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Abstract—Social media platforms make the spread of social 

event information quicker and more convenient. Some of these 

social events may become hot topics, which highlights the 

importance of event popularity prediction in public management， 

decision making and other security related applications. Due to the 

complexity of social event itself, it has two unique characteristics 

which most previous popularity prediction work has ignored: (1) 

the discussion of an event itself may consist of several components, 

e.g. different sub-events, different stances or different user 

communities; (2) the popularity of an event can be influenced by 

other related events. To address its unique characteristics, we 

propose an event popularity prediction model combining partition 

and interaction. We employ reinforcement learning to 

automatically partition an event into components and recognize 

related events. Then we predict event popularity by modeling 

component information and interactions between related events. 

Experimental results on a real world dataset show that our 

proposed model can outperform the competitive baseline methods.  
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I. INTRODUCTION  

The development of social media greatly facilitates 
information cascade, and fast information delivery has brought 
new challenges to security informatics, public management and 
business. Among many social events discussed in social media 
platforms, only a small number of them will become popular. 
Event popularity prediction aims to forecast popular events in an 
early time. It can help our understanding of the trends and 
tendency of public opinions behind user behaviors and 
facilitates many applications in the security related domain. For 
example, it can support emergency response and decision 
making by knowing the potential impact of natural disasters and 
social unrest. It can also provide valuable information in 
business domain. 

Given the importance of popularity prediction in many 
applications, there are a branch of related works on this topic in 
recent years. The representative research on popularity 
prediction primarily falls into three categories: feature-
engineering based models [1, 2], generative models [3, 4], and 
deep learning based models [5-7]. Feature-engineering based 
models extract features from text content, user information and 
time series. These models usually require domain knowledge 
and time-consuming feature engineering to design useful 
features. Generative models try to explain popularity trends 
using stochastic processes. Hawkes processes based model [4] 
is the state-of-the-art generative model for popularity prediction. 

It explains popularity evolutions using user influence, self-
exciting mechanism and time-decay effect. However, these 
generative models usually have strong hypotheses, and mainly 
focus on information of diffusion processes, ignoring text 
content information. Recently, some deep learning based 
models demonstrate good performances in popularity prediction. 
The key insight of these models is to learn strong feature 
representations in an end-to-end manner, and do not rely on 
feature engineering or any strong hypothesis. For example, 
DeepHawkes [6] uses Gated Recurrent Units (GRU) to encode 
each cascade path, and employs weighted average pooling to 
combine features from all cascade paths. 

However, there are some unique characteristics of social 
event popularity that previous works have not considered. 
Firstly, the discussion of an event itself may consist of several 
components, e.g. different sub-events, different stances or 
different user communities. Secondly, the popularity of an event 
may be influenced by other related events. Most previous works 
have ignored these event structures (e.g. different sub-events, 
different stances etc.), and interactions between different events. 
To address these unique characteristics, in this paper, we 
propose an Event Popularity Prediction (EPP) model for social 
media event combining partition and interaction. EPP learns to 
partition an event into components and recognize related events. 
It then predicts popularity by modeling component information 
and interactions between the related events. Specifically, for 
partition, considering that separating a set of tweets or users into 
several components is a combinatorial problem and non-
differential, we employ reinforcement learning technique in the 
model design. 

Our work makes several contributions: 

 We propose a novel popularity prediction model 
considering event components and interactions 
between related events. 

 We are among the first to apply reinforcement learning 
to model different components of events for popularity 
prediction. 

 Experimental results on a real world dataset show that 
our proposed model outperforms strong baseline 
methods. 

II. RELATED WORK 

A wide variety of models have been proposed for popularity 
prediction. These methods fall into three main categories: 
feature-engineering based models, generative models and deep 
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learning based models. We provide a brief discussion of the 
representative works here. 

One branch of popularity prediction research tries to design 
useful features for popularity prediction. These works [1, 2, 8] 
have found some features about text, user, time series helpful for 
popularity prediction. For example, Tsur et al. [1] propose many 
lexicon features, and some topic, user, time series related 
features. Aiello et al. [2] adopt features such as topic distribution 
of text content, divergence of probabilistic language models etc. 
Weng et al. [8] have found some useful features about user 
network and user communities. These methods usually require 
careful engineering and need much domain knowledge. 

