
Research Article

A PCA–CCA network for RGB-D object
recognition

Shiying Sun1,2, Ning An1,2, Xiaoguang Zhao1 and Min Tan1

Abstract
Object recognition is one of the essential issues in computer vision and robotics. Recently, deep learning methods have
achieved excellent performance in red-green-blue (RGB) object recognition. However, the introduction of depth
information presents a new challenge: How can we exploit this RGB-D data to characterize an object more adequately? In
this article, we propose a principal component analysis–canonical correlation analysis network for RGB-D object rec-
ognition. In this new method, two stages of cascaded filter layers are constructed and followed by binary hashing and block
histograms. In the first layer, the network separately learns principal component analysis filters for RGB and depth. Then,
in the second layer, canonical correlation analysis filters are learned jointly using the two modalities. In this way, the
different characteristics of the RGB and depth modalities are considered by our network as well as the characteristics of
the correlation between the two modalities. Experimental results on the most widely used RGB-D object data set show
that the proposed method achieves an accuracy which is comparable to state-of-the-art methods. Moreover, our method
has a simpler structure and is efficient even without graphics processing unit acceleration.

Keywords
Object recognition, PCANet, 3D perception, canonical correlation analysis, deep learning

Date received: 24 July 2017; accepted: 22 November 2017

Topic: Special Issue—3D Vision for Robot Perception
Topic Editor: Antonio Fernandez-Caballero
Associate Editor: Shengyong Chen

Introduction

Object recognition is of essential importance in the fields of

computer vision and robotics. Because of the large variety

of possible categories and variable viewpoints, it is a very

challenging task to recognize objects accurately. Tradi-

tional object recognition methods are mainly based on

available RGB images and use features extracted from the

images, for example, colour, texture and local features.1–3

Recently, deep learning techniques have proved useful

tools for rich feature representation. In particular, the use

of convolutional neural networks (CNNs) provides excel-

lent image recognition performance.4–6 CNN-based meth-

ods7,8 have also greatly improved the recognition

accuracies of several object recognition data sets.

Chan et al.9 have proposed a simple deep learning

method called PCANet. In this method, only two layers

of principal component analysis (PCA)10 filters need to

be learned. PCA is based on using an orthogonal transfor-

mation to convert a set of observations of possibly corre-

lated variables into a set of values of linearly uncorrelated

variables. The PCANet method managed to achieve out-

standing performance in many image classification tasks.

1State Key Laboratory of Management and Control for Complex Systems,

Institute of Automation, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

Corresponding author:

Shiying Sun, State Key Laboratory of Management and Control for

Complex Systems, Institute of Automation, Chinese Academy of

Sciences, Beijing 100190, China; University of Chinese Academy of

Sciences, Beijing 101408, China.

Email: sunshiying2013@ia.ac.cn

International Journal of Advanced
Robotic Systems

January-February 2018: 1–12
ª The Author(s) 2018

DOI: 10.1177/1729881417752820
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:sunshiying2013@ia.ac.cn
https://doi.org/10.1177/1729881417752820
http://journals.sagepub.com/home/arx
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881417752820&domain=pdf&date_stamp=2018-01-17

With the popularization of cheap, so-called RGB-D sen-

sors (e.g. Kinect), one can easily acquire depth information

about objects, which, in principle, should be of help in

object recognition. The depth information, however, means

that RGB-D object recognition is a multimodal recognition

problem. As a result, the original methods of CNN analysis

cannot be used to deal with RGB-D data directly. There are

two typical approaches to addressing this problem.

The first approach is to learn features from the colour

and depth information separately and then concatenate the

outputs from these two components to form the final fea-

tures. The second approach is to train two classifiers – one

for colour and one for depth – and then to fuse the classi-

fication scores to obtain the final result. Although these

approaches are easy to design and implement, they do not

utilize the shared relationships between the RGB and depth

components. Furthermore, they may generate redundant

features which are harmful to classification. Therefore, in

some methods,11,12 networks have been designed (for

RGB-D data, in particular) and excellent performance has

been achieved. However, these CNN-based methods

require numerous parameters to be tuned and so graphics

processing units (GPUs) are always necessary to accelerate

the training and recognizing processes.

Canonical correlation analysis (CCA)13 is a method used

to analyse the statistical correlation between two sets of

random variables; it is usually used for feature fusion.

Inspired by the simple structure and outstanding perfor-

mance of the PCANet method of feature extraction, we pro-

pose a similar deep learning network for RGB-D images. We

refer to the new construct as a PCA–CCA network, and it

consists of PCA filter layer, CCA filter layer, binary hashing

and block-wise histograms. In the first filter layer, PCA

filters for RGB and depth components are learned separately

to extract the most discriminative features in both modal-

ities. In the second filter layer, we use the CCA method

which tries to find the principle filters by maximizing the

correlation between two projected sets of variables. There-

fore, the CCA filters for RGB and depth are learned jointly,

which extract the most correlated features and eliminate

redundant information. Compared with CNN-based meth-

ods, the proposed method has fewer stages of convolution

and the number of parameters to be tuned is also smaller

which makes the method more efficient.

This study makes two main contributions. First, a PCA–

CCA network method is proposed for RGB-D object

recognition, in which PCA filters for RGB and depth com-

ponents are learned individually in the first layer and CCA

filters are learned using both of the two components jointly

in the second layer. Second, an extensive set of experiments

is performed on a public RGB-D object data set. The results

show that our method achieves an accuracy that is compa-

rable to state-of-the-art methods but, as there are less para-

meters to be fine-tuned and the training process is easier

because of the simplicity of our method, our method is

more efficient, even without GPU acceleration.

The structure of the rest of this manuscript is as follows.

The ‘Related work’ section gives an introduction to the

existing research in this area and ‘RGB-D image prepro-

cessing’ section presents the preprocessing required of the

RGB-D images. The details of the proposed method are

introduced in the ‘PCA–CCA networks’ section. In the

‘Experiments’ section, we present our experimental results

obtained using a public data set. The final section, ‘Con-

clusions’, summarizes our achievements and gives recom-

mendations for future research.

Related work

In recent years, researchers have made significant progress

in the field of RGB-D object recognition. As in RGB object

recognition, methods applied to RGB-D images can be

roughly categorized into two groups that focus on hand-

crafted and machine-learned features.

Among the hand-crafted methods, Rusu et al.14,15 pro-

posed using point feature histograms and fast point feature

histograms (FPFHs) to extract 3D structure features of

objects. They later proposed using viewpoint feature histo-

grams which added viewpoint information into the FPFH

method.16 Lai et al.17 introduced an RGB-D object data set

and used a combination of several hand-crafted features

including spin images, scale-invariant feature transform,

histogram of oriented gradient and colour histograms. They

made a recognition baseline by comparing the performance

of several classifiers, for example, a linear support vector

machine (SVM), Gaussian kernel SVM and random forest.

Bo et al.18 developed a set of kernel features on point

clouds and depth images which contained size, shape and

edge features. Browatzki et al.19 extracted four 2D descrip-

tors from colour images and four 3D descriptors from range

scans and an SVM was trained for each feature. Berker

et al.20 proposed two spatially enhanced local 3D descrip-

tors for RGB-D recognition based on histograms of spatial

concentric surflet-pairs (SPAIRs) and coloured SPAIRs. In

general, hand-crafted feature-based methods require some

prior knowledge of the objects and their performance with

respect to large-scale data sets is unsatisfactory.

In machine-learning methods, raw data are used to learn

features for RGB-D object recognition. Bo et al.21 presented a

hierarchical method of sparse coding learning to extract the

features of multichannel images. The features of different

channels were subsequently concatenated to train the classi-

fier. Blum et al.22 proposed a convolutional k-means descrip-

tor which is able to automatically learn feature responses in

the neighbourhood of detected points of interest and then

combine the colour and depth into one, concise, representa-

tion. Asif et al.23 used a bag-of-words model to learn features

from raw RGB-D point clouds and introduced a randomized

tree-based clustering method to learn vocabularies.

Due to their great success in RGB image recognition,

deep learning methods (such as CNN) have been intro-

duced to deal with RGB-D data and have been found to

2 International Journal of Advanced Robotic Systems

perform excellently. Socher et al.24 proposed an integrated

method that combines convolutional filters and recursive

neural networks (RNNs). Features from the colour and

depth channels were learned separately and then concate-

nated for use in the final softmax classifier. Schwarz et al.25

proposed using two pretrained CNNs to extract features

from colour and depth images individually. Then, Eitel

et al.12 proposed a similar structure to that in the method

of Schwarz et al.25 The difference was that, in the latter, the

fusion CNNs were trained end-to-end using the RGB-D

data, which gives a higher accuracy. