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Abstract
Purpose To make individualised preoperative prediction of
non-functioning pituitary adenoma (NFPAs) subtypes be-
tween null cell adenomas (NCAs) and other subtypes using
a radiomics approach.
Methods We enrolled 112 patients (training set: n = 75; test
set: n = 37) with complete T1-weighted magnetic resonance
imaging (MRI) and contrast-enhanced T1-weighted MRI
(CE-T1). A total of 1482 quantitative imaging features were
extracted fromT1 and CE-T1 images. Support vector machine
trained a predictive model that was validated using a receiver
operating characteristics (ROC) analysis on an independent
test set.Moreover, a nomogramwas constructed incorporating
clinical characteristics and the radiomics signature for individ-
ual prediction.
Results T1 image features yielded area under the curve
(AUC) values of 0.8314 and 0.8042 for the training and
test sets, respectively, while CE-T1 image features

provided no additional contribution to the predictive mod-
el. The nomogram incorporating sex and the T1 radiomics
signature yielded good calibration in the training and test
sets (concordance index (CI) = 0.854 and 0.857,
respectively).
Conclusion This study focused on the preoperative prediction
of NFPA subtypes between NCAs and others using a
radiomics approach. The developed model yielded good per-
formance, indicating that radiomics had good potential for the
preoperative diagnosis of NFPAs.
Key points
• MRI may help in the pre-operative diagnosis of NFPAs
subtypes

• Retrospective study showed T1-weighted MRI more useful
than CE-T1 in NCAs diagnosis

• Treatment decision making becomes more individualised
• Radiomics approach had potential for classification of
NFPAs
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Abbreviations
NFPAs Non-functioning pituitary adenomas
NCAs Null cell adenomas
CE-T1 Contrast-enhanced T1-weighted
SVM Support vector machine
AUC Area under the curve
ROC Receiver operating characteristic
ICCs Inter-observer correlation coefficients
mRMR minimum-Redundancy Maximum-Relevancy
BIC Bayesian information criterion
C-index Concordance index
NRI Net reclassification improvement

Introduction

Pituitary adenomas account for 15–20% of all intracranial
neoplasms, with an incidence of 80–90 cases per 100,000
population [1–3]. Non-functioning pituitary adenomas
(NFPAs) are not associated with any clinical hormonal syn-
drome and constitute nearly one third of pituitary adenomas
[4, 5]. Because of hormonal inactivity, NFPAs are usually
macroadenomas at the time of diagnosis, and growing
macroadenomas can compress adjacent structures and result
in headache, visual field defects, and/or various degrees of
hypopituitarism [6, 7]. As a highly heterogeneous group,
NFPAs can be divided into null cell adenomas (NCAs),
oncocytomas, and gonadotrophic adenomas based on ultra-
structural and immunohistochemical characteristics [6]. Yet,
there is no preoperative diagnostic method for distinguishing
these subtypes.

Previous studies have evaluated the effectiveness of tradi-
tional radiotherapy for different NFPAs subtypes. Hakan et al.
concluded that radiotherapy was only effective for NCAs and
invasive somatotropinomas [8]. Breen et al. [9] showed a sim-
ilar result, indicating that NCAs were more sensitive to radio-
therapy than oncocytomas; however, the use of radiotherapy is
restricted by potential complications such as hypopituitarism
[10, 11]. New radiotherapy techniques such as stereotactic
radiotherapy have demonstrated improved safety [12, 13].
Importantly, the current diagnosis of NFPAs subtypes is per-
formed postoperatively by electron microscopy, limiting the
early implementation of radiotherapy. The preoperative diag-
nosis of NFPAs can substantially benefit patients with NCAs
who are more likely to respond to neo-adjuvant radiotherapy.
Addressing this problem, here we developed a predictive
model to discriminate NCAs from others preoperatively using
a radiomics approach.

