get their representations, and combines them to get a
vector representation of the event. These representations will
then be fed into the component encoder and the related event
encoder. The component encoder learns to partition an event
into several components and extracts features from components.
The related event encoder recognizes related events of the target
event, and models interactions between them. The fusion layer
combines features from three encoders, and predicts popularity.

Fig. 1. Structure of the Proposed Model

C. Basic Encoder

The basic encoder encodes users, text content and time series
to get their representations, and combines them to get a vector
representation of the event. The structure of our basic encoder is
similar to ANPP [7], and we only add a time embedding to the
text and user sequence representations. Since our main
contributions are the component encoder and the related event
encoder, we only briefly introduce the structure of the basic
encoder. For more details, please refer to ANPP.

An event can be defined as a sequence of tweets discussing
it, denoted as {𝑆1, 𝑆2, … , 𝑆𝑛}, where 𝑆𝑖 consists a user (the author)

𝑢𝑖 , a word sequence [𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑚𝑖
] and the publication

time 𝑇𝑖 .

For user information, we map each user into an embedding
vector using Node2vec [11], i.e.

user

text content

time

concate

En
co

d
er

Related event
proposal

prediction

...

previous
events

En
cod

er

related
events

vre

vcomp

Related Event
Encoder

Actor

add

update

drop
memory

En
co

d
er

Component
Encoder

vbasic

Basic
Encoder

𝑣𝑖
(𝑢)

= 𝐸(𝑢)𝑢𝑖 (1)

where 𝐸(𝑢) is the embedding matrix for users, 𝑢𝑖 is one-hot

representation for the user of i-th tweet, and 𝑣𝑖
(𝑢)

 is its

embedding vector.

For text content, since each tweet can be defined as a
sequence of words, we firstly map each word into a vector using
Glove [12]. Then we use a bidirectional GRU (BiGRU) and
attention mechanism [13] to encode the sequence of words.
BiGRU maps the input sequence into a sequence of states, where
each state represents for the corresponding input and its context
information. Attention mechanism maps the sequence into a
vector representation by weighted summing the sequence, which
can focus on the important states by assigning high attention
weights to them. Specifically,

𝑣𝑖,𝑗
(𝑤)

= 𝐸(𝑤)𝑤𝑖,𝑗 (2)

𝑣𝑖
(𝑡𝑒𝑥𝑡)

= 𝐴𝑡𝑡 (𝐵𝑖𝐺𝑅𝑈 ([𝑣𝑖,1
(𝑤)

, 𝑣𝑖,2
(𝑤)

, … 𝑣𝑖,𝑚𝑖

(𝑤)
])) (3)

where 𝐸(𝑤) is the embedding matrix for words, 𝑤𝑖,𝑗 is one-hot

representation for j-th word in i-th tweet, 𝑣𝑖,𝑗
(𝑤)

 is its embedding

vector, 𝑚𝑖 is the length of the word sequence, and 𝑣𝑖
(𝑡𝑒𝑥𝑡)

 is the

vector representation for text content of the i-th tweet. 𝐴𝑡𝑡 is
attention mechanism, which outputs a vector by weighted
summing a sequence of vectors.

The representation of time information consists of three parts:
(1) a vector representation for the hour of the publication time;
(2) a vector representation for the weekday of the publication
time; (3) results from a set of cosine function representing time
interval between the time that the event starts being discussed
and the publication time, i.e.

[𝑐𝑜𝑠(𝛽𝑡𝑖) , 𝑐𝑜𝑠(2𝛽𝑡𝑖) , … , 𝑐𝑜𝑠(𝐾𝛽𝑡𝑖)] (4)

The former two vectors are both optimized during training.
Here 𝛽 is a trainable parameter, and 𝑡𝑖 is the time interval
between the time that the event starts being discussed and the
publication time of the i-th tweet, i.e. 𝑡𝑖 = 𝑇𝑖 − 𝑇𝑠, and 𝐾 is the
dimension. The vector representation of time information is the

concatenation of these three vectors, denoted as 𝑣𝑖
(𝑡𝑖𝑚𝑒)

.

Each tweet is represented as the concatenation of the vector
representations of user, text and time information, i.e.

𝑣𝑖 = [𝑣𝑖
(𝑢)

, 𝑣𝑖
(𝑡𝑒𝑥𝑡)

, 𝑣𝑖
(𝑡𝑖𝑚𝑒)

] (5)

Suppose there are 𝑛 tweets discussing the event, we use a
bidirectional GRU and attention mechanism to encode the whole
sequence, i.e.

[ℎ1, ℎ2, … , ℎ𝑛] = 𝐵𝑖𝐺𝑅𝑈([𝑣1, 𝑣2, … , 𝑣𝑛]) (6)

𝑣𝑏 = 𝐴𝑡𝑡([ℎ1, ℎ2, … , ℎ𝑛]) (7)

where ℎ𝑖 is the i-th state of bidirectional GRU and 𝑣b is the
feature produced by the basic encoder.

D. Component Encoder

Component detection as a reinforcement learning problem.
The component encoder captures the component information of
an event, e.g. different sub-events, different stances or different

user communities. In fact, it is a combinatorial problem to
separate a set of tweets into several sets that correspond to
different components. Thus, it is hard to optimize parameters
directly using gradient backpropagation. To solve this issue, we
cast component detection as a reinforcement learning problem.
In reinforcement learning problem, an actor will take actions
following a policy at every step and get a reward signal from the
environment. During learning, we try to optimize the parameters
of the policy to maximize the expected accumulated reward.
Specifically, in the component encoder, we view the set of
tweets as a sequence, and the component encoder processes
tweets one by one. For each tweet, the actor follows a policy to
select an action from three options to deal with it, i.e. append it
to one existing component, add a new component, or view it as
noise and drop it. Then, the actor receives a reward from the
popularity prediction result (whether the prediction is correct)
after processing all tweets. Here, the policy is a parameterized
function, which takes the state (consisting of current tweet,
current components) as input and outputs a probability
distribution for taking actions. In this way, we can learn to detect
components from popularity prediction result in an end-to-end
manner, without pre-defined heuristic knowledge to detect
component or time-consuming extra data annotation. The
component encoder is detailed as follows.

State. The component encoder updates component
representations recursively, and output a component feature at
the last step. At the i-th step, the state includes 𝑣𝑖, a key 𝑘𝑖 and
existed component representations 𝑀 , where 𝑘𝑖 can be text

content representation 𝑣𝑖
𝑡𝑒𝑥𝑡 or user representation 𝑣𝑖

𝑢 ,
corresponding to partition an event into components according
to text content or user information respectively. Here 𝑣𝑖 and 𝑘𝑖
are all computed by the basic encoder. The matrix 𝑀 is used to
store the representations of different components, serving as a
memory module [14], where each row 𝑀𝑗 is the vector

representation of one component.

Actor network. An actor network is used to select an action
from following options: (1) Add a new component
representation to 𝑀; (2) Select an existing component in 𝑀, and
update its representation; (3) View this input as noise, and drop
it. We now describe the above procedure in detail. In the actor
network, we first extract features from the component
representation 𝑀𝑗 and the key 𝑘𝑖 using

𝑥𝑗
𝑖 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒([𝑀𝑗 + 𝑘𝑖 , 𝑀𝑗⨀𝑘𝑖])), 𝑗 ∈ [1, 𝑚] (8)

where 𝑥𝑗
𝑖 is the feature for j-th component at i-th step. 𝑅𝑒𝐿𝑈

represents rectified linear unit, 𝐷𝑒𝑛𝑠𝑒 is a dense connected layer,
[∙,∙] and ⨀ represent for concatenation operation and element-
wise multiplication respectively. Then a max pooling operation
is applied,

𝑓𝑞
𝑖 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙([𝑥1

𝑖 , 𝑥2
𝑖 , … , 𝑥𝑚

𝑖]) (9)

𝑝𝑖
𝑎𝑐𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎𝑐𝑡𝑓𝑞

𝑖 + 𝑏𝑎𝑐𝑡) (10)

where m is the number of components in the memory, and 𝑝𝑖
𝑎𝑐𝑡

is the action distribution for three kinds of actions (i.e. add,
update or drop).

Update. If the action is “update”, then we select a component

in the memory module according to 𝑝𝑖
𝑐𝑜𝑚𝑝

 in Eq. (12) and

update its representation according to Eq. (14), i.e.