Generative models try to explain popularity trends using 
stochastic processes [4, 9, 10]. Hawkes processes based model 
[4] is the state-of-the-art generative model for popularity 
prediction. It explains popularity evolutions using user influence, 
self-exciting mechanism and time-decay effect. However, these 
generative models usually have strong hypotheses, and mainly 
focus on information of diffusion processes, ignoring text 
content information. 

Recently, some deep learning based models show good 
performances. These models learn to predict popularity in an 
end-to-end manner, and do not rely on feature engineering or 
any strong hypothesis. DeepCas [5] is a two-stage approach. It 
firstly takes random walks on the local network, then uses Gated 
Recurrent Units (GRU) and attention mechanism to predict 
popularity. DeepHawkes [6] uses Gated Recurrent Units (GRU) 
to encode each cascade path, and employs weighted average 
pooling based on time decay effect to combine features from all 
cascade paths. ANPP [7] is an attention-based deep neural 
popularity prediction model, which uses three encoders to 
extract features from text content, user and time series, then fuse 
them to predict popularity. In general, deep learning based 
popularity prediction models outperform other models. 

The popularity of social event has two unique characteristics. 
Firstly, the discussion of an event itself may consist of several 
components, e.g. different sub-events, different stances or 
different user communities. Secondly, the popularity of an event 
may be influenced by other related events. However, most 
previous works have ignored these event structures (e.g. 
different sub-events, different stances etc.), or interactions 
between different events. Our model uses an end-to-end method 
to capture these two unique characteristics in social event 
popularity prediction. 

III. PROPOSED MODEL 

A. Problem Formulation 

We define the popularity of a social event as the number of 
tweets discussing the event. Considering most applications do 
not require the accurate value of popularity, we transform the 
popularity prediction problem into predicting whether the future 
popularity of an event will exceed a given threshold. 
Specifically, after observing an event during a time period 
[𝑇𝑠, 𝑇𝑠 + 𝑡𝑜], we make a prediction of whether the number of 
tweets discussing the event during [𝑇𝑠, 𝑇𝑠 + 𝑡𝑝] will exceed a 

given threshold, where 𝑇𝑠 is the start time of the event discussion, 

and 𝑡𝑜 is observation time that measures how long we observe, 
and 𝑡𝑝 (usually we have 𝑡𝑝 > 𝑡𝑜) is the lifecycle of the event. 

B. Structure of the Proposed Model 

The proposed model consists of four parts, namely basic 
encoder, component encoder, related event encoder and fusion 
layer. The basic encoder encodes users, text content and time 
series to get their representations, and combines them to get a 
vector representation of the event. These representations will 
then be fed into the component encoder and the related event 
encoder. The component encoder learns to partition an event 
into several components and extracts features from components. 
The related event encoder recognizes related events of the target 
event, and models interactions between them. The fusion layer 
combines features from three encoders, and predicts popularity. 

 

Fig. 1. Structure of the Proposed Model 

C. Basic Encoder 

The basic encoder encodes users, text content and time series 
to get their representations, and combines them to get a vector 
representation of the event. The structure of our basic encoder is 
similar to ANPP [7], and we only add a time embedding to the 
text and user sequence representations. Since our main 
contributions are the component encoder and the related event 
encoder, we only briefly introduce the structure of the basic 
encoder. For more details, please refer to ANPP. 

An event can be defined as a sequence of tweets discussing 
it, denoted as {𝑆1, 𝑆2, … , 𝑆𝑛}, where 𝑆𝑖 consists a user (the author) 

𝑢𝑖 , a word sequence [𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑚𝑖
]  and the publication 

time 𝑇𝑖 .  

For user information, we map each user into an embedding 
vector using Node2vec [11], i.e. 
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𝑣𝑖
(𝑢)

= 𝐸(𝑢)𝑢𝑖 (1)

where 𝐸(𝑢) is the embedding matrix for users, 𝑢𝑖  is one-hot 

representation for the user of i-th tweet, and 𝑣𝑖
(𝑢)

 is its 

embedding vector. 