Radiomics is an emerging approach that extracts a large
number of image features from medical images and quantita-
tively evaluates potential associations between different ob-
jects [14, 15]. The effectiveness of this approach has been
validated for several tumour types; Huang et al. [16] focused
on the preoperative prediction of lymph node metastasis in
colorectal cancer and yielded a concordance index (C-index)
of 0.778, which was a satisfactory outcome compared with the
low true positive rate of lymph node metastasis clinically.
Radiomics approaches have also been validated in non-small
cell lung cancer [17, 18], prostate cancer [19], and rectal can-
cer [20].

In the present study, we sought to develop and validate a
predictive model for the preoperative prediction of NFPAs
subtypes (i.e., NCAs and other subtypes) using T1-weighted
(T1) and contrast-enhanced T1-weighted (CE-T1) magnetic
resonance imaging (MRI). To provide a more convenient
and individualised predictive tool for clinicians, a quantitative
nomogramwas constructed incorporating clinical features and
the radiomics signature.

Materials and methods

Estimation of sample sizes for the training and test sets

To develop a stable predictive model, an adequate number of
training samples is required. First, we estimated the robustness
of the feature selection algorithm to the training set size.
Stratified random sampling was performed to generate sample
sets with different sizes. A similarity index was used to mea-
sure the similarity between two sets of feature selection results
produced by the same feature selection algorithm under train-
ing data variations. Second, we estimated the robustness of the
SVM model to the training set size. Stratified random sam-
pling was performed to generate sample sets with different
sizes, based on which, our-fold cross-validation was per-
formed with SVM, and a permutation test was performed to
determine the minimal training set size. We found that 60
cases were sufficient to learn a stable model in this study.
While for the test sample size, we performed a power calcu-
lation and found that the minimum sample size is 23. In this
study, 112 patients (75 training data and 37 test data) were
enrolled, which is sufficient. Details of the estimation process
are shown in Supplementary S6.

Patients

Informed consent was waived and ethical approval was pro-
vided for this retrospective study by the institutional review
board of Beijing Tiantan Hospital Affiliated to Capital
Medical University. We retrospectively enrolled patients diag-
nosed as NFPAs between January 2011 and April 2016.
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Applying the inclusion and exclusion criteria (Supplementary
S1), a total of 112 patients were finally included in the study.
These patients were sorted according to the MRI acquisition
time, and then assigned to the training set and the test set at a
ratio of 2:1. The training set included 75 patients who were
imaged before June 2014 (inclusive) and was used for imag-
ing signatures building and model development, while the test
set included 37 patients with MRI acquired after June 2014
and was used for model validation.

Quantitative analysis of MR images

The MR imaging protocol consists of unenhanced T1-
weighted and T2-weighted images and contrast-enhanced
T1-weighted images, and the details of T1 and CE-T1 imag-
ing acquisition parameters are shown in Supplementary S2.
The flow of our quantitative images analysis included three
steps: region of interest delineation, feature extraction, and
analysis of inter-observer reproducibility. Tumour segmenta-
tion was conducted on T1 and CE-T1 MRI for all patients by
an experienced radiologist (Reader 1, with a ten-year experi-
ence in the study of pituitary adenomas) using ITK-SNAP
software (University of Pennsylvania, www.itksnap.org).

A total of 741 quantitative features were automatically ex-
tracted from delineated tumours for each set of T1 and CE-T1
images to describe tumour phenotype characteristics. These
features were divided into four groups: (I) tumour image in-
tensity [21], (II) shape and size features, (III) textual features
[22–26], and (IV) wavelet features. Features are shown in
Supplementary S3. Feature generation programming was im-
plemented in Matlab 2012a.

To assess the stability of the identified features for delinea-
tion inaccuracies, 50 patients were randomly selected from the
whole sample and another experienced radiologist (Reader 2,
with an eight-year experience in the study of pituitary adeno-
mas) delineated tumour regions on both T1 and CE-T1 im-
ages. The same feature generation procedure was then repeat-
ed on these delineated tumours and inter-observer correlation
coefficients (ICCs) were computed to evaluate the agreement
of all quantitative features extracted from T1 and CE-T1
images.