𝑧𝑗
𝑖 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑥𝑗

𝑖)), 𝑗 ∈ [1, 𝑚] (11)

𝑝𝑖
𝑐𝑜𝑚𝑝

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑧1
𝑖 , 𝑧2

𝑖 , … , 𝑧𝑚
𝑖]) (12)

𝑗′~𝑝𝑖
𝑐𝑜𝑚𝑝 (13)

𝑀𝑗′ = 𝑡𝑎𝑛ℎ(𝑊𝑢[𝑣𝑖 , 𝑀𝑗′] + 𝑏𝑢) (14)

Add. If the action is “add”, a new component is appended to
𝑀, i.e.

𝑀𝑚+1 = 𝑡𝑎𝑛ℎ(𝐷𝑒𝑛𝑠𝑒(𝑣𝑖)) (15)

Reward. During training, the actor learns to take actions so
as to maximize the expected reward. Our reward signal 𝑟 = 1
when the prediction is correct, and it is 0 otherwise. The reward
is time-delayed, which is valid only after we process all the
observed tweets and make a prediction. At every running time,
we sample an action from the policy, and thus the expected
reward is estimated from the average value of the samples.

Component feature. After processing all the 𝑛 tweets, we
extract features from the memory module, i.e. the component
feature, which can be calculated as Eq. (16):

𝑣𝑐𝑜𝑚𝑝
𝑘 = 𝐴𝑡𝑡(𝐵𝑖𝐺𝑅𝑈([𝑀1, 𝑀2, … , 𝑀𝑚])) (16)

where k is the key in Eq. (8). Thus the final component features
can be calculated as Eq (17):

𝑣𝑐𝑜𝑚𝑝 = [𝑣𝑐𝑜𝑚𝑝
𝑢 , 𝑣𝑐𝑜𝑚𝑝

𝑡𝑒𝑥𝑡] (17)

where 𝑣𝑐𝑜𝑚𝑝
𝑢 and 𝑣𝑐𝑜𝑚𝑝

𝑡𝑒𝑥𝑡 refers to 𝑣𝑐𝑜𝑚𝑝
𝑘 when the key k is user

or text content respectively.

E. Related Event Encoder

The related event encoder selects the events related to the
target event from previous events, and extract features for
popularity prediction from them. The selection of several related
events from a set of events is also a combinatorial problem. Thus,
similar to the component encoder, we learn a parameterized
function that output a probability distribution corresponding to
the confidence of being a related event. During training we try
to optimize the expected reward of this function, where the
expected reward is estimated by sampling. In this way, we can
learn the related event encoder in an end-to-end manner. The
selection of related events can be viewed as a special case of
reinforcement learning, that only has one step in a sequence of
actions. Thus, we still use reinforcement learning to optimize the
related event encoder. Details of the related event encoder are as
follows.

Related event proposal. For the related event encoder, we
design a related event proposal network and learn to recognize
related events. To reduce computational complexity, we select
some candidates for related events from previous events that
have at least 𝐾𝑠𝑢 users or 𝐾𝑠𝑤 words in common with the target
event, where 𝐾𝑠𝑢 and 𝐾𝑠𝑤 are hyperparameters. Denote the

representations of candidate events as [𝑣1
𝑐𝑎𝑛𝑑 , 𝑣2

𝑐𝑎𝑛𝑑 , … , 𝑣𝑚𝑟𝑒
𝑐𝑎𝑛𝑑],

where 𝑚𝑟𝑒 is the number of candidate events. For the j-th
candidate event, the related event proposal network outputs a

𝑝𝑗
𝑟𝑒. The higher 𝑝𝑗

𝑟𝑒 is, the more confidence we have to believe

that the j-th candidate event is related to the target event.
Specifically, the probability of a candidate being selected as a
related event is computed from

𝑥𝑗
𝑐𝑎𝑛𝑑 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒([𝑣𝑗

𝑐𝑎𝑛𝑑 + 𝑣𝑏 , 𝑣𝑗
𝑐𝑎𝑛𝑑 ⨀𝑣𝑏])) (18)

𝑧𝑗
𝑐𝑎𝑛𝑑 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑥𝑗

𝑐𝑎𝑛𝑑)))) (19)

𝑝𝑟𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑧1
𝑐𝑎𝑛𝑑 , 𝑧2

𝑐𝑎𝑛𝑑 , … , 𝑧𝑚𝑟𝑒
𝑐𝑎𝑛𝑑]) (20)

Related event feature. During training, we randomly sample
𝐾𝑟𝑒 related events from candidate events according to 𝑝𝑟𝑒, while
during testing we select 𝐾𝑟𝑒 related events with the largest
probability in 𝑝𝑟𝑒. Let the representations of the selected related
events be [𝑣1

𝑟𝑒 , 𝑣2
𝑟𝑒 , … , 𝑣𝐾𝑟𝑒

𝑟𝑒] . We extract the feature for

popularity prediction from the related events, which is computed
from:

𝑣𝑟𝑒 = 𝐴𝑡𝑡(𝐵𝑖𝐺𝑅𝑈([𝑣1
𝑟𝑒 , 𝑣2

𝑟𝑒 , … , 𝑣𝐾𝑟𝑒
𝑟𝑒])) (21)

F. Fusion layer

To predict event popularity, we fuse features from the basic
encoder, the component encoder, and the related event encoder.
Features are concatenated as a single vector, which is passed
through two dense layers to produce the prediction result. In
addition, considering that features from different encoders may
have different distributions, we apply batch normalization [15]
to the concatenated vector.

Specifically, it is computed from:

𝑧 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚([𝑣𝑏 , 𝑣𝑐𝑜𝑚𝑝 , 𝑣𝑟𝑒]))) (22)

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(𝑧)) (23)

where 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 is batch normalization, and ỹ is the
prediction result. The higher �̂�𝑐 is, the more confidence we have
to believe the target event will have the popularity value in c-th
range.

G. Training

We use cross entropy as the loss function, which is computed
as:

𝑙 = ∑ 𝑦𝑐𝑙𝑜𝑔 (�̂�𝑐)

𝑐

(24)

where yc is the true label, and yc = 1 if the popularity is in c-th
range, otherwise it is 0.

Auxiliary loss regularization. Considering that the related
event encoder contains a sampling process with large variance,
we design an auxiliary loss to produce more stable training
process. The auxiliary loss tries to force features from the basic
encoder useful for popularity prediction, which is computed
from

�̂�𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑣𝑏)))) (25)

𝑙𝑎 = ∑ 𝑦𝑐𝑙𝑜𝑔 (�̂�𝑐
𝑎)

𝑐

(26)

where �̂�𝑎 is the prediction result using features from the basic
encoder, and 𝑙𝑎 is cross entropy loss for this prediction.

We adopt Adagrad [16], a widely used optimization method,
to train the model. For training the actor network and related
event proposal network, we employ the PPO algorithm [17], a
policy gradient method for reinforcement learning, which uses a
clipped surrogate objective to enhance stability during training.

IV. EXPERIMENT AND DISCUSSION

A. Dataset

To evaluate the performance of our proposed popularity
prediction model with baseline methods. We take Twitter as an
exemplar social media platform. Twitter is a large social media
platform with diverse users coming from different countries, and
is an important platform for people to express opinions and
discuss recent events.

The dataset was collected using Twitter API

(https://developer.twitter.com) from Aug. 9, 2016 to Dec. 10,
2016. In Twitter, users usually use hashtag to mark the event or
topic they discussing, which enables us to find messages about
a specific event. We first drop hashtags with less than 10 tweets,
then manually merge hashtags discussing the same event, and
remove non-event hashtags. The observation time 𝑡𝑜 is set to 1,
6, 12 or 24 hours in our dataset. Top 20% of events with regard
to the popularity in the whole lifecycle are considered as popular
events, and we randomly sample the same number unpopular
events from the rest of events. Thus, each sample in our dataset
is an event, which contains users, tweets and timestamps of the
tweets discussing the event during the observation time, and the
label is whether the event is popular considering the whole
lifecycle of the event. We use 80% of the events in the first three
months as the training set, the rest 20% of the events as the
validation set, and the events in the last month as the test set.
Table I shows the detail of the dataset.

TABLE I. STATISTICS OF THE DATASET

#events #tweets
avg. #tweets per

event

max #tweets per

event

41,035 4,561,375 111 234,944

B. Baseline Methods

We compare our model with the existing deep learning based
popularity prediction models and several representative feature-
engineering based and generative models. Following methods
are chosen as baseline methods for our comparison.

(1) Tsur’s [1]: Adopts many lexicon features, associated
with a few user and time series features.

(2) Aiello’s [2]: Proposes many features about time series,
user network and probabilistic language model.

 (3) Hawkes [4]: Models popularity dynamics as Hawkes
processes.

(4) DeepCas [5]: Takes random walks on the local network,
then uses GRU and attention mechanism to extract features from
random walk paths to predict popularity.

(5) DeepHawkes [6]: An extension of Hawkes model, which
employs user embedding, GRU and weighted sum pooling to
encode cascade paths.

(6) ANPP [7]: An attention-based deep neural popularity
prediction model, which uses three encoders to encode text
content, user and time series and fuses them to predict popularity.

We also compare to the following variations of our proposed
model.

(1) Basic encoder: Only uses features from the basic encoder.

(2) EPP-NCE: Only uses the basic encoder and the related
event encoder.

(3) EPP-NRE: Only uses the basic encoder and the
component encoder.

(4) EPP-NALR: Removes auxiliary loss regularization from
the proposed model.

We use accuracy as the evaluation metric.

C. Results

Table II shows prediction performances of our proposed
model and the baseline methods. As we can see, our proposed
model outperforms all baseline methods, with significant
improvements of accuracies under different observation time
settings. Moreover, the improvements are more prominent when
observation time is short. According to the definition of
popularity prediction, shorter observation time means less
information for prediction. Thus, it requires more prediction
ability for short observation time.

TABLE II. ACCURACIES OF DIFFERENT METHODS

Method
Observation time 𝑻𝒐 (hours)

1 6 12 24

Tsur’s 0.612 0.653 0.682 0.722

Aiello’s 0.633 0.701 0.728 0.781
Hawkes 0.590 0.669 0.709 0.749

DeepCas 0.580 0.658 0.707 0.780

DeepHawkes 0.588 0.691 0.725 0.791
ANPP 0.651 0.723 0.764 0.818

Basic encoder 0.670 0.740 0.766 0.818

EPP-NCE 0.683 0.737 0.774 0.825
EPP-NRE 0.686 0.743 0.769 0.822

EPP-NALR 0.681 0.721 0.756 0.818

EPP 0.721 0.751 0.783 0.828

In the baseline methods, Tsur’s and Aiello’s are both feature-
engineering based methods. Aiello’s is much more effective
than Tsur’s. It shows that the selection of features influences the
performance of feature-engineering based methods. Hawkes is
the state-of-the-art generative model. Although it possesses
better interpretability, its performance is lower than Aiello’s.
Deepcas, DeepHawkes and ANPP are all deep learning based
methods. We found Deepcas can not beat Aiello’s in our dataset,
which shows well-designed features can also reach good
performance. Both DeepHawkes and ANPP show significant
performance improvement compared to the feature-engineering
based methods. This indicates that well-designed deep learning
based models are good at popularity prediction task. ANPP
shows the best performance among the baseline methods, which
uses three encoders to get representations of text content, user
and time series, and then fuses them to predict popularity. It
shows the advantage of utilizing more useful information.

By comparing different variations of our proposed model,
we found that component encoder and related event encoder are
both useful for event popularity prediction. In addition, our basic
encoder shows a slight performance improvement compared to
ANPP. It is because we add a time embedding which can better
capture time information. Removing the component encoder or
the related event encoder will lower the performance of our
proposed model, which shows the effectiveness of these
encoders. Without specially designed auxiliary loss
regularization, our model can not reach good performance and
sometimes even get worse than the basic encoder, because the
high variance in random sampling may influence the stability of
the training process.

To further investigate the effectiveness of the component
encoder and the related event encoder, we provide a case study
in Table III. We found the components and related events are
reasonable. The event “#whereisNajeebAhmed” is about an
Indian student Najeeb Ahmed got missing. As shown in Table
III, the first component of this event is about people’s appealing
for help. The second component discusses that the family of
Najeeb Ahmed was arrested during the protest, and people
condemned the government. The third component is about a
student organization named ABVP. As for the related events,
most of them are about India and Indian politician Modi. These
related events and the target event all have some connections to
India government, and people discussing these related events
may be interested in the target event.

TABLE III. AN EXAMPLE OF COMPONENTS AND RELATED EVENTS

Event #WhereIsNajeebAhmed

Component 1

Bring back Najeeb or send this mother to him where he
is.

Mother of Najeeb is madly waiting to hear her sons

voice.