For text content, since each tweet can be defined as a 
sequence of words, we firstly map each word into a vector using 
Glove [12]. Then we use a bidirectional GRU (BiGRU) and 
attention mechanism [13] to encode the sequence of words. 
BiGRU maps the input sequence into a sequence of states, where 
each state represents for the corresponding input and its context 
information. Attention mechanism maps the sequence into a 
vector representation by weighted summing the sequence, which 
can focus on the important states by assigning high attention 
weights to them. Specifically, 

𝑣𝑖,𝑗
(𝑤)

= 𝐸(𝑤)𝑤𝑖,𝑗 (2)

𝑣𝑖
(𝑡𝑒𝑥𝑡)

= 𝐴𝑡𝑡 (𝐵𝑖𝐺𝑅𝑈 ([𝑣𝑖,1
(𝑤)

, 𝑣𝑖,2
(𝑤)

, … 𝑣𝑖,𝑚𝑖

(𝑤)
]) ) (3)

where 𝐸(𝑤) is the embedding matrix for words, 𝑤𝑖,𝑗 is one-hot 

representation for j-th word in i-th tweet, 𝑣𝑖,𝑗
(𝑤)

 is its embedding 

vector, 𝑚𝑖 is the length of the word sequence, and 𝑣𝑖
(𝑡𝑒𝑥𝑡)

 is the 

vector representation for text content of the i-th tweet. 𝐴𝑡𝑡 is 
attention mechanism, which outputs a vector by weighted 
summing a sequence of vectors.  

The representation of time information consists of three parts: 
(1) a vector representation for the hour of the publication time; 
(2) a vector representation for the weekday of the publication 
time; (3) results from a set of cosine function representing time 
interval between the time that the event starts being discussed 
and the publication time, i.e. 

[𝑐𝑜𝑠(𝛽𝑡𝑖) , 𝑐𝑜𝑠(2𝛽𝑡𝑖) , … , 𝑐𝑜𝑠(𝐾𝛽𝑡𝑖)] (4)

The former two vectors are both optimized during training. 
Here 𝛽  is a trainable parameter, and 𝑡𝑖  is the time interval 
between the time that the event starts being discussed and the 
publication time of the i-th tweet, i.e. 𝑡𝑖 = 𝑇𝑖 − 𝑇𝑠, and 𝐾 is the 
dimension. The vector representation of time information is the 

concatenation of these three vectors, denoted as 𝑣𝑖
(𝑡𝑖𝑚𝑒)

. 

Each tweet is represented as the concatenation of the vector 
representations of user, text and time information, i.e.  

𝑣𝑖 = [𝑣𝑖
(𝑢)

, 𝑣𝑖
(𝑡𝑒𝑥𝑡)

, 𝑣𝑖
(𝑡𝑖𝑚𝑒)

] (5)

Suppose there are 𝑛 tweets discussing the event, we use a 
bidirectional GRU and attention mechanism to encode the whole 
sequence, i.e. 

[ℎ1, ℎ2, … , ℎ𝑛] = 𝐵𝑖𝐺𝑅𝑈([𝑣1, 𝑣2, … , 𝑣𝑛]) (6)

𝑣𝑏 = 𝐴𝑡𝑡([ℎ1, ℎ2, … , ℎ𝑛]) (7)

where ℎ𝑖  is the i-th state of bidirectional GRU and 𝑣b  is the 
feature produced by the basic encoder. 

D. Component Encoder 

Component detection as a reinforcement learning problem. 
The component encoder captures the component information of 
an event, e.g. different sub-events, different stances or different 

user communities. In fact, it is a combinatorial problem to 
separate a set of tweets into several sets that correspond to 
different components. Thus, it is hard to optimize parameters 
directly using gradient backpropagation. To solve this issue, we 
cast component detection as a reinforcement learning problem. 
In reinforcement learning problem, an actor will take actions 
following a policy at every step and get a reward signal from the 
environment. During learning, we try to optimize the parameters 
of the policy to maximize the expected accumulated reward. 
Specifically, in the component encoder, we view the set of 
tweets as a sequence, and the component encoder processes 
tweets one by one. For each tweet, the actor follows a policy to 
select an action from three options to deal with it, i.e. append it 
to one existing component, add a new component, or view it as 
noise and drop it. Then, the actor receives a reward from the 
popularity prediction result (whether the prediction is correct) 
after processing all tweets. Here, the policy is a parameterized 
function, which takes the state (consisting of current tweet, 
current components) as input and outputs a probability 
distribution for taking actions. In this way, we can learn to detect 
components from popularity prediction result in an end-to-end 
manner, without pre-defined heuristic knowledge to detect 
component or time-consuming extra data annotation. The 
component encoder is detailed as follows. 

State. The component encoder updates component 
representations recursively, and output a component feature at 
the last step. At the i-th step, the state includes 𝑣𝑖, a key 𝑘𝑖 and 
existed component representations 𝑀 , where 𝑘𝑖  can be text 

content representation 𝑣𝑖
𝑡𝑒𝑥𝑡  or user representation 𝑣𝑖

𝑢 , 
corresponding to partition an event into components according 
to text content or user information respectively. Here 𝑣𝑖 and 𝑘𝑖 
are all computed by the basic encoder. The matrix 𝑀 is used to 
store the representations of different components, serving as a 
memory module [14], where each row 𝑀𝑗  is the vector 

representation of one component.  

Actor network. An actor network is used to select an action 
from following options: (1) Add a new component 
representation to 𝑀; (2) Select an existing component in 𝑀, and 
update its representation; (3) View this input as noise, and drop 
it. We now describe the above procedure in detail. In the actor 
network, we first extract features from the component 
representation 𝑀𝑗 and the key 𝑘𝑖 using 

𝑥𝑗
𝑖 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒([𝑀𝑗 + 𝑘𝑖 , 𝑀𝑗⨀𝑘𝑖]) ), 𝑗 ∈ [1, 𝑚] (8)

where 𝑥𝑗
𝑖  is the feature for j-th component at i-th step. 𝑅𝑒𝐿𝑈 

represents rectified linear unit, 𝐷𝑒𝑛𝑠𝑒 is a dense connected layer, 
[∙,∙] and ⨀ represent for concatenation operation and element-
wise multiplication respectively. Then a max pooling operation 
is applied, 

𝑓𝑞
𝑖 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙([𝑥1

𝑖 , 𝑥2
𝑖 , … , 𝑥𝑚

𝑖 ]) (9)

𝑝𝑖
𝑎𝑐𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎𝑐𝑡𝑓𝑞

𝑖 + 𝑏𝑎𝑐𝑡) (10)

where m is the number of components in the memory, and 𝑝𝑖
𝑎𝑐𝑡  

is the action distribution for three kinds of actions (i.e. add, 
update or drop).  



Update. If the action is “update”, then we select a component 

in the memory module according to 𝑝𝑖
𝑐𝑜𝑚𝑝

 in Eq. (12) and 

update its representation according to Eq. (14), i.e. 

𝑧𝑗
𝑖 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑥𝑗

𝑖) ), 𝑗 ∈ [1, 𝑚] (11)

𝑝𝑖
𝑐𝑜𝑚𝑝

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑧1
𝑖 , 𝑧2

𝑖 , … , 𝑧𝑚
𝑖 ]) (12)

𝑗′~𝑝𝑖
𝑐𝑜𝑚𝑝 (13)

𝑀𝑗′ = 𝑡𝑎𝑛ℎ(𝑊𝑢[𝑣𝑖 , 𝑀𝑗′] + 𝑏𝑢) (14)

Add. If the action is “add”, a new component is appended to 
𝑀, i.e. 

𝑀𝑚+1 = 𝑡𝑎𝑛ℎ(𝐷𝑒𝑛𝑠𝑒(𝑣𝑖)) (15)

Reward. During training, the actor learns to take actions so 
as to maximize the expected reward. Our reward signal 𝑟 = 1 
when the prediction is correct, and it is 0 otherwise. The reward 
is time-delayed, which is valid only after we process all the 
observed tweets and make a prediction. At every running time, 
we sample an action from the policy, and thus the expected 
reward is estimated from the average value of the samples.  

Component feature. After processing all the 𝑛  tweets, we 
extract features from the memory module, i.e. the component 
feature, which can be calculated as Eq. (16): 

𝑣𝑐𝑜𝑚𝑝
𝑘 = 𝐴𝑡𝑡(𝐵𝑖𝐺𝑅𝑈([𝑀1, 𝑀2, … , 𝑀𝑚]) ) (16)

where k is the key in Eq. (8). Thus the final component features 
can be calculated as Eq (17): 

𝑣𝑐𝑜𝑚𝑝 = [𝑣𝑐𝑜𝑚𝑝
𝑢 , 𝑣𝑐𝑜𝑚𝑝

𝑡𝑒𝑥𝑡 ] (17)

where 𝑣𝑐𝑜𝑚𝑝
𝑢  and 𝑣𝑐𝑜𝑚𝑝

𝑡𝑒𝑥𝑡  refers to 𝑣𝑐𝑜𝑚𝑝
𝑘  when the key k is user 

or text content respectively. 

