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Abstract This paper addresses the stabilizing con-
trol problem for nonlinear systems subject to unknown
actuator saturation by using adaptive dynamic pro-
gramming algorithm. The control strategy is composed
of an online nominal optimal control and a neural
network (NN)-based feed-forward saturation compen-
sator. For nominal systems without actuator saturation,
a critic NN is established to deal with the Hamilton–
Jacobi–Bellman equation. Thus, the online approxi-
mate nominal optimal control policy can be obtained
without action NN. Then, the unknown actuator satu-
ration, which is considered as saturation nonlinearity
by simple transformation, is compensated by employ-
ing a NN-based feed-forward control loop. The stabil-
ity of the closed-loop nonlinear system is analyzed to
be ultimately uniformly bounded via Lyapunov’s direct
method. Finally, the effectiveness of the presented con-
trol method is demonstrated by two simulation exam-
ples.
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1 Introduction

Alongwith the increasing complexity ofmodern indus-
tries, the optimal control problem has been paid consid-
erable attention to nonlinear systems for many decades
in the control community. To achieve this objective,
a specified cost function or control policy is required
to be minimized by solving Hamilton–Jacobi–Bellman
(HJB) equation, which is difficult to be handled by ana-
lytical approach since it is actually a nonlinear partial
differential equation. Although dynamic programming
(DP) [1] gives a great strategy to handle the above
issue, the increasing dimension of nonlinear systems
increases the computation burden, which is the so-
called curse of dimensionality.

Fortunately, adaptive dynamic programming (ADP)
algorithm, which can avoid the above difficulty, is
developed [2,3]with the aid ofNNs [4–6] to tackle opti-
mal control problems for nonlinear systems forward in
time. Some synonyms are utilized for ADP, such as
adaptive DP [7], approximate DP [8], adaptive critic
designs [9], neuro-DP [10], neural DP [11], and rein-
forcement learning (RL) [12,13]. Werbos [2] catego-
rizedADP approaches into heuristic dynamic program-
ming (HDP), dual HDP (DHP), action-dependent HDP
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(ADHDP), and action-dependentDHP (ADDHP).After-
ward, globalized DHP (GDHP) and ADGDHP were
reported [9]. In the past few years, ADP algorithms
were developed further to deal with control prob-
lems for continuous-time systems [14,15], discrete-
time systems [16,17], systems with uncertainties [18]
and external disturbances [19], desired trajectory track-
ing [20,21], time-delay [22], fault-tolerant [23,24],
zero-sumgames [25], event-triggered systems [26], etc.

Specially, actuator saturation often emerges inmany
practical systems, such as spacecrafts [27], launch vehi-
cles [28], robot manipulators [29,30], helicopters [31],
teleoperation systems [32], suspension systems [33],
interception systems [34]. Its presence may cause con-
trol performance reduction or even the closed-loop sys-
temunstable. Great efforts have beenmade to nonlinear
systems in this situation [35–37]. It is worth pointing
out that someADP-basedmethods have been presented
in recent years. He et al. [38] constructed a certain
strategic utility function, which was approximated by a
critic NN. And then, a RL-based output feedback con-
troller was designed to transmit an expected tracking
performance for systems with magnitude constraints.
Abu-Khalaf et al. [39] presented a two-player policy
iteration-based L2-gain optimal feedback strategy for
nonlinear systems in the presence of saturation con-
straints. Heydari et al. [40] developed a finite-horizon
single network adaptive critic-based fixed-final-time
control-constrained optimal controllers. Zhang et al.
[41] presented an iterative two-stage DHP method for
switched nonlinear systems subject to actuators sat-
uration. Dong et al. [42] developed an actor-critic
framework-based near-optimal control scheme with
event-triggered strategy to reduce the computational
and transmission cost. Modares et al. [43] proposed
an actor-critic-based online learning policy iteration
algorithm to tackle the optimal control problem for
unknown nonlinear systems with input constraints. By
constructing a nonquadratic cost function, Xu et al.
[44] addressed the near-optimal regulation problem
via NNs to handle the time-varying HJB equation for
uncertain and quantized nonlinear discrete-time sys-
temswith input constraints. Song et al. [45] developed a
HDPmethod for nonlinear discrete time-delay systems
subject to actuator saturation. Zhang et al. [46] intro-
duced a nonquadratic cost function to avoid the affec-
tion of control constraints, and three NNs are employed
to facilitate the implementation of the iterative algo-
rithm. Liu et al. [47] presented a robust adaptive con-

trol algorithm based on RL for uncertain nonlinear
systems subject to input constraints. Meanwhile, they
developed a triple-NN approximation-based GDHP
framework for unknown discrete-time nonlinear sys-
tems [48]. Yang et al. respectively, developed an online
identifier-critic architecture [49] and systemdata-based
integral RL algorithm [50] for unknown nonlinear sys-
tems by updating the value function and control policy
simultaneously. For practical systems, Pomprapa et al.
[51] proposed a model-free policy iteration algorithm-
based state feedback configuration for controlling arte-
rial oxygen saturation of an interconnected three-tank
systems.