Component 2

Shame on Delhi police for dragging The mother of

Najeeb as if she‘s a criminal. This is utter disgust.

Sad part of Government and especially police.

Component 3

Why is Delhi Police not interrogating those ABVP goons

who have beaten Najeeb on the day before he has been
missing?

Arrest ABVP leaders of JNU.

Related Events

#SrinagarSlapsModi

#NawazRattlesIndia

#NoSpaceForIndiaInKashmir
#ModiFailedAgain

V. CONCLUSIONS

In this paper, we propose a popularity prediction model for
social events combining partition and interaction. The model
learns to partition an event into components, and select related
events that may influence the popularity of the target event. It
then predicts event popularity by modeling component
information and interactions between related events. We employ
the reinforcement learning algorithm to train the model, and
propose an auxiliary loss regularization to enhance the training
stability. Experimental results on the Twitter dataset show that
our proposed model outperforms the competitive baseline
methods.

ACKNOWLEDGMENT

This work is supported in part by Ministry of Science and
Technology of China (Grant No. 2016QY02D0305), National
Natural Science Foundation of China (Grant No. 71702181,
71621002 and 61671450), Key Program of the Chinese
Academy of Sciences (Grant No. ZDRW-XH-2017-3).

REFERENCES

[1] O. Tsur and A. Rappoport, "What's in a hashtag?: content based

prediction of the spread of ideas in microblogging communities," in
Proceedings of the fifth ACM international conference on Web search

and data mining, 2012, pp. 643-652: ACM.

[2] L. M. Aiello et al., "Sensing trending topics in Twitter," IEEE
Transactions on Multimedia, vol. 15, no. 6, pp. 1268-1282, 2013.

[3] P. Bao, H.-W. Shen, X. Jin, and X.-Q. Cheng, "Modeling and predicting

popularity dynamics of microblogs using self-excited hawkes
processes," in Proceedings of the 24th International Conference on

World Wide Web, 2015, pp. 9-10: ACM.

[4] S. Mishra, M.-A. Rizoiu, and L. Xie, "Feature driven and point process

approaches for popularity prediction," in Proceedings of the 25th ACM

International on Conference on Information and Knowledge

Management, 2016, pp. 1069-1078: ACM.
[5] C. Li, J. Ma, X. Guo, and Q. Mei, "DeepCas: An end-to-end predictor of

information cascades," in Proceedings of the 26th International

Conference on World Wide Web, 2017, pp. 577-586: International World
Wide Web Conferences Steering Committee.

[6] Q. Cao, H. Shen, K. Cen, W. Ouyang, and X. Cheng, "DeepHawkes:

Bridging the Gap between Prediction and Understanding of Information
Cascades," in Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management, 2017, pp. 1149-1158: ACM.

[7] G. Chen, Q. Kong, and W. Mao, "An attention-based neural popularity
prediction model for social media events," in Intelligence and Security

Informatics (ISI), 2017 IEEE International Conference on, 2017, pp.

161-163: IEEE.
[8] L. Weng, F. Menczer, and Y.-Y. Ahn, "Predicting Successful Memes

Using Network and Community Structure," in ICWSM, 2014.

[9] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec,
"SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet

Popularity," in Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2015, pp. 1513-
1522: ACM.

[10] H. Shen, D. Wang, and C. Song, "Modeling and predicting popularity

dynamics via reinforced Poisson processes," in Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014, pp. 291-297.

[11] A. Grover and J. Leskovec, "node2vec: Scalable Feature Learning for

Networks," in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855-864:

ACM.

[12] J. Pennington, R. Socher, and C. Manning, "Glove: Global Vectors for
Word Representation," in Conference on Empirical Methods in Natural

Language Processing, 2014, pp. 1532-1543.

[13] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, "Hierarchical
attention networks for document classification," in Proceedings of the

2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 2016, pp.
1480-1489.

[14] Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio, "Learning to Remember

Rare Events," arXiv preprint arXiv:1703.03129, 2017.
[15] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep

network training by reducing internal covariate shift," arXiv preprint
arXiv:1502.03167, 2015.

[16] J. Duchi, E. Hazan, and Y. Singer, "Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization," Journal of Machine
Learning Research, vol. 12, no. 7, pp. 257-269, 2011.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

"Proximal policy optimization algorithms," arXiv preprint
arXiv:1707.06347, 2017.

