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Abstract
Different cognitively demanding tasks recruit globally distributed but functionally specific net-

works. However, the configuration of core networks and their reconfiguration patterns across

cognitive loads remain unclear, as does whether these patterns are indicators for the performance

of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large

cohort of 448 subjects, acquired with the brain at resting state and executing N-back working

memory (WM) tasks. We discriminated core networks by functional interaction strength and con-

nection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode

network (DMN) were core networks, but each exhibited different patterns across cognitive loads.

The FPN and DMN both showed strengthened internal connections at the low demand state (0-

back) compared with the resting state (control level); whereas, from the low (0-back) to high

demand state (2-back), some connections to the FPN weakened and were rewired to the DMN

(whose connections all remained strong). Of note, more intensive reconfiguration of both the

whole brain and core networks (but no other networks) across load levels indicated relatively poor

cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct

roles and reconfiguration patterns across cognitively demanding loads. This study advances our

understanding of the core networks and their reconfiguration patterns across cognitive loads and

provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based

on brain networks.
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1 | INTRODUCTION

Imaging neuroscience has helped researchers conceptualize the brain

as a system of networks. A surge in brain science research has been

continuously fertilized by advancements in graph theory and imaging

techniques, including improvements in spatiotemporally enhanced

functional magnetic resonance imaging (fMRI). In large-scale brain net-

work studies, the entire brain is first parcellated into functionally spe-

cific units (network nodes) from a functional (Glasser et al., 2016) or

structural perspective (Fan et al., 2016), with the connectivities
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between node-pairs (network edges) then characterized using a variety

of functional or structural measurements (Bullmore & Sporns, 2009;

Sporns, 2011). In this manner, brain network theory can provide a

quantitative method for describing the way in which the brain works,

predict whether a brain is on a developmental or aging track (Dosen-

bach et al., 2010), and evaluate whether the brain is in certain neuro-

psychiatric or neuropsychological states (Fornito & Harrison, 2012).

The general architecture of brain networks during transitions

between different mental states (e.g., resting or performing tasks;

Cole et al., 2013) has been identified previously. Researchers are

increasingly interested in the underlying dynamics of brain networks,

which may shed light on the roles of different brain regions or why

the brain remains in a specific mental state (Bullmore & Sporns,

2012). Brain dynamics have been investigated at different temporal

scales (Hutchison et al., 2013), from several seconds, to minutes, to

weeks, and even to years. In particular, by comparing brain networks

in different mental states, including resting and task states, it is pos-

sible to study global network reconfigurations and functional node

dynamics, which provide critical clues for dissecting the ways that

different functional units collaborate to implement a specific task

(Cohen & D’Esposito, 2016).

As variable cognitive load paradigms, working memory (WM) tests

have been widely used to evaluate memory maintenance and update

performance, as well as to assess fluid intelligence and academic

capacity (Eriksson, Vogel, Lansner, Bergstrom, & Nyberg, 2015; Ullman,

Almeida, & Klingberg, 2014). Both the identification of WM core net-

works and their interactions and transitions across various cognitive

load levels have attracted considerable attention in neuroscience (Eriks-

son et al., 2015). However, researchers are far from reaching a consen-

sus regarding the composition of core networks in WM or from

discovering how they interact and segregate at different WM load lev-

els. Although Cole and colleagues (2013) identified the FPN as the

most flexible network, that is, the one most likely to change across a

variety of tasks, Vatansever, Menon, Manktelow, Sahakian, and Stama-

takis (2015), using the same measure of globally variable connectivity,

identified the dorsal attention network (DAN), visual cortex, and DMN

as the most flexible networks when the brain confronts different

cognitive loads (resting and 0–3 backs WM; see Figure 4 in Vatansever

et al., 2015). Furthermore, due to its role in information maintenance,

the active participation of the primary sensory cortex is well known,

e.g., involvement of the visual cortex in visuospatial WM (Mueller et al.,

2016). However, earlier study also identified the primary sensory cor-

tex as a stable module, even across different load levels (Braun et al.,

2015). Thus, efforts have been made to understand the reconfiguration

of WM core networks. For example, Liang and colleagues (2016) spe-

cifically examined interactions of the DMN, FPN, and salience network

(SN) across cognitive loads (0–3 backs WM) and, more recently, Bolt

and colleagues (2017) investigated changes in global network topology

and hub structure from the resting to task states. However, it is still

unclear how global and core networks of WM cohesively reconfigure

across cognitive loads, and whether such reconfigurations reflect

behavioral performance.

In this study, we analyzed resting state and WM task fMRI data

from the Human Connectome Project (HCP) S500 release (Van Essen

et al., 2013) to identify WM core networks, defined as the most flexible

networks across cognitive loads or networks with the strongest con-

nections in cognitive loads. Network reconfiguration was investigated

at both the global network (network of the entire brain) and subnet-

work levels (subnetworks of FPN and DMN, as defined in Power et al.,

2011). The reconfiguration intensity of the global network was eval-

uated by the dissimilarity of the modular partitions in two states (see

Figure 2). We further examined whether global reconfiguration inten-

sity was correlated with WM performance. At the subnetwork level,

we used nodal connectivity diversity (NCD, as in Figure 1b) to quantify

the connectivity reconfiguration flexibility, where higher NCD between

brain states indicated more intense reconfiguration. We also examined

connection strength (see Equation 2) to evaluate which connectivities

or subnetworks dominated the reconfiguration. Reconfiguration flexi-

bility and dominant subnetworks in reconfiguration may facilitate the

identification of WM core networks and clarify how these core net-

works cohesively reconfigure to adapt to WM loads. We hypothesized

that network reconfiguration intensity would be associated with WM

performance, both at the global level and at the level of core networks

associated with WM.

FIGURE 1 Illustrations of the ROI distributions across the brain (panel a) and definition of nodal connectivity diversity (NCD; panel b). In
panel a, the ROIs, as defined in (Power et al., 2011), are color coded for the 10 networks, and were the network nodes used for the
following network analyses. To compute the NCD for a node between two states, the connection profiles in the two states were extracted
(labeled in blue and red boxes/curves, respectively), with Pearson correlation coefficients then computed. NCD is one minus the absolute
value of the correlation coefficient [Color figure can be viewed at wileyonlinelibrary.com]
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2 | MATERIALS AND METHODS

2.1 | Dataset and preprocessing

The dataset was extracted from the Human Connectome Project (HCP)

dataset S500 release. We used the same data collection descriptions

applied in our previous work on a partially overlapping portion of the

HCP dataset (Zuo, Song, Fan, Eickhoff, & Jiang, 2016). Briefly, the data-

set was collected on a 3T MRI Skyra scanner (Siemens, Germany) using

a standard 32 channel head coil. The magnetic field produced by the

coil was modeled to provide customized distortion correction. The pri-

mary scanning parameters were: repetition time (TR), 720 ms; echo

time (TE), 33.1 ms; flip angle, 528; field of view, 208 3 180 mm; slice

thickness, 2.0 mm; and voxel size, 2.0 mm isotropic cube (Van Essen

et al., 2013).

The minimally preprocessed resting and task fMRI dataset

received from the HCP S500 was processed as follows (Glasser et al.,

2013): (a) gradient nonlinearity distortion; (b) 6 degrees of freedom

(DOF) FSL/FLIRT-based motion correction; (c) FSL/topup-based dis-

tortion correction and scalp stripping; (d) registration to T1 image

space; and (e) FSL/FNIRT-based registration to MNI 2 mm space.

After receiving the data, we further scrubbed the frames with

excessive head motions based on >0.5 mm criterion (the percentage

of frames with excessive motion was 1.6% for resting data and 1.5%

for WM) and corrected the frames by interpolation (Power, Barnes,

Snyder, Schlaggar, & Petersen, 2012). We then band-pass filtered the

data at 0.009–0.08 Hz to reduce low-frequency drift and high-

frequency noise (Vatansever et al., 2015). The mean signal, five princi-

pal components of white matter and cerebrospinal fluid (CSF), and

movement parameters and their derivatives (Movement_parameters.

txt file in the HCP S500 release) were regressed out as confounding

factors to remove physiological noise. The above principal compo-

nents were derived separately by decomposing the regional signal

masked by the eroded white matter and CSF (Behzadi, Restom, Liau,

& Liu, 2007). As we used a series of regions of interest (ROIs) in this

study to sample gray matter of the entire brain (described below), a

smoothing step was not applied to reduce the signal interactions

between neighboring ROIs. In addition, as there is no current consen-

sus regarding physiological interpretation of global signal regression

(Murphy, Birn, Handwerker, Jones, & Bandettini, 2009), and previous

evidence has revealed that global signals potentially affect correla-

tions and anti-correlations between networks (Chang et al., 2016; Liu,

Nalci, & Falahpour, 2017; Wong, DeYoung, & Liu, 2016), we

FIGURE 2 Correlations between intensity of the network reconfigurations andWM score (reaction time). First three panels are correlation plots
for the three mental state pairs, that is, resting versus 0-back, 0-back versus 2-back, and resting versus 2-back, respectively. Last panel is the correla-
tion plot between the resting state and WM (concatenating 0-back and 2-back)
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conducted separate study in which the global signals were and were

not regressed out to validate our findings.

The HCP S500 dataset contained records from 512 subjects. Cer-

tain data were excluded based on the following criteria: (a) data

reported on the known issues page of the HCP website, htttps://wiki.

humanconnectome.org/display/PublicData/HCP1Data1Release1

Updates%3A1Known1Issues1and1Planned1fixes; (b) data that did

not have a sufficient number of frames (correct number of frames for

each mental state is described in Barch et al., 2013); (c) data for which

the task fMRIs did not have a full explanatory variable (EV) record; (d)

data acquired without left-right (LR) or right-left (RL) phase encoding;

(e) data from subjects whose performance records (reaction time [RT]

and accuracy in WM tasks) were recognized as outliers (as we were

not sure whether these subjects were normally actively engaged in

task execution) by the Grubbs test (Grubbs, 1969) based on a confi-

dence level of 0.05 (implemented by Francisco Garcia in https://cn.

mathworks.com/matlabcentral/fileexchange/28501-tests-to-identify-

outliers-in-data-series). In the end, 448 subjects (188 males and 260

females, aged 29.1 6 3.5 years for the entire sample) were used for

subsequent analyses. The original task datasets included seven con-

ventional tasks, that is, WM, gambling, motor, language, social cogni-

tion, relational processing, and emotion processing (see Table 1 in

Barch et al., 2013); however, the current study only utilized the WM

dataset with 0-back and 2-back sessions plus separate resting ses-

sions to sequentially compare network integration and segregation at

different cognitive demand loads. The WM test in the HCP is a vari-

ant of the traditional visuospatial WM test and effectively activates

well-known WM-related functional regions (see Table 1 in Barch

et al., 2013). In this study, for computing simplicity, only session #1

(recorded as REST1 in HCP) for the resting state was used.

2.2 | Functional network constructions

The functional connectivities in the three states (i.e., resting, 0-back, and

2-back) were determined separately. During WM execution, to reduce

the effects of hemodynamic delays from the previous conditions, the

first 10 frames (�8 s) from each block were discarded and five frames

(�4 s) of the next block were concatenated (Liang, Zou, He, & Yang,

2013). To alleviate bias introduced by the phase encoding directions dur-

ing fMRI scanning, the functional connectivities were constructed sepa-

rately by computing the Pearson correlation coefficients in two datasets

consisting of the LR and RL phase-encoding directions and then averag-

ing the connectivities after Fisher z-transformation. Before calculating

the functional connectivity of the task fMRI time series, mean task activ-

ity was regressed out and the residuals were used for network construc-

tion (Cole et al., 2013). Rather than a voxel-wise connectivity analysis,

which has a huge computational burden, we used the mean time series

of all voxels in 5-mm spheres around the ROI groups proposed by Power

et al. (2011). This grouping scheme contains 264 ROIs distributed over

the brain (including the cerebral cortex, subcortical nucleus, and cerebel-

lum) grouped into 10 putative networks, including the sensory network,

cingulo-opercular network (CON), auditory network, subcortical network,

FPN, SN, DAN, visual cortex network, DMN, and ventral attention net-

work (VAN; Figure 1a), along with three other undetermined networks

(Cole et al., 2013; Vatansever et al., 2015).

2.3 | Modular partitioning and measurement of the

global network reconfigurations

To measure the global network reconfigurations that occur when the

brain confronts different cognitively demanding situations, for example,

resting and WM (including 0-back and 2-back), the random coefficient

(Traud, Kelsic, Mucha, & Porter, 2011) was used to evaluate the similar-

ity between the individual modular partitions between states. Because

data collection in the three mental states mentioned above took differ-

ent lengths of time, using a predefined, absolute threshold to remove

noisy and weak connections will result in different network densities,

thereby making it impossible to compare modular partitions. Therefore,

at this stage, the functional networks in the different states were

thresholded by their connectivity densities and then binarized to dis-

cover existing connections. To address the bias that could result from

using different thresholds, three incremental thresholds (5%, 10%, and

15%) were adopted to validate the results (Bullmore & Sporns, 2009;

Rubinov & Sporns, 2010; van Wijk, Stam, & Daffertshofer, 2010).

In general, to explore the modularity of the second-level network

created by interaction (signed) between the 10 predefined networks

(Power et al., 2011), we used an extended version of modularity maxi-

mization to simultaneously consider the positive and negative links

(Bassett et al., 2011):
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TABLE 1 Correlations between the NCD of each network and WM
scores (reaction time)

resting vs.
0-back

0-back vs.
2-back

resting vs.
2-back

R p Value R p Value R p value

Sensory .08 7.40E-02a –.01 .83 .05 .34

CON .18 1.04E-04b .05 .25 .07 .12

Auditory .14 2.90E-03b .04 .38 .09 .05

DMN .26 3.43E-08b .10 .03a .15 1.76E-03b

VAN .10 3.08E-02b .01 .91 .07 .12

Visual .13 5.15E-03b .09 .07 .07 .11

FPN .23 6.54E-07b .13 .01a .19 7.10E-05b

Salience .21 6.01E-06b .11 .02a .14 2.48E-03b

DAN .19 3.79E-05b .06 .18 .10 .04a

Subcort. .05 .27 .06 .21 .08 .10

R indicates the correlation coefficient and p value is the significance
level.
ap Value reached significance (p < .05).
bp Value survived multiple comparison correction by FDR (p < .05).
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node i in A1 (positive component of A) and 2A2 (negative component

of A), respectively, and A5A12A2 where w1 and w2 indicate total

connection strength in 2A1 and 2A2, respectively; g1 and g2 are the

resolution parameters for the optimal modular index; gi indicates the

region assignment for node i; and d indicates that only the fraction

where the two nodes are in the same region will be counted in the final

modular index. To obtain the modular partitions of the global network

(264 nodes), as the network was binarized as described above, only the

positive items in Equation 1 were counted. In this study, the default

resolution parameter g51 was adopted when applying the generalized

Louvain method (http://netwiki.amath.unc.edu/GenLouvain/GenLou-

vain; Mucha, Richardson, Macon, Porter, & Onnela, 2010). To validate

the robustness of this finding, g values from 0.4 to 1.6 with an incre-

mental step of 0.2 were tested (see Supporting Information, Figure S2).

Moreover, to reduce the likelihood of biasing random walk while opti-

mizing modularity, we repeated the solution 100 times and the parti-

tion associated with the largest modularity index was selected as the

final partition scheme and was thus used to choose the modularity

index (Vatansever et al., 2015).

2.4 | Nodal flexibility measurement: Nodal

connectivity diversity (NCD)

After examining the global network reconfiguration, we further ascer-

tained which subnetworks dominated the network reconfigurations. In

the subsequent analysis, the fully-weighted functional connectivities

(Fisher z-transformation of Pearson correlation coefficients between

node-pairs) were used rather than the binarized ones to conserve con-

nectivity information (Bassett et al., 2011; Vatansever et al., 2015). By

definition, the NCD describes the distance between connection profiles

of a node in two mental states, that is, NCD 5 1-|corr(s1,s2)|, where s1

and s2 indicate the connectional profiles in state #1 and #2, respec-

tively (see Figure 1b, where “corr” is the Pearson correlation coefficient

and “|�|” is the absolute value, with NCD constrained within the range

[0, 1]). This distance measure is popular in mathematics and signal proc-

essing and has been recently used in neuroscience (Schultz & Cole,

2016). In contrast to the global variable connectivity measure proposed

by Cole et al. (2013), the NCD treats the nodal connectivity profile as a

full vector instead of a compressed scalar value. This method allows

comprehensive evaluation of the connectivity transitions. In this stage,

two sequential state-pairs were counted, that is, resting versus 0-back

and 0-back versus 2-back.

2.5 | Connection strength measurement

The connection strength between two networks is defined in Equation

2 as follows:

I5
1

K � L
X

i 2 network#1;

j 2 network#2

jAijj; (2)

where, Aij is the element in the connectivity matrix that is the same as

in Equation 1, K and L denote the size of the two interacting networks,

respectively, with K�L used to normalize connection strength to reduce

the effect of different network sizes. Connection strength indicates

communication abilities between networks (Liao et al., 2013; Zuo et al.,

2012). The internal connection strength of a given network is com-

puted by constraining the nodes i and j of the connection inside the

network.

Furthermore, modular partitioning of the 10 3 10 connection

strength matrices between the 10 predefined networks was achieved

using Equation 1 for each mental state for each subject. The modularity

maximization method in Equation 1 identified the communities in

which the intra-interactions were strong, but the inter-interactions

were weak. A consensus partition was then derived across all 448 sub-

jects for the three mental states (i.e., resting, 0-back, and 2-back) by

statistical testing, which compared the network association matrix to a

random network association matrix (null model; Bassett et al., 2013).

2.6 | Comparing change trends in connectivity

between two states

The change trends in connection strength between two mental state

pairs, that is, resting versus 0-back and 0-back vs. 2-back, were investi-

gated. The overall strategy was to perform group comparisons between

each pair of networks across subjects for each connection. Because the

lengths of the time series for the three mental states were not identical,

the z-test statistic was used, and is defined in Equation 3 as follows

(Diedenhofen & Musch, 2015):

Zobserved5
z12z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N1231
1

N223

q ; (3)

where, z1 and z2 are the two connection strengths (Fisher z-transfor-

mation of the correlation coefficients) to be compared, and N1 and N2

are respectively the lengths of the time series for which the connection

strengths z1 and z2 were computed. For a given significance level, for

example, a 5 0.05 in which the critical value was 61:96, each connec-

tion was labeled as 1 (connection in the latter state increased com-

pared to the former state) or 21 (otherwise). To define the change

trends in connection strength between two mental states, the above

labels along the connections between the two networks (normalized by

K�L, as defined in Equation 2) were summed, and a one sample t test

was performed to determine whether the change trend was signifi-

cantly positive (increasing) or negative (decreasing).

3 | RESULTS

3.1 | Intensity of global network reconfiguration

correlates to WM performance

We investigated, from a global perspective, whether the intensity of

network reconfiguration was related to WM performance. Based on

the three density threshold levels (5%, 10%, and 15%) for binarizing

the connectivity network, our results consistently demonstrated that

the similarities between modular partitions in the two mental states

were significantly correlated to the RT values in the WM task
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executions (p < .05 after FDR correction for multiple comparisons,

using the mafdr function in Matlab version 2012; Figure 2 shows

results for the 15% density threshold, Supporting Information, Figure

S1 shows the results for the 5% and 10% density thresholds). We also

varied the resolution parameters (g5 0:6; 1:4½ � with step50.2) to eval-

uate the influence of g and confirmed the robustness of the findings

(see Supporting Information,Figure S2). These results collectively

showed that, when global network reconfigurations were considered,

the greater the number of functional network reconfigurations, the

worse was the performance on the WM tasks. It should be noted that

the regression in Figure 2 only addressed a small portion of variance.

Furthermore, after regressing out the global signal, similar correlation

results were achieved (see Validation section in Supporting Informa-

tion). However, this finding did not clarify which networks had domi-

nant roles during the reconfiguration; thus, this was the goal of the

following analyses.

3.2 | FPN is the most stable and dominant network

when the brain confronts different cognitively

demanding loads

To identify the most/least flexible networks between WM loads, the

NCD measure (defined in Figure 1b) was used to evaluate the flexibility

of each network. Of the 10 networks, the FPN showed the least flexi-

bility (Figure 3a). However, the FPN also exhibited overwhelmingly

dominant connection strength to the entire brain, as defined in Equa-

tion 2 (Figure 3b), over all other networks, except for the subcortical

network. The subcortical network has heterogeneous and complex

functional components globally regulating other networks (Hibar et al.,

2015), resulting in strong global connection strength. The differences in

NCD and global connection strength between the FPN and other net-

works were almost all significant when tested using paired t tests

(p < .005, FDR corrected for multiple comparisons), except for the

interaction strength between FPN and DAN in the 0-bk state (p 5 .18),

though it still showed a consistent trend (see Supporting Information,

Table S3 for detailed p values).

3.3 | Functionally grouped networks across different

mental states

Having identified the FPN as the most dominant but inflexible network

when the brain confronts different cognitively demanding loads, we

further explored how the 10 networks were functionally grouped

when the brain was in each of the three mental states. For the resting

state, four communities were identified from the 10 networks, whereas

three communities were recognized for the 0-back and 2-back states,

FIGURE 3 Enhanced quartile boxplots (circles and horizontal lines inside each box indicate mean and median values of subjects,

respectively) for flexibility analyses using NCD (panel a) and connection strength analyses (panel b). Panel a: x-axis indicates the 10
networks and y-axis is average NCD for each network. Top plot is for the sequential mental state pairs, resting versus 0-back, and the bot-
tom plot is for 0-back versus 2-back. Each set of error bars indicates SE across the 448 subjects. In each box, the horizontal line indicates
median NCD and the circle indicates mean NCD. Panel b: Annotations are similar to those in panel a, except the y-axis indicates global con-
nection strength from the examined network to the whole brain, separately for 0-back (top) and 2-back (bottom)
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respectively. Figure 4 presents the modular allegiance matrices, which

indicate the percentage of the subjects (448 in total) that generated

the same modular assignment for each element (network-pair). The yel-

low squares mark the communities identified using Equation 1 for each

mental state, with four communities for the resting state (panel A) and

three communities for the 0-back and 2-back states, respectively.

These results collectively showed that, without considering the auxil-

iary networks, the networks in both the 0-back and 2-back task states

were consistently composed of two communities: that is, the FPN-

group, which contained the FPN, SN, DAN, and visual network; and

the DMN-group, which contained the DMN and VAN. Furthermore,

the visual network became detached from the FPN and SN in the 2-

back task in contrast to their association in the 0-back task. To validate

the robustness of these findings, we changed resolution parameter g

from 0.4 to 1.6 with a step of 0.2, repeated the modular partitioning

using the different g values, and generated the same results (see Sup-

porting Information, Figure S3).

We further examined which of the 10 networks reorganized in

the same direction as the global network, specifically whether the

reconfigurations of the 10 networks correlated with task performance

(RT), as shown in Figure 2. The correlation coefficients and their signifi-

cance levels are listed in Table 1. The correlation analyses showed that, in

contrast with the resting state, most networks reconfigured in the same

direction as the global network in the 0-back state (p < .05, after FDR

correction), including the FPN- and DMN-groups. Furthermore, the FPN-

and DMN-groups, especially the FPN, SN, and DMN, maintained their

reconfigurations in the same direction as the global network in the 2-

back state (p < .05, after FDR correction). In contrast to the 0-back state,

however, the visual network was less engaged in the FPN-group in the 2-

back state. Considering possible confounding factor effects, we also con-

ducted similar analyses after regressing out sex, age, and head motions,

and yielded consistent results (see Supporting Information, Table S1).

3.4 | Change trends in connection strength between

core networks

We found that the FPN- and DMN-groups were the core functional

networks, which intensively reconfigured in the same direction as the

FIGURE 4 Modular partitions of the 10 networks for the three mental states: that is, resting, 0-back, and 2-back. For each state, modular
partitioning was computed using Equation 1. The nodal assignment matrix was then obtained for each subject. The noise in the network
assignment was removed by subtracting a random nodal association matrix (null model; Bassett et al., 2013), and the final partition was
obtained as the consensus partition using Equation 1. Yellow squares mark the communities identified using Equation 1 for each of the
three mental states [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Connectivity comparisons between sequential mental state-pairs, that is, 0-back versus resting and 2-back versus 0-back. Red
indicates an increase from lower to higher demand and blue indicates the opposite. In each panel, X indicates that the connectivity compari-
son failed to reach significance (p < .05) and O indicates that the significance did not survive FDR correction (p < .05) [Color figure can be
viewed at wileyonlinelibrary.com]
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global network when the brain was confronted with different cogni-

tively demanding loads (i.e., resting, 0-back, and 2-back) in the WM

test. Thus, we next examined whether the connection strength

between these core networks changed sequentially in the three mental

states. The z-test statistic (Equation 3) showed that, for the sequential

transitions from resting to 0-back and from 0-back to 2-back, the inter-

actions between the FPN- and DMN-groups increased continuously (t

(447) > 1.65, p < .05). Furthermore, the intra-interaction within the

FPN-group increased in the 0-back state. For connectivity changes

between the FPN and other networks from 0-back to 2-back, we found

no consistent output when the global signal was or was not regressed

out (see Validation section in Supporting Information), thus we marked

this changing direction as undetermined (dashed line in right-bottom

panel in Figure 6).

4 | DISCUSSION

In this study, we globally explored network reconfigurations across

cognitive loads (resting state and visuospatial WM test) and found that

the FPN was consistently the most dominant network (with the strong-

est connection strength over the brain) but had the least flexibility in

responding to changes in the task state compared with other networks.

The FPN-group (FPN, SN, DAN, and visual network) and DMN-group

(containing DMN and VAN) actively regulated the entire network. Fur-

thermore, they consisted of core networks across cognitive loads and

exhibited the same behavior as the global reconfiguration in correlation

analyses with WM performance (RT). When the brain changed from

the resting state to 0-back (lower load), both the FPN- and DMN-

groups increased their intra-connections and the visual network also

strengthened its interactions with other networks. As the load

increased (from 0-back to 2-back), the FPN-group became undeter-

mined, and the connectivity changes between the FPN and other net-

works from 0-back to 2-back showed no consistency when the global

signal was or was not regressed out (see Validation section in the Sup-

porting Information). In addition, some of its members, including the

visual network, SN, and DAN, became significantly rewired to the

DMN (as illustrated in Figures 5 and 6).

4.1 | FPN-group and DMN-group globally regulate

network reconfiguration

Modularity maximization for the 10 networks generated the FPN-

group (FPN, SN, DAN, and visual network) and DMN-group (DMN and

VAN). The FPN had the least flexibility but the strongest connections

over the global brain at the different cognitive loads (0-back and 2-

back). As an extrapolative study, when we used the participation coeffi-

cient (Guimera & Nunes Amaral, 2005) based on the network partition

of Power et al. (2011), the DMN was recognized as one of the most

flexible among the 10 networks across the WM loads (see Supporting

Information, Figure S6). Topological changes in the brain network

between the resting and task states have been uncovered previously,

both for changes in hub regions and changes in overall network struc-

ture (Bolt, Nomi, Rubinov, & Uddin, 2017; Schultz & Cole, 2016),

though with the latter showing little change (Cole, Bassett, Power,

Braver, & Petersen, 2014). Our results provided more detailed reconfi-

guration patterns for the subnetworks and unveiled the relationships

between connectivity reconfigurations and behavioral performance.

A striking number of studies have shown that the FPN is the cen-

tral control network during WM cognitive demands (Eriksson et al.,

2015). Due to its central role in global control, the FPN is also called

the central executive network (Vincent, Kahn, Snyder, Raichle, & Buck-

ner, 2008) or executive control network (Thompson, Waskom, & Gabri-

eli, 2016). The FPN consists of distributed anatomical regions across

the brain, including the lateral prefrontal cortex (PFC), inferior frontal

gyrus (IFG), pre-/post-central sulcus, superior parietal lobule (SPL), and

intraparietal sulcus (IPS; Ptak, Schnider, & Fellrath, 2017; Rottschy

et al., 2012), which are activated in mental simulation (Grezes & Dec-

ety, 2001; Zacks, 2008), visuospatial attention, and working memory

tasks (Owen, McMillan, Laird, & Bullmore, 2005; Rottschy et al., 2012).

Moreover, the dorsal FPN, including the dorsal premotor cortex and

SPL/IPS, is the core system of the FPN for action emulation, and is a

domain-general system supporting various cognitive functions (Ptak

et al., 2017). Adaptive participation of the FPN has been shown across

cognitive loads (Owen et al., 2005), and its internal functional connec-

tivity is strongly associated with WM loads (Bray, Almas, Arnold, Iaria,

FIGURE 6 Illustration of core network reconfigurations across

cognitively demanding loads, sequentially from resting state, to 0-
back, and then to 2-back. The two colored ellipses indicate the
DMN-group (left panel in blue, including the DMN and VAN) and
FPN-group (right panel in orange, including the FPN, SN, DAN, and
visual network). Left-bottom plot indicates that the interaction
between the DMN and VAN increased continually from low to
high demand. Right-bottom plot indicates that the interactions
within the FPN-group increased during the transition from resting
to 0-back. Central arrow indicates the rewiring trend from other
networks to the DMN. Dashed lines indicate the undetermined
interaction change direction across states as no consistent results
were achieved with or without regressing out the global signal
[Color figure can be viewed at wileyonlinelibrary.com]
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& MacQueen, 2015). Functional connectivity or activation within the

FPN, both in the resting state (Magnuson et al., 2015) and during task

execution (Ullman et al., 2014), is also correlated with WM capacity,

consistent with our finding that the reconfiguration of the FPN was sig-

nificantly correlated with WM performance (RT in both 0-back and 2-

back; Table 1). The DMN is a well-accepted spontaneous network,

which is not only in charge of internal mental processing in the resting

state (Raichle et al., 2001) but also sentinel monitoring of the external

environment (Buckner, Andrews-Hanna, & Schacter, 2008). The DMN

is composed of heterogeneous compartments that show active behav-

ior in both the resting state and task execution (Andrews-Hanna, 2012;

Leech & Sharp, 2014), and thus the DMN is considered a coordinator

that globally mediates computing resources across the brain (Anticevic

et al., 2012). The current findings revealed that, when the brain was

confronted with different cognitive demands, the FPN and DMN coop-

eratively regulated the entire network reconfigurations, but played dif-

ferent roles, as evidenced by their different reconfiguration patterns.

Considering the flexibility of the DMN, this network mediates its local

activations (by activation or de-activation) and interactions with other

networks (Chai, Ofen, Gabrieli, & Whitfield-Gabrieli, 2014; Harrison

et al., 2008; Nakano, Kato, Morito, Itoi, & Kitazawa, 2013) to rearrange

computing resources across the brain. Thus, we postulate that the FPN

focuses on task execution, whereas the DMN is resource-coordinating,

similar to the argument made by Ceko and colleagues (2015), who

compared normal subjects and chronic pain patients across different

cognitive loads. However, they did not establish any significant correla-

tion between the responsiveness of the DMN and WM performance

(Ceko et al., 2015), inconsistent with existing reports (Sambataro et al.,

2010; Xin & Lei, 2015) and our findings. This contradiction may be due

to the different imaging measures and behavioral quantities utilized in

these studies. Our results also highlighted the efficacy of the NCD, the

brain network property used in this study, in association with behav-

ioral quantification.

4.2 | Reconfiguration pattern of core networks

As observed in Figure 5, the core network reconfiguration pattern had

several main features. From the resting state to lower demand load (0-

back), the internal connections within the FPN-group, including those

of the visual cortex, increased markedly. This may have been due to

the bottom-up regulation of sensory processing (Felleman & Van Essen,

1991), in which sensory information is transferred to the advanced cor-

tex (e.g., the DAN) through the FPN (Bisley, Krishna, & Goldberg,

2004). From the 0-back to higher demand load (2-back), the FPN-

group disintegrated, and the compositional networks were rewired to

the DMN. As described from the perspective of the (de-)activations in

the above section, the DMN thus mediates the allocation of brain-wide

computing resources in both the resting and task states (Koshino, Min-

amoto, Yaoi, Osaka, & Osaka 2014), specifically across cognitive loads

(Liang, Zou, He, & Yang, 2016; Scott, Hellyer, Hampshire, & Leech,

2015; Vatansever, Manktelow, Sahakian, Menon, & Stamatakis 2017).

From the perspective of functional connectivity, our previous studies

indicated that the DMN has active connections with the task positive

networks, even in the resting state (Zuo et al., 2016), and that these

external connections correlate strongly with WM performance (Liang

et al., 2016). The current findings are in line with existing reports that

the DAN is actively engaged in cognitively demanding tasks (Liu et al.,

2016). The visual cortex also showed a significant transition from the

FPN-group to DMN-group. This may be due to the dominant role of

the DMN in higher cognitive loads (Andrews-Hanna, 2012; Leech &

Sharp, 2014). However, using a similar N-back WM paradigm, Braun

et al. (2015) showed the visual cortex to be one of the most conserved

and least flexible modules. This inconsistency could be partially attrib-

utable to differences in the location of the visual cortex (Braun et al.,

2015), which spans across the occipital and parietal lobes, as defined in

Power et al. (2011). Vatansever et al. (2015) asserted that the DMN is

one of the most flexible networks. However, previous comparisons

across the 10 networks have not exclusively highlighted the flexibility

of the DMN (Bola & Borchardt, 2016). This discrepancy is likely due to

mixing connection flexibility with strength, an issue that is rooted in

the measure of global variability in connectivity (Cole et al., 2013). After

extensive study, we developed novel measures based on the participa-

tion coefficient (Guimera & Nunes Amaral, 2005) to re-assess the flexi-

bility of the DMN, and found our results to agree well with the

conclusions of Vatansever et al. (2015; see Supporting Information, Fig-

ure S6).

The current study confirmed the active engagements of both the

task-negative networks (e.g., the DMN) and task-positive networks

(e.g., the FPN and SN) in WM execution (Liang et al., 2016). We deci-

phered a brain-wide reconfiguration map where the function connec-

tivities across the brain rewired to the DMN when the WM loads

increased, which is consistent with the behavior of the DMN degrading

its activation but increasing its connectivity to other networks across

cognitive loads (�Ceko et al., 2015; Liang et al., 2016; Vatansever et al.,

2017). Furthermore, we showed that the FPN-group, including the SN

and DAN, increased interactions at low level demands (0-back), thus

providing evidence of the executive role of the FPN (Scott et al., 2015),

which is generally coordinated by the SN (Seeley et al., 2007). These

non-mono trends in connectivity changes have also been uncovered in

different stages of WM tasks (Koshino et al., 2014; Piccoli et al., 2015),

and the DMN is consistently found to have an important role in coordi-

nating computing resources (Sambataro et al., 2010; Xin & Lei, 2015).

In this study, we established a significant inverse correlation

(p < .05, after FDR correction) between the magnitude of the network

reconfigurations measured by NCD and WM performance evaluated

by RT. This suggests that individuals with high WM capacity can

achieve their goals with less effort, which corroborates the results of

Vatansever et al. (2015) and Schultz et al. (2016). By exploring the

whole brain network using correlation analyses, we identified the FPN,

DMN, and SN to be core networks. Interestingly, these networks domi-

nated the whole brain network reconfiguration and were correlated

with WM performance. This confirmed the core network findings and

coincided well with the connection-based (Figure 3) and modularity-

based analyses (Figure 4). In addition, the three core networks (DMN,

FPN, and SN) of WM coincided with the triple-network theory pro-

posed by Menon (2011), where general cognitive disorders include
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disruptions and dysfunctions of these three networks. Our study signi-

fied the importance of the triple-network in a specific and complex

cognitive task, that is, WM. In contrast to existing research specifically

investigating individual networks related to WM (�Ceko et al., 2015;

Sambataro et al., 2010; Xin & Lei, 2015), we presented comprehensive

findings for characterizing network reconfiguration across WM loads

and provided evidence of a triple-network model for WM. The signifi-

cant correlation between core networks and WM scores could be uti-

lized as a novel way to evaluate and predict the capability of a brain

performing WM tasks.

4.3 | Methodological considerations

The results presented here are based on fully-functional connections

(both positive and negative; Bassett et al., 2011; Vatansever et al.,

2015). However, the interpretation of negative connections is still con-

troversial (Bullmore & Sporns, 2009; Murphy et al., 2009). To address

this issue, we validated all the main findings by removing the negative

functional connectivities (Liu et al., 2016). As seen in the Supporting

Information, Figures S4 and S5, the FPN was identified as the least

flexible of the brain networks but with the strongest connections

across the brain; furthermore, the reconfiguration pattern of the core

networks across the WM loads was exactly replicated. In calculating

the correlations between the network (Figure 2)/connectivity (Table 1)

reconfigurations and behavioral performance, we also replicated the

findings by adding sex, age, and head motions as confounding factors

(see Section 2 in the Supporting Information). Additionally, due to the

undetermined effects of the global signal on functional connectivity

(Liu et al., 2017; Wong et al., 2016), we validated our findings sepa-

rately with and without regressing out the global signal and found our

results to coincide well (see Validation section in the Supporting Infor-

mation,). Collectively, these additional validations demonstrated the

robustness of our findings. For more extensive validation of the current

study, we released all source code (Matlab) in https://github.com/

nmzuo/core_networks.

The current findings characterized in detail the roles of the FPN-

and DMN-groups in WM executions and the network reconfiguration

patterns across WM loads. These findings were only based on resting,

0-back, and 2-back datasets; thus, using more detailed load levels in

future studies would be helpful in deciphering the reconfiguration pat-

terns more precisely.
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