From the above literature, we can conclude that
most of existing results were concerned with nonlin-
ear systems subject to actuator saturationwith available
limit bounds, which are always necessary for designing
cost functions in ADP-based control methods directly
or indirectly. However, the outputs of actuators may
be biased or suddenly abrupt in many practical sys-
tems. It implies that the saturation bounds of the actu-
ators are uncertain or unknown, which makes exist-
ing methods incapable of action. Thus, the main chal-
lenge lies in that we have to design a novel ADP-
based optimal control scheme for nonlinear systems
with unknown actuator saturation since the necessary
saturation bounds in existing methods cannot be pro-
vided before designing the optimal control. This moti-
vates our research.

This paper focuses on an ADP-based stabilizing
scheme for nonlinear systems subject to unknown actu-
ator saturation. The developed control method consists
of the online nominal optimal control for nominal sys-
tem and a NN-based feed-forward compensation for
the unknown actuator saturation. The convergence of
the closed-loop system is guaranteed via Lyapunov sta-
bility theorem. Simulation examples verify the effec-
tiveness of the proposed stabilizing method.

The main contributions and highlights of this work
in contrast to the existing literature are summarized as
follows:

1. Unlike many existing works [22,24,52], this paper
proposes an online learning optimal nominal con-
trol method, which removes the necessary require-
ments of the initial stabilizing control and the per-
sisting excitation condition.

2. Different from the related methods in [46–50] that
were concerned with nonlinear systems with avail-
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able actuator saturation, this paper presents the
ADP-based control methods for nonlinear systems
subject to unknown actuator saturation. Thus, the
developed control method avoids any priori knowl-
edge of actuator saturation.

3. The optimal control is derived depending only on
critic NN, rather than dual- or triple-NN-based
architecture. Thus, it reduces the computational
burden of traditional adaptive critic designs [43,
49].

The structure of this paper is organized as follows:
In Sect. 2, the problem statement is provided. In Sect. 3,
theADP-basedonline nominal optimal control is devel-
oped for nominal nonlinear systems. Then, a NN-based
saturation compensator is developed for eliminating
the negative affection of unknown actuator saturation.
In the following, the stability analysis is presented. In
Sect. 4, two numerical examples are employed to verify
the effectiveness of the proposed method. Finally, the
conclusion is drawn in Sect. 5.

2 Problem statement

The considered nominal continuous-time nonlinear
systems can be described as

ẋ = f (x) + g(x)u, (1)

where x ∈ R
n and u ∈ R

m are the system state and
control input vectors, respectively. f (·) and g(·) are
assumed to be locally Lipschitz and differentiable in
their arguments such that the solution x(t) to nonlinear
system (1) is unique for anygiven initial state x(0) = x0
with f (0) = 0. Nonlinear system (1) is stable in the
sense that there exists a continuous control u which
stabilizes the system asymptotically.

In order to better adapt practical control require-
ments, we are concerned with the stabilization prob-
lems for continuous-time nonlinear systems subject to
unknown actuator saturation as

ẋ = f (x) + g(x)τ, (2)

where τ = [τ1, τ2, . . . , τm]T ∈ R
m is the saturated

actuator output vector, which is the actual applied con-
trol input of (2). It slopes between its lower and upper
limits, i.e.,

τi = sat(ui ) =
⎧
⎨

⎩

ui max, ui > ui max,

ui , ui min ≤ ui ≤ ui max,

ui min, ui < ui min,

(3)

where i = 1, 2, . . . ,m, and ui max and ui min are the
unknown upper and lower limit bounds, respectively.
That is to say, actuator saturation occurs if the com-
manded input ui falls outside of the set [ui min, ui max],
and the control input cannot be implemented to the
device totally.

The main purpose of this paper is to propose a
NN compensation-based ADP stabilization scheme for
nonlinear systems subject to unknown actuator satura-
tion and ensure all the signals of the closed-loop non-
linear system (2) to be ultimately uniformly bounded
(UUB).

3 Online approximate optimal controller design
and stability analysis

This section is divided into three parts. The online
learning nominal optimal control scheme is presented
in the first part for nominal system (1). Then, in the sec-
ond part, a feed-forward NN compensator is developed
to tackle the unknown actuator saturation for nonlinear
system (2). In the third part, the UUB stability of the
closed-loop nonlinear system is analyzed.