E. Related Event Encoder 

The related event encoder selects the events related to the 
target event from previous events, and extract features for 
popularity prediction from them. The selection of several related 
events from a set of events is also a combinatorial problem. Thus, 
similar to the component encoder, we learn a parameterized 
function that output a probability distribution corresponding to 
the confidence of being a related event. During training we try 
to optimize the expected reward of this function, where the 
expected reward is estimated by sampling. In this way, we can 
learn the related event encoder in an end-to-end manner. The 
selection of related events can be viewed as a special case of 
reinforcement learning, that only has one step in a sequence of 
actions. Thus, we still use reinforcement learning to optimize the 
related event encoder. Details of the related event encoder are as 
follows. 

Related event proposal. For the related event encoder, we 
design a related event proposal network and learn to recognize 
related events. To reduce computational complexity, we select 
some candidates for related events from previous events that 
have at least 𝐾𝑠𝑢 users or 𝐾𝑠𝑤 words in common with the target 
event, where 𝐾𝑠𝑢  and 𝐾𝑠𝑤  are hyperparameters. Denote the 

representations of candidate events as [𝑣1
𝑐𝑎𝑛𝑑 , 𝑣2

𝑐𝑎𝑛𝑑 , … , 𝑣𝑚𝑟𝑒
𝑐𝑎𝑛𝑑], 

where 𝑚𝑟𝑒  is the number of candidate events. For the j-th 
candidate event, the related event proposal network outputs a 

𝑝𝑗
𝑟𝑒. The higher 𝑝𝑗

𝑟𝑒 is, the more confidence we have to believe 

that the j-th candidate event is related to the target event. 
Specifically, the probability of a candidate being selected as a 
related event is computed from 

𝑥𝑗
𝑐𝑎𝑛𝑑 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒([𝑣𝑗

𝑐𝑎𝑛𝑑 + 𝑣𝑏 , 𝑣𝑗
𝑐𝑎𝑛𝑑  ⨀𝑣𝑏]) ) (18)

𝑧𝑗
𝑐𝑎𝑛𝑑 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑥𝑗

𝑐𝑎𝑛𝑑) ) ) ) (19)

𝑝𝑟𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑧1
𝑐𝑎𝑛𝑑 , 𝑧2

𝑐𝑎𝑛𝑑 , … , 𝑧𝑚𝑟𝑒
𝑐𝑎𝑛𝑑]) (20)

Related event feature. During training, we randomly sample 
𝐾𝑟𝑒 related events from candidate events according to 𝑝𝑟𝑒, while 
during testing we select 𝐾𝑟𝑒  related events with the largest 
probability in 𝑝𝑟𝑒. Let the representations of the selected related 
events be [𝑣1

𝑟𝑒 , 𝑣2
𝑟𝑒 , … , 𝑣𝐾𝑟𝑒

𝑟𝑒 ] . We extract the feature for 

popularity prediction from the related events, which is computed 
from: 

𝑣𝑟𝑒 = 𝐴𝑡𝑡(𝐵𝑖𝐺𝑅𝑈([𝑣1
𝑟𝑒 , 𝑣2

𝑟𝑒 , … , 𝑣𝐾𝑟𝑒
𝑟𝑒 ]) ) (21)

F. Fusion layer 

To predict event popularity, we fuse features from the basic 
encoder, the component encoder, and the related event encoder. 
Features are concatenated as a single vector, which is passed 
through two dense layers to produce the prediction result. In 
addition, considering that features from different encoders may 
have different distributions, we apply batch normalization [15] 
to the concatenated vector. 

Specifically, it is computed from: 

𝑧 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚([𝑣𝑏 , 𝑣𝑐𝑜𝑚𝑝 , 𝑣𝑟𝑒]) ) ) (22)

�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(𝑧) ) (23)

where 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚  is batch normalization, and ỹ  is the 
prediction result. The higher �̂�𝑐 is, the more confidence we have 
to believe the target event will have the popularity value in c-th 
range. 

G. Training 

We use cross entropy as the loss function, which is computed 
as: 

𝑙 = ∑ 𝑦𝑐𝑙𝑜𝑔 (�̂�𝑐)

𝑐

(24)

where yc is the true label, and yc = 1 if the popularity is in c-th 
range, otherwise it is 0.  

Auxiliary loss regularization. Considering that the related 
event encoder contains a sampling process with large variance, 
we design an auxiliary loss to produce more stable training 
process. The auxiliary loss tries to force features from the basic 
encoder useful for popularity prediction, which is computed 
from 

�̂�𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(𝑣𝑏) ) ) ) (25)

𝑙𝑎 = ∑ 𝑦𝑐𝑙𝑜𝑔 (�̂�𝑐
𝑎)

𝑐

(26)



where �̂�𝑎 is the prediction result using features from the basic 
encoder, and 𝑙𝑎 is cross entropy loss for this prediction.  

We adopt Adagrad [16], a widely used optimization method, 
to train the model. For training the actor network and related 
event proposal network, we employ the PPO algorithm [17], a 
policy gradient method for reinforcement learning, which uses a 
clipped surrogate objective to enhance stability during training. 

IV. EXPERIMENT AND DISCUSSION 

A. Dataset 

To evaluate the performance of our proposed popularity 
prediction model with baseline methods. We take Twitter as an 
exemplar social media platform. Twitter is a large social media 
platform with diverse users coming from different countries, and 
is an important platform for people to express opinions and 
discuss recent events. 

The dataset was collected using Twitter API 

(https://developer.twitter.com) from Aug. 9, 2016 to Dec. 10, 
2016. In Twitter, users usually use hashtag to mark the event or 
topic they discussing, which enables us to find messages about 
a specific event. We first drop hashtags with less than 10 tweets, 
then manually merge hashtags discussing the same event, and 
remove non-event hashtags. The observation time 𝑡𝑜 is set to 1, 
6, 12 or 24 hours in our dataset. Top 20% of events with regard 
to the popularity in the whole lifecycle are considered as popular 
events, and we randomly sample the same number unpopular 
events from the rest of events. Thus, each sample in our dataset 
is an event, which contains users, tweets and timestamps of the 
tweets discussing the event during the observation time, and the 
label is whether the event is popular considering the whole 
lifecycle of the event. We use 80% of the events in the first three 
months as the training set, the rest 20% of the events as the 
validation set, and the events in the last month as the test set. 
Table I shows the detail of the dataset. 

TABLE I.  STATISTICS OF THE DATASET 

#events #tweets 
avg. #tweets per 

event 

max #tweets per 

event 

41,035 4,561,375 111 234,944 

B. Baseline Methods 

We compare our model with the existing deep learning based 
popularity prediction models and several representative feature-
engineering based and generative models. Following methods 
are chosen as baseline methods for our comparison.  

(1) Tsur’s [1]: Adopts many lexicon features, associated 
with a few user and time series features.  

(2) Aiello’s [2]: Proposes many features about time series, 
user network and probabilistic language model. 

 (3) Hawkes [4]: Models popularity dynamics as Hawkes 
processes. 

(4) DeepCas [5]: Takes random walks on the local network, 
then uses GRU and attention mechanism to extract features from 
random walk paths to predict popularity.  

(5) DeepHawkes [6]: An extension of Hawkes model, which 
employs user embedding, GRU and weighted sum pooling to 
encode cascade paths.  

(6) ANPP [7]: An attention-based deep neural popularity 
prediction model, which uses three encoders to encode text 
content, user and time series and fuses them to predict popularity. 

We also compare to the following variations of our proposed 
model.  

(1) Basic encoder: Only uses features from the basic encoder.  

(2) EPP-NCE: Only uses the basic encoder and the related 
event encoder.  

(3) EPP-NRE: Only uses the basic encoder and the 
component encoder.  

(4) EPP-NALR: Removes auxiliary loss regularization from 
the proposed model. 

We use accuracy as the evaluation metric. 

C. Results 

Table II shows prediction performances of our proposed 
model and the baseline methods. As we can see, our proposed 
model outperforms all baseline methods, with significant 
improvements of accuracies under different observation time 
settings. Moreover, the improvements are more prominent when 
observation time is short. According to the definition of 
popularity prediction, shorter observation time means less 
information for prediction. Thus, it requires more prediction 
ability for short observation time. 

TABLE II.  ACCURACIES OF DIFFERENT METHODS 

Method 
Observation time 𝑻𝒐 (hours) 

1 6 12 24 

Tsur’s 0.612 0.653 0.682 0.722 

Aiello’s 0.633 0.701 0.728 0.781 
Hawkes 0.590 0.669 0.709 0.749 

DeepCas 0.580 0.658 0.707 0.780 

DeepHawkes 0.588 0.691 0.725 0.791 
ANPP 0.651 0.723 0.764 0.818 

Basic encoder 0.670 0.740 0.766 0.818 

EPP-NCE 0.683 0.737 0.774 0.825 
EPP-NRE 0.686 0.743 0.769 0.822 

EPP-NALR 0.681 0.721 0.756 0.818 

EPP 0.721 0.751 0.783 0.828 

In the baseline methods, Tsur’s and Aiello’s are both feature-
engineering based methods. Aiello’s is much more effective 
than Tsur’s. It shows that the selection of features influences the 
performance of feature-engineering based methods. Hawkes is 
the state-of-the-art generative model. Although it possesses 
better interpretability, its performance is lower than Aiello’s. 
Deepcas, DeepHawkes and ANPP are all deep learning based 
methods. We found Deepcas can not beat Aiello’s in our dataset, 
which shows well-designed features can also reach good 
performance. Both DeepHawkes and ANPP show significant 
performance improvement compared to the feature-engineering 
based methods. This indicates that well-designed deep learning 
based models are good at popularity prediction task. ANPP 
shows the best performance among the baseline methods, which 
uses three encoders to get representations of text content, user 
and time series, and then fuses them to predict popularity. It 
shows the advantage of utilizing more useful information.  



By comparing different variations of our proposed model, 
we found that component encoder and related event encoder are 
both useful for event popularity prediction. In addition, our basic 
encoder shows a slight performance improvement compared to 
ANPP. It is because we add a time embedding which can better 
capture time information. Removing the component encoder or 
the related event encoder will lower the performance of our 
proposed model, which shows the effectiveness of these 
encoders. Without specially designed auxiliary loss 
regularization, our model can not reach good performance and 
sometimes even get worse than the basic encoder, because the 
high variance in random sampling may influence the stability of 
the training process. 

To further investigate the effectiveness of the component 
encoder and the related event encoder, we provide a case study 
in Table III. We found the components and related events are 
reasonable. The event “#whereisNajeebAhmed” is about an 
Indian student Najeeb Ahmed got missing. As shown in Table 
III, the first component of this event is about people’s appealing 
for help. The second component discusses that the family of 
Najeeb Ahmed was arrested during the protest, and people 
condemned the government. The third component is about a 
student organization named ABVP. As for the related events, 
most of them are about India and Indian politician Modi. These 
related events and the target event all have some connections to 
India government, and people discussing these related events 
may be interested in the target event. 

TABLE III.  AN EXAMPLE OF COMPONENTS AND RELATED EVENTS  

Event #WhereIsNajeebAhmed 

Component 1 

Bring back Najeeb or send this mother to him where he 
is. 

Mother of Najeeb is madly waiting to hear her sons 

voice. 

Component 2 

Shame on Delhi police for dragging The mother of 

Najeeb as if she‘s a criminal. This is utter disgust. 

Sad part of Government and especially police. 

Component 3 

Why is Delhi Police not interrogating those ABVP goons 

who have beaten Najeeb on the day before he has been 
missing? 

Arrest ABVP leaders of JNU. 

Related Events 

#SrinagarSlapsModi 

#NawazRattlesIndia  

#NoSpaceForIndiaInKashmir 
#ModiFailedAgain 

 

V. CONCLUSIONS 

In this paper, we propose a popularity prediction model for 
social events combining partition and interaction. The model 
learns to partition an event into components, and select related 
events that may influence the popularity of the target event. It 
then predicts event popularity by modeling component 
information and interactions between related events. We employ 
the reinforcement learning algorithm to train the model, and 
propose an auxiliary loss regularization to enhance the training 
stability. Experimental results on the Twitter dataset show that 
our proposed model outperforms the competitive baseline 
methods. 
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