Radiomics signature building and predictive model
development

We first normalised both T1 features and CE-T1 features to
the range of [−1, 1]; subsequent feature selection and model
training were based on these normalised features. Then, a
support vector machine (SVM) was fit with the imaging fea-
tures in the training set for T1, CE-T1, and T1&CE-T1 im-
ages, respectively. To avoid over-fitting caused by high de-
grees of redundancy and irrelevance, we applied the
minimum-redundancy maximum-relevancy (mRMR) feature

selection algorithm based on mutual information [27] to gen-
erate the rank of all features for T1, CE-T1, and T1&CE-T1
images. This features rank identified the best combination of
features for optimally characterising the target rather than
ranking individual best features. To mitigate bias and improve
the robustness of our results, a stratified random sampling
approach was performed; for 250 times we applied the
mRMR feature selection algorithm based on the randomly
selected samples, thus generating 250 different feature ranks
for T1, CE-T1, and T1&CE-T1 images. Next, these different
ranks of features were aggregated into an ensemble feature
rank using Borda [28]. We assumed that the top ten features
contained sufficient information and assigned weights of 10,
9, 8,…, 1 to the top ten features, respectively. After obtaining
the aggregated feature rank, we regarded the top 20 features as
a candidate feature selection result. The flow chart of feature
selection was shown in Fig. 1.

Because mRMR feature selection ranks all input features,
there is no indication about the size of feature set required for
optimal classification performance [29]. To select the best
feature set size from the candidate obtained above, a four fold
cross-validation was conducted in the training set where a
support vector machine with the radial basis function kernel
(RBF-SVM) [30] was used as a classifier. To avoid over-
fitting in the training set, we utilised the Bayesian information
criterion (BIC) calculated by the average accuracy in the four
fold cross-validation to select the optimal feature set size.

We next developed the predictive model in the entire train-
ing set using RBF-SVM for T1, CE-T1, and T1&CE-T1 im-
ages. Finally, we obtained radiomics signatures corresponding
to optimal feature set sizes and predictive models for classify-
ing NCAs and other NFPA subtypes using T1, CE-T1, and
T1&CE-T1 images.

Validation of the radiomics model

The performance of the three final predictive radiomics
models were validated in a completely independent test set.
Prediction accuracy, area under the curve (AUC), sensitivity,
and specificity were calculated for both the training set and
validation set. ROC curves were also plotted to illustrate di-
agnostic performance. A Net Reclassification Improvement
(NRI) was calculated to measure the prediction increment of
CE-T1MR imaging features. Finally, the best predictive mod-
el was determined by performance comparison and the
radiomics signature corresponding to the best predictive mod-
el was selected as the final signature for subsequent use.

Development and validation of individualised predictive
nomogram

To provide a more individualised predictive model, a no-
mogram based on the multivariate logistic regression
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combining both the final radiomics signature and clinical
characteristics (continuous variables: age and tumour vol-
ume; and categorical variables: sex and Knosp grade)
were built in the training set. The calibration curve was
plotted for the constructed individual nomogram and the
Hosmer-Lemeshow test was conducted to assess similarity
between the predicted and expected probabilities. The per-
formance of the nomogram was first assessed in the train-
ing set and then validated in the completely independent
test set. C-indices and 95% confidence intervals (CIs)
were computed in both the training and test sets to quan-
tify performance of the nomogram.

Statistical analysis

All statistical analyses were conducted using PASW Statistics
18.0.0 (SPSS Company). Continuous variables such as age
and tumour volume were presented as the mean ± standard
deviation. Categorical variables such as sex and Knosp grade
were presented as the number (percentage). Group differences
were analysed for using Student’s t test or Pearson χ2 test, and
a two-sided p-value < 0.05 was considered to be statistically
significant.

Results

Patient characteristics

Of 112 patients included in the study (age, 50.11 ± 11.85
years), 46 (45.1%) were diagnosed as NCAs and 66 (54.9%)
as other NFPAs subtypes based on electron microscopy find-
ings. Patient characteristics in the training and test sets are
listed in Table 1. There were no significant differences be-
tween training set and validation set in age (p = 0.328) or
sex (p = 0.185). This indicated the justifiability using these
two sets as training set and test set. Univariate analysis of
clinical characteristics in the training and test sets is shown
in Table 2.

Satisfactory inter-observer reproducibility was achieved
for both T1 and CE-T1 imaging features, with a calculated
ICC range of 0.752–0.951 for T1 features and 0.780–0.973
for CE-T1 features. Subsequent processes were based on the
segmentation results of the Reader 1, who had a longer work
experience than Reader 2.

Radiomics signature building and predictive model
development

In the phase of feature selection, the optimal feature set size
was identified by averaging accuracy values across a four fold
cross-validation and corresponding BIC in the training set
with SVMs. Figure 2A shows the relationship between aver-
age accuracy and the number of features for T1, CE-T1, and
T1&CE-T1 images. Figure 2B shows the relationship be-
tween BIC value and the number of features for T1, CE-T1,
and T1&CE-T1 images. The top three features of T1 candi-
dates were selected in accordance with BIC value as the
radiomics signature for T1 images; the top two features were
selected for CE-T1 images; and top three features were select-
ed for T1&CE-T1 images. For T1 images, the three features
selected were wavelet HH ‘Informational Measure of
Correlation 1_45°’ (HH_IMC1_45°), ‘Sphericity’ and wave-
let HL ‘Informational Measure of Correlation 2_45°’
(HL_IMC2_45°). For CE-T1 images, the two features select-
ed were ‘Low Grey Level Run Emphasis_135° ’
(LGLRE_135°) and wavelet LH ‘Informational Measure of
Correlation 1_0°’ (LH_IMC1_0°). For T1&CE-T1 images,
the three features selected were the same as those selected
from T1 images. This suggested better performance of the
T1 radiomics signature than the CE-T1 radiomics signature
and equal performance of the T1 and T1&CE-T1 radiomics
signatures. The details of these selected features are shown in
Supplementary S3.

Validation of the predictive model

The performance of each predictive model was first assessed
in the entire training set and then validated in a completely
independent test set. Both the T1 and T1&CE-T1 predictive
models yielded AUC values of 0.8314 in the training set and
0.8042 in the test set; the CE-T1 predictive model yielded an
AUC value of 0.634 in the training set and 0.510 in the test set.
To quantitatively evaluate the prediction increment of CE-T1
images, NRI was calculated to be 0, indicating that the 741
CE-T1 imaging features had no additional contribution to the
prediction of NCAs based on T1 imaging features. Because
the T1&CE-T1 model was the same as T1 model, we only
showed results for the T1 and CE-T1 models. AUC, sensitiv-
ity, specificity, and accuracy of T1 and CE-T1 models are
shown in Table 3. ROC curve for each predictive model are

Fig. 1 The flow chart of ensemble feature selection
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shown in Fig. 3. Finally, the T1 predictive model was chosen
as the final predictive model for distinguishing NCAs from
other NFPA subtypes. The formula of the final model is
shown in Supplementary S4. To show the model more clearly,
we also plotted it in three-dimensional space in Fig. 4.

Development and validation of individualised predictive
nomogram

Incorporating sex and the radiomics signature, a nomo-
gram was developed in the training set (Fig. 5A). The
calibration curve of the training set showed good agree-
ment between the predicted and expected probabilities for

other NFPA subtypes (Fig. 5B), and the Hosmer-
Lemeshow test showed good similarity (p = 0.286). The
calibration curve of the test set also confirmed good mod-
el performance (Fig. 5C). The C-index of the nomogram
was 0.8536 (95% CI = 0.833–0.874) in the training set
and 0.857 (95% CI = 0.816–0.897) in the test set.

Discussion

To date, few studies have tried to discriminate NFPAs sub-
types using MR images. In the present study, we employed a
quantitative radiomics approach to provide preoperative

Table 1 Clinical characteristics
of patients (n=112) Characteristic Training Set

(n=75)

Test Set

(n=37)

Whole Set (n=112) p-value

Subtype(No.) 0.087†

NCAs 35 (57.33%) 11 (29.73%) 46 (41.07%)

Others 40 (42.67%) 26 (70.27%) 66 (58.93%)

Age (yr, mean ± std) 49.31 ± 12.54 49.31 ± 10.35 50.11 ± 11.85 0.328*

Gender(No.) 0.185†

Male 43 (57.33%) 26 (70.27%) 69 (61.61%)

Female 32 (42.67%) 11 (29.73%) 43 (38.39%)

Tumor Volume (cm3, mean ± std) 9.21 ± 9.88 6.69 ± 6.45 8.35 ± 8.90 0.176*

Knosp Grade (No [%]) 0.085†

Grade 0-2 43 (57.33%) 29 (78.38%) 72 (64.29%)

Grade 3-4 32 (42.67%) 8 (21.62%) 40 (35.71%)

Note: yr, year; std, standard deviation. p-value < 0.05 was considered as a significant difference

*Student’s t test

†Pearson’s test

Table 2 Univariate analysis of
clinical characteristics of patients
in the training set and test set

Characteristic Training Set

(N = 75)

p-value Test Set

(N = 37)

p-value

NCAs Others NCAs Others

Age (yr, mean±std) 47.85 ± 12.22 50.65 ± 12.83 0.352* 47.85 ± 10.89 53.80 ± 9.57 0.065*

Gender (No [%]) 0.005† 0.032†
Male 14 (40.0%) 29 (72.5%) 5 (45.5%) 21 (80.8%)

Female 21 (60.0%) 11 (27.5%) 6 (54.5%) 5 (19.2%)

Tumor Volume

(cm3, mean ± std)

10.89 ± 12.08 7.38 ± 6.43 0.149* 5.00 ± 3.12 7.47 ± 7.43 0.299*

Knosp Grade (No
[%])

0.465† 0.124†

Grade 0-2

Grade 3-4

19 (54.29%)

16 (45.71%)

24 (60.00%)

16 (40.00%)

7 (63.64%)

4 (36.36%)

22 (84.62%)

4 (15.38%)

Note: yr, year; std, standard deviation. p-value < 0.05 was considered as a significant difference

*Student’s t test

†Pearson’s test
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prediction of NFPAs subtypes, specifically distinguishing be-
tween NCAs and other subtypes, using T1 and CE-T1 images.

In our cohort, there were moremale patients with NFPAs (n
= 69, 61.61%) than female patients (n = 43, 38.39%), consis-
tent with the findings of Fernandez et al. [3] and Greenman
et al. [6]. Additionally, NCAs were slightly more common in

female patients (n = 27, 58.7%) than in male patients (n=19,
41.3%), while other subtypes were more common in male
patients (n = 50, 75.76%) than in female patients (n = 16,
24.24%). These findings were in agreement with those of
Feng et al. [32] and Blogun et al. [33], but diverged slightly
from that of Schaller [31], who found that NCAs were slightly
more prevalent in males; this discrepancy may be related to

Fig. 2 Choose the best size of feature set. (A) The relationship between
the size of feature set and the average of performance in the training set
for T1, CE-T1 and combination of T1 and CE-T1 MR images. (B) The
relationship between the size of feature set and BIC in the training set for
T1, CE-T1 and combination of T1 and CE-T1 MR images. Note: The
smooth curves were fitted based on those points

Fig. 3 The ROC curves of T1 signature (A) and CE-T1 signature (B) in
the training set and test set

Table 3 The performance of
models based on T1 weighted
MR images and contrast
enhanced T1 weighted MR
images

Variables
& models

Training set Test set

AUC

(95%CI)

SEN SPE ACC AUC

(95%CI)

SEN SPE ACC

T1 Radiomics
Signature

0.8314

(0.8290, 0.8354)

0.750 0.829 0.787 0.8042

(0.7905, 0.8009)

0.808 0.818 0.811

CE-T1
Radiomics

Signature

0.634

(0.6338, 0.6418)

0.550 0.714 0.627 0.510

(0.5016, 0.5148)

0.577 0.455 0.541
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differences in cohort, races, or study time period, but need
further validation.

Unlike previous work [16–20], we used ensemble fea-
ture selection to select informative features. This approach
may avoid sampling bias and improve the robustness of
feature selection results. When selecting optimal feature
set size from candidates, we used BIC values instead of
average accuracy values from the four fold cross-
validation in order to enhance the generalizability of the
selected features. Finally, we found that the T1 image sig-
nature provided more diagnostic value than did the CE-T1
image signature. In both the T1 and CE-T1 radiomics sig-
natures, almost all features were textural features. We sup-
posed that the different update rates of contrast agent Gd-
DTPA between patients might influence the intensity of
MR images and the CE-T1 textural features, which might
result in that the selected CE-T1 features were of discrim-
inative ability for the training set, but not for the test set.
Thus, the CE-T1 radiomics model based on the selected
CE-T1 features performed badly for the test set, that is,
the CE-T1 model risked overfitting. Additionally, we
found that NCAs tended to have smaller sphericity than
other subtypes; this observation merits further explanation.
We found that sphericity was positively correlated with
compactness. We also plotted this relationship in our data

and found exactly the same trend (Supplementary S5 Fig.
2). Terada et al. [34] found that fibrosis was more frequent-
ly identified in oncocytomas than in NCAs, which may
account for increased compactness in oncocytomas and
other subtypes in our study.

Our study had some limitations. First, to build the
radiomics signature and predictive model, we chose sagittal
pre-contrast T1 and CE-T1 images, which were usually re-
ferred to clinically; however, the combinations with other se-
quences such as diffusion-weighted imaging may have pro-
vided additional information and improved performance of
the predictive model. Second, the dataset in this study was
obtained from a single hospital. Many hospitals do not con-
duct electron microscopy for the post-surgical diagnosis of
NFPAs subtypes due to the use of identical treatment proto-
cols for different subtypes, such that a multicentre study was
not feasible. A future multicentre trial is required to validate
the performance of our model. Third, our model has limita-
tions for clinical use. At present, surgery is the first-line ther-
apy for the treatment of patients with NFPAs; however, the
preoperative diagnosis of patients with NCAsmay provide the
possibility of neo-adjuvant radiotherapy for patients with
NCAs that are more likely to benefit from radiotherapy.

In conclusion, we built a quantitative nomogram for preop-
erative prediction of NFPAs subtypes. The model was easy to

Fig. 4 The radiomics predictive model. This model was plotted to
facilitate comprehension. The model was built based on T1 radiomics
signature using SVMs. The x, y and z axis represents the feature named
HH_IMC1_45°, Sphericity and HL_IMC2_45° respectively. These three
features were normalized to the range of -1 to 1. The grey cream surface
represents the classifier surface. The orange points outside were predicted

as NCAs, while the blue points inside were predicted as others. The
orange solid points represent the patients with NCAs that were
predicted correctly; the blue solid points represent the patients with
others that were predicted correctly. The patients with NCAs which was
predicted incorrectly were shown as orange asterisk; the patients with
others which were predicted incorrectly were shown as blue asterisk
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Fig. 5 Developed radiomics
nomogram. (A) The nomogram
was developed in the training set,
incorporating radiomics signature
and patients’ gender. The
predictive probability axis
represents the probability of not
being NCAs. (B) Calibration
curve of the radiomics nomogram
in the training set. (C) Calibration
curve of the radiomics nomogram
in the test set. Calibration curve
presented the agreement between
the predicted probability of the
NCAs and ground truth. The
diagonal blue line represents an
ideal evaluation, while the black
and red lines represent the
performance of the nomogram.
Closer fit to the diagonal blue line
indicates a better evaluation
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use for both clinicians and patients and may assist clinicians
preoperatively to predict NFPAs subtypes more precisely,
which indicated that analysis of medical data using a
radiomics method could serve clinicians better.
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