3.1 Online nominal optimal control

For nominal nonlinear system (1), a feedback control
un(x) ∈ Ψ (Ω) will be derived to tackle its control
problem such that the closed-loop nonlinear system is
stable. The objective of this optimal control problem is
to find the stabilizing nominal control un(x) to mini-
mize the infinite-horizon cost function which is given
by

V (x0) =
∫ ∞

0
U (x(s), un(s))ds, (4)

where U (x, un) = xTQx + uTn Run is the utility func-
tion, U (x, un) ≥ 0 for all x and un with U (0, 0) = 0,
and Q ∈ R

n×n and R ∈ R
m×m are positive definite

matrices. If the associated infinite-horizon cost func-
tion (4) is continuously differentiable, the infinitesimal
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version of (4) is the so-called nonlinear Lyapunov equa-
tion

0 = U (x, un) + ∇V T(x)ẋ .

In light of the nominal control policy un(x) and the cost
function V (x), define the Hamiltonian as

H (x, un,∇V (x)) = U (x, un)

+ (∇V (x))T ( f (x) + g(x)un),
(5)

and the optimal cost function as

V ∗(x) = min
un∈ψ(Ω)

∫ ∞

t
U (x(s), un(s))ds. (6)

According to [1], the optimal cost function V ∗(x) of (6)
can be derived from the solution of the HJB equation

0 = min
un(x)∈Ψ (Ω)

H
(
x, un,∇V ∗(x)

)
(7)

with V ∗(0) = 0, and the item ∇V ∗(x) indicates the
partial gradient of the cost function V ∗(x) in (6) with

respect to x , i.e., ∇V ∗(x) = ∂V ∗(x)
∂x

.

If the solution V ∗(x) of (7) exists, the closed-loop
description for optimal control can be obtained as

u∗
n(x) = −1

2
R−1gT(x)∇V ∗(x). (8)

By simple transformation of (8), we get

(∇V ∗(x)
)T

g(x) = −2
(
u∗
n(x)

)T
R. (9)

As we know, NNs have strong capability of approxi-
mating anynonlinear functions. Since the differentiable
cost function on the compact set Ω is usually highly
nonlinear and nonanalytic, in the following,we approx-
imate it with a critic NN with a single hidden layer as

V (x) = WT
c σc(x) + εc(x), (10)

where Wc ∈ R
l1 and σc(x) ∈ Rl1 are, respectively, the

ideal weight vector and the activation function of the
critic NN, l1 is the number of neurons in the hidden

layer, and εc(x) is the NN approximation error. Then,
the partial gradient of V (x) with respect to x is

∇V (x) = (∇σc(x))
T Wc + ∇εc(x), (11)

where ∇σc(x) = ∂σc(x)

∂x
∈ R

l1×n and ∇εc(x) are

the partial gradients of the activation function and the
approximation error, respectively.

Thus, the Hamiltonian can be described as

H (x, un,Wc) = U (x, un)

+
(
WT

c ∇σc(x) + ∇εc(x)
)
ẋ . (12)

Combining (7) with (12), we have

U (x, un) + WT
c ∇σc(x)ẋ = ecH , (13)

where ecH = −∇εc(x)ẋ indicates the NN approxi-
mation-caused residual error.

In virtue of the idealweight vectorWc is unavailable,
the approximate critic NN can be expressed by

V̂ (x) = ŴT
c σc(x), (14)

where Ŵc is the estimation of the ideal weight vector
Wc. Then, we have the partial gradient of V̂ (x) with
respect to x as

∇ V̂ (x) = (∇σc(x))
T Ŵc. (15)

Thus, the Hamiltonian can be approximated as

H
(
x, un, Ŵc

)
= U (x, un) + ŴT

c ∇σc(x)ẋ = ec.

(16)

Define W̃c = Wc − Ŵc as the weight approximation
error. Comparing (12) with (16), we have

ec = ecH − W̃T
c ∇σc(x)ẋ . (17)

For adjusting the critic NNweight vector Ŵc, the steep-
est descent algorithm is used to minimize the objective

function Ec = 1

2
eTc ec. Thus, the weight vector approx-

imation error can be updated adaptively by
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˙̃Wc = − ˙̂Wc = lc
(
ecH − W̃T

c θ
)

θ, (18)

where θ = ∇σc(x)ẋ .
Thus, Ŵc can be updated by

˙̂Wc = − lcecθ, (19)

where lc > 0 is the critic NN learning rate.
Therefore, the ideal nominal control policy can be

expressed according to (8) and (10) as

un(x) = − 1

2
R−1gT(x)

(
∇σT

c (x)Wc + ∇εc(x)
)

.

(20)

Thus, it can be approximated as

ûn(x) = − 1

2
R−1gT(x)∇σT

c (x)Ŵc. (21)

From (20), we can observe that the nominal control
policy can be obtained by the critic NN only and the
training of the action NN is not required any more.

Theorem 1 For nonlinear system (1), the weight vec-
tor approximation error is guaranteed to be UUB if the
critic NN weight vector is updated by (19).

Proof Choose the Lyapunov function candidate as

L1 = 1

2lc
W̃T

c W̃c. (22)

The time derivative of (22) is

L̇1 = 1

lc
W̃T

c
˙̃Wc

= W̃T
c

(
ecH − W̃T

c θ
)

θ

= W̃T
c ecH θ −

∥
∥
∥W̃T

c θ

∥
∥
∥
2

≤ 1

2
e2cH − 1

2

∥
∥
∥W̃T

c θ

∥
∥
∥
2
. (23)

Assume ‖θ‖ ≤ θM , where θM > 0. Hence, L̇1 < 0 as
long as W̃c lies outside of the following compact set

ΩW̃c
=

{

W̃c :
∥
∥
∥W̃c

∥
∥
∥ ≤

∥
∥
∥
∥
ecH
θM

∥
∥
∥
∥

}

.

Therefore, according to Lyapunov’s direct method, the
approximation error of the weight vector is UUB. This
completes the proof. 	


3.2 Neural network-based unknown saturation
compensation

In this subsection, aNN-based compensator is designed
in detail as a feed-forward control loop, which is used
for compensating the unknown nonlinear saturation.

In order to tackle the unknown actuator saturation,
the vector δ(x) = u − τ = [δ1, δ2, . . . , δm]T ∈ R

m ,
which is the so-called saturation nonlinearity, is intro-
duced with the definition as

δi (x) = ui − τi

=
⎧
⎨

⎩

ui − ui max, ui > ui max,

0, ui min ≤ ui ≤ ui max,

ui − ui min, ui < ui min,

(24)

where i = 1, 2, . . . ,m.
Noticing that in the case of no actuator saturation,

δ(x) remains zero, and the control law becomes the
same as the ideal nominal control law (20). However,
δ(x) is nonzero in the presence of actuator saturation.
Thus, the saturated nonlinear system (2) can be trans-
formed into

ẋ = f (x) + g(x)(u − δ). (25)

Here, a backpropagation NN is introduced to approxi-
mate the unknown item δ(x) and it can be presented as

δ(x) = WT
δ σδ(x) + εδ(x), (26)

where Wδ ∈ R
l2 and σδ(x) ∈ R

l2 are, respectively, the
ideal weight vector and the activation function, l2 is the
number of neurons in the hidden layer, and εδ(x) is the
NN approximation error.

To determine the unknown weight vector Wδ , (26)
is approximated by

δ̂(x) = ŴT
δ σδ(x), (27)

where Ŵδ is the ideal weight vector estimation. It can
be updated by

˙̂Wδ = − ˙̃Wδ

= Γδσδ(x)
(
2uTn R − xTg(x)

)
+ kΓδ ‖x‖ Ŵδ,

(28)

where Γδ > 0 and k > 0 are both NN learning rates.
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Fig. 1 The presented NN compensation-based control architecture

Define δ̃ = δ − δ̂ as the overall NN approximation
error. We have

δ̃ = WT
δ σδ(x) − ŴT

δ σδ(x) + εδ(x)

= W̃T
δ σδ(x) + εδ(x). (29)

Therefore, based on the approximated δ(x), the
unknown actuator saturation problem can be tackled by
designing a feed-forward compensation for the nominal
optimal control (20). From this viewpoint, the overall
control law for nonlinear system (2) is designed as

u = un + δ̂, (30)

where the NN-based saturation compensator δ̂ is used
to compensate for the saturation nonlinearity. In sum-
mary, the proposed NN compensation-based overall
control architecture is illustrated in Fig. 1.

Remark 1 Actually, external perturbationswhich inclu-
de the exogenous signals and model uncertainties have
to be considered to satisfy the requirements in real
implementations. And indeed, some existing studies
have focused on solving optimal control problems
based on ADP for nonlinear systems with external per-
turbations by constructing improved cost function [26]

or adding a compensation robust term [53]. To reduce
the optimal controller design procedure, external per-
turbations are not handled in the ADP-based stabiliza-
tion in this paper. We can design optimal controller for
real implementations inspired from the literature such
as [26,53].

3.3 Local online PI algorithm

The feed-forwardNNcompensation-based optimal sta-
bilization algorithm (30) which consists of online opti-
mal stabilization based on (20) and the NN compen-
sator based on (27) is described as Algorithm 1.

From Algorithm 1, we can see that V (0)(x) = 0
is required. It is required to prove the convergence of
Algorithm 1, e.g., V (p)(x) → V ∗(x) and u(p)

n (x) →
u∗
n(x) as p → ∞.

3.4 Stability analysis

Before the stability analysis, necessary assumptions
should be listed as follows.

Assumption 1 The NN approximation error of satu-
ration nonlinearity is bounded, i.e., ‖εδ(x)‖ ≤ εδM ,
where εδM > 0 is a constant.
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Algorithm1Feed-forward compensation-based online
optimal stabilization algorithm
1: Select a set of small positive constants ξ , the maximum itera-

tion time M , the maximum run step N , the initial values Ŵ (0)
δ

and Ŵ (0)
c of corresponding NN weight vectors. Let p = 0,

q = 0 and V (0)(x) = 0, and begin with a given nominal
control policy u(0)

n (x).
2: (Policy evaluation) Let p > 0, solve the following nonlinear

Lyapunov equation for the control policy u(p)(x):

0 = U (x, u(p)
n ) + ∇V (p)T(x) ( f (x) + g(x)un) . (31)

3: (Policy improvement) Update the control policy u(p)
n (x) by

u(p+1)
n (x) = −1

2
R−1gT(x)∇V (p)(x). (32)

4: If
∥
∥V (p+1)(x) − V (p)(x)

∥
∥ ≤ ξ , stop and obtain the approxi-

mated optimal control; else, let p = p + 1, if p < M , return
to Step 2, otherwise go to Step 5.

5: (Feed-forward compensation)Update the weight vector Ŵδ

of NN by

˙̂W (q+1)
δ = Γδσδ(x)

(
2u(p+1)T

n R − xTg(x)
)

(33)

+ kΓδ ‖x‖ Ŵ (q)
δ .

And obtain the approximate unknown term δ̂(q+1)(x) as

δ̂(q+1)(x) = Ŵ (q)T
δ σδ(x). (34)

6: (Overall control policy) Update the overall control policy
u(p)(x) by

u(q+1) = u(p+1)
n + δ̂(q+1)(x). (35)

7: If j < N , return to Step 2; else, stop running.

Assumption 2 There exist positive constants δM and

δm such that ‖Wδ‖ ≤ δM and
∥
∥
∥W̃δ

∥
∥
∥ ≤ δm , respectively.

Theorem 2 Consider nonlinear system subject to
unknown actuator saturation (2), the transformed
dynamics (25), as well as Assumptions 1 and 2, if the
overall control law is designed as (30), which is com-
posed of the online nominal optimal control (20) and
NN-based feed-forward saturation compensation (27)
via the update law (28), all the signals of the closed-
loop nonlinear system can be guaranteed to be UUB.

Proof Choose the Lyapunov function candidate as

L2 = 1

2
xTx + V (x) + tr

(
1

2
W̃T

δ Γ −1
δ W̃δ

)

, (36)

where tr(·) indicates the trace of the matrix.
The time derivative of (36) is

L̇2 = xT ẋ + V̇ (x) + tr
(
W̃T

δ Γ −1
δ

˙̃Wδ

)

= xT ( f (x) + g(x)(u − δ)) + V̇ (x)

+ tr
(
W̃T

δ Γ −1
δ

˙̃Wδ

)
. (37)

In the existence of saturation nonlinearity, for the sec-
ond item of (37), we have

V̇ (x) = ∇V T(x)ẋ

= ∇V T(x) ( f (x) + g(x)u) − ∇V T(x)g(x)δ.
(38)

Define δ̃ = δ − δ̂. Then, introducing the presented
overall control law (30), (38) becomes

V̇ (x) = ∇V T(x) ( f (x) + g(x)un) − ∇V T(x)g(x)δ̃.
(39)

According to (7), (9), and (30), one has

L̇2 = xT ( f (x) + g(x)un) − xTQx − uTn Run

+
(
2uTn R − xTg(x)

)
δ̃ + tr

(
W̃T

δ Γ −1
δ

˙̃Wδ

)
.

(40)

Since f (x) is locally Lipschitz, there exists a positive
constant D f which satisfies ‖ f (x)‖ ≤ D f ‖x‖. Sup-
pose that ‖g(x)‖ ≤ Dg [53]. Thus, (40) becomes

L̇2 ≤D f ‖x‖2+ 1

2
‖x‖2+ 1

2
D2
g ‖un‖2 − λmin(Q) ‖x‖2

− λmin(R) ‖un‖2 +
(
2uTn R − xTg(x)

)
δ̃

+ tr
(
W̃T

δ Γ −1
δ

˙̃Wδ

)
, (41)

where λmin(·) indicates the matrix minimum eigen-
value.

Combining (26), (27), and (28), one has

L̇2 ≤D f ‖x‖2+ 1

2
‖x‖2+ 1

2
D2
g ‖un‖2−λmin(Q) ‖x‖2

− λmin(R) ‖un‖2 +
(
2uTn R − xTg(x)

)
δ̃
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− tr
(
W̃T

δ (σδ(x)
(
2uTn R − xTg(x)

)
+ k ‖x‖ Ŵδ)

)

= −
(

λmin(Q) − D f − 1

2

)

‖x‖2

−
(

λmin(R) − 1

2
D2
g

)

‖un‖2

+
(
2uTn R − xTg(x)

) (
W̃T

δ σδ(x) + εδ(x)
)

− tr
(
W̃T

δ (σδ(x)
(
2uTn R − xTg(x)

)
+ k ‖x‖ Ŵδ)

)

= −
(

λmin(Q) − D f − 1

2

)

‖x‖2

−
(

λmin(R) − 1

2
D2
g

)

‖un‖2

+
(
2uTn R − xTg(x)

)
εδ(x) − k ‖x‖ tr

(
W̃T

δ Ŵδ

)

= −
(

λmin(Q) − D f − 1

2

)

‖x‖2

−
(

λmin(R) − 1

2
D2
g

)

‖un‖2

+
(
2uTn R − xTg(x)

)
εδ(x)

− k ‖x‖ tr
(
W̃T

δ

(
Wδ − W̃δ

))
. (42)

According to Assumptions 1 and 2, and supposing
that

∥
∥2uTn R − xTg(x)

∥
∥ ≤ υ, (42) becomes

L̇2 ≤ −
(

λmin(Q) − D f − 1

2

)

‖x‖2

−
(

λmin(R) − 1

2
D2
g

)

‖un‖2

+ εδMυ − k ‖x‖
(
δMδm − δ2m

)
. (43)

Let A = λmin(Q) − D f − 1

2
, B = k

(
δMδm − δ2m

)
.

From (43), we can conclude that L̇2 ≤ 0 when the
state x lies outside of the compact set

Ωx =
{

x : ‖x‖ ≤ −B + √
B2 + 4AεδMυ

2A

}

with the following conditions:
⎧
⎪⎨

⎪⎩

λmin(Q) > D f + 1

2
,

λmin(R) ≥ 1

2
D2
g.

It implies that all the signals of the closed-loop non-
linear system with unknown actuator saturation can be
guaranteed to be UUB. This completes the proof. 	


Remark 2 Many existing works have tackled con-
trol problems for nonlinear systems [35–37], but
they never considered their control performance in
an optimal manner. On the other hand, some ADP-
based optimal control approaches have been devel-
oped for nonlinear systems with available actuator sat-
uration [46–50], rather than unknown actuator sat-
uration, which is more common in practice since
the outputs of actuators may be biased or suddenly
abrupt in practice. To tackle this problem, a NN
compensation-based ADP stabilizing algorithm is pro-
posed in this paper. It guarantees not only nonlinear
systems with unknown actuator saturation to be sta-
ble, but also in an optimal manner. In other words,
the major improvement and advantage of this paper
lie in that the proposed method not only deals with
unknown actuator saturation, but also guarantees the
control performance of nonlinear systems to be opti-
mum.

Remark 3 Themodel uncertainties and exogenous sig-
nals are important issues to be considered in practice.
Actually, many existing ADP-based control schemes
have been proposed for nonlinear systems with uncer-
tainties and external disturbances [26,47,54–56]. From
them, we can conclude that the control strategy to
solve this problem is to add a robustifying term in
cost functions, which are used for designing an ADP-
based control approaches in this situation. The aim
of this paper lies in that an ADP-based optimal con-
trol scheme is presented for nonlinear systems with
unknown actuator saturation. Thus, optimal controllers
which consider model uncertainties and exogenous
signals can be designed by referring to these exist-
ing strategies, and it will be focused on in our future
work.

4 Simulation studies

In the simulation section, two numerical examples are
given to show the effectiveness of the developed ADP-
based control scheme.

4.1 Example 1

Consider a torsional pendulum system which is des-
cribed as [57]
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⎧
⎪⎨

⎪⎩

dθ

dt
= ω,

J
dω

dt
= τ − Mgl sin θ − fd

dθ

dt
,

where M = 1
3 kg and l = 2

3 m denote the mass and
length of the pendulum bar, respectively. The angle θ

and the angular velocity ω are the system states. J =
4
3Ml2 and fd = 0.2 are the rotary inertia and frictional
factor, respectively. g = 9.8m/s2 is the gravitational
acceleration. τ ∈ R is the actual applied control input
with unknown actuator saturation; in this simulation, it
is chosen, respectively, for two cases as

Case 1

τ = sat(u) =
⎧
⎨

⎩

0.1, u > 0.1,
u, − 0.1 ≤ u ≤ 0.1,
− 0.1, u < − 0.1.

Case 2

τ = sat(u) =
⎧
⎨

⎩

0.2, u > 0.2,
u, −0.2 ≤ u ≤ 0.2,
− 0.2, u < − 0.2.

Define x = [x1, x2]T = [θ, ω]T ∈ R
2 as the state

vector of the torsional pendulum system, whose initial
state is x0 = [1,−1]T. In this simulation, the cost func-
tion (4) is approximated by the critic NN,whoseweight
vector is indicated as Ŵc = [Ŵc1, Ŵc2, Ŵc3]T, and its
initial value is selected as Ŵc0 = [0.6, 0.2, 0.9]T. The
activation function of the critic NN is set as σc(x) =[
x21 , x1x2, x22

]
. Let Q = 10I2 and R = 10I , where

In denotes identity matrix with n dimensions, the critic
NN learning rate be lc = 0.0002, the learning rates of
NN saturation compensator be Γδ = 0.01 and k = 1,
respectively.

In case 1, the simulation results are illustrated in
Figs. 2, 3, 4, 5, and 6. As it is displayed in Fig. 2,
one can observe that the critic NN weights converge to
[0.6108, 0.1764, 0.9576]T, which indicates Theorem
1. From Fig. 3, the NN-based saturation compensator
(27) is employed to overcome the negative affection
from the unknown actuator saturation. We can see that
the actual control input illustrated in Fig. 4 reaches the
actuator bounds we predefined at the beginning of the
operation process. After some settling time, the control
input signal varies within the bounded values. Fortu-
nately, with the proposed ADP-based stabilizing con-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2
Weights of the critic neural network

wc1 wc2 wc3

Fig. 2 Critic NN weights of torsional pendulum system

0 2 4 6 8 10 12 14 16 18 20
Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Compensated control input

Fig. 3 Compensated control input of torsional pendulum system

trol scheme (30), the system states are still convergent
as shown in Fig. 5. For the same simulation within the
time interval [0, 2000s], the amplified system states
are shown in Fig. 6, from where we can see that all
the signals of system states converge within a compact
set 4.0× 10−6. This indicates the system states can be
ensured to be UUB as concluded in Theorem 2. Alter-
natively in case 2, Figs. 7 and 8 provide the actual sat-
urated control input and system states under the same
controller as case 1, respectively. We can see that the
developed stabilization scheme is effective even though
the torsional pendulum system is driven by actuators
with different unknown saturation bounds.
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Fig. 4 Actual control input of torsional pendulum system
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Fig. 5 System states of torsional pendulum system

4.2 Example 2

Consider the following nonlinear system [58]:

ẋ =

⎡

⎢
⎢
⎣

x2 − x1
− 0.5x1 − 0.5x2 + 0.5x2 (cos(2x1) + 2)2

x4 − x3
− x3 − 0.5x4 + 0.5x4x23

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0 0
cos(2x1) + 2 0

0 0
0 x3

⎤

⎥
⎥
⎦ τ, (44)
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Fig. 6 Amplified system states of torsional pendulum system

0 2 4 6 8 10 12 14 16 18 20

Time (s)
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-0.1

0

0.1

0.2
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Fig. 7 Actual control input of torsional pendulum system in case
2

where x = [x1, x2, x3, x4]T ∈ R
4 is the system state

vector and τ = [τ1, τ2]T ∈ R
2 is the actual control

input vector. For the purpose of simulation, we, respec-
tively, define the unknown actuator saturation of two
cases as

Case 1

τi = sat(ui ) =
⎧
⎨

⎩

3, ui > 3,
ui , − 3 ≤ ui ≤ 3,
− 3, ui < − 3,

where i = 1, 2.
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Fig. 8 System states of torsional pendulum system in case 2

Case 2

τ1 = sat(u1) =
⎧
⎨

⎩

5, u1 > 5,
u1, − 5 ≤ u1 ≤ 5,
− 5, u1 < − 5,

and

τ2 = sat(u2) =
⎧
⎨

⎩

6, u2 > 6,
u2, − 6 ≤ u2 ≤ 6,
− 6, u2 < − 6.

Let the initial state vector be x0 = [1,−1, 2,−2]T.
The critic NN weight vector is indicated as Ŵc =
[Ŵc1, Ŵc2, . . . , Ŵc10]T, whose initial value is Ŵc0 =
[0.1, − 0.2, 0.9, − 0.3, 0.5, − 0.1, 0.4, 0.3, 0.2, −
0.7]T. The critic NN activation function is selected as
σc(x) = [x21 , x1x2, x1x3, x1x4, x22 , x2x3, x2x4,
x23 , x3x4, x24 ]. Let Q = I4, R = 0.1I2, the critic
NN learning rate be lc = 0.0002, the learning rates of
the NN for saturation compensator beΓδ = 0.0001 and
k = 1, respectively.

The simulation results in case 1 are displayed in
Figs. 9, 10, 11, 12, and 13. As shown in Fig. 9, it illus-
trates that the criticNNweights converge to [0.0916, −
0.1359, 0.8892, − 0.3563, 0.4380, 0.0247, 0.2536,
0.2636, 0.0666, − 0.2856]T. Figure 10 shows the
feed-forward compensation of the unknown saturation
nonlinearity via the NN. By using the proposed control
scheme, the actual control inputs illustrated in Fig. 11
drive the states of the nonlinear system (44) to con-
vergence, which are shown in Fig. 12. In detail, the
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-0.8

-0.6

-0.4

-0.2
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0.8
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Weights of the critic neural network

wc1 wc2 wc3 wc4 wc5

wc6 wc7 wc8 wc9 wc10

Fig. 9 Critic NN weights of nonlinear system in Example 2
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Fig. 10 Compensated control inputs of nonlinear system in
Example 2

amplified system states are illustrated in Fig. 13, which
describes all the signals of system states converge to a
compact set 1.0 × 10−6 when the time sequence runs
sufficiently long. This accords with the conclusion of
Theorem 2. From these figures, we notice that the sys-
tem states converge to equilibrium point, though the
unknown actuator saturation exists. For case 2, Fig. 14
shows the converged systemstates under the actual con-
trol input as shown in Fig. 15 which is obtained from
the same control algorithm as case 1. Thus, we can
declare that the proposed ADP-based stabilizing con-
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Fig. 11 Actual control inputs of nonlinear system in Example 2
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Fig. 12 System states of nonlinear system in Example 2

trol scheme is effective for nonlinear systems subject
to unknown actuator saturation.

Remark 4 The assumptions are feasible in these two
examples. Actually, all signals in practical systems are
norm-bounded. Taking Example 1 as an example, the
compensated NN is used to approximate the unknown
saturation nonlinearity (24), which is bounded since
the driving ability of actuator is limited. Furthermore,
the NNweight and its estimation are bounded such that
they and their estimation errors have upper bound.
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Fig. 13 Amplified system states of nonlinear system in Example
2
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Fig. 14 System states of nonlinear system in Example 2 of case
2

Remark 5 In the existingmethods [46–50], the authors
have addressed the ADP-based optimal control prob-
lems for nonlinear systems with available actuator
saturation. In contrast to them, this paper considers
nonlinear systems in the presence of unknown actu-
ator saturation, which is tackled by a feed-forward
NN compensation-based ADP stabilization scheme. In
other words, this paper extends the ADP method to a
new controlled plant; this is the key contribution of this
work.
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Fig. 15 Actual control inputs of nonlinear system in Example 2
of case 2

5 Conclusion

In this paper, the stabilizing control problem of nonlin-
ear systems subject to unknown actuator saturation is
tackled by using NN compensation-based ADP algo-
rithm. The online updated criticNN is adopted to derive
the cost function approximately. As well, the nominal
optimal control can be obtained thereby. By construct-
ing a NN-based feed-forward saturation compensator,
the overall ADP-based stabilizing control is imple-
mented to reduce the influence of the unknown actua-
tor saturation. Simulation results demonstrate that the
proposed control scheme is effective. This strategy is
utilized to deal with the stabilizing problem without
any a priori knowledge of the limit bounds of saturated
actuators, as well as the initial stabilizing control and
the persisting of excitation condition, which are always
required in traditional ADP methods. It is worth men-
tioning that the developed stabilization method is con-
cerned with nonlinear systems with available dynam-
ics. In the future, the challenges on unknown nonlin-
ear systems and trajectory tracking problems will be
enhanced for similar optimal control problems to bet-
ter adapt the requirements of practical systems more.
Meanwhile, general computational intelligence, such
as fuzzy logic systems, evolutionary computation, can
be applied to solve optimal control problems in the
smart framework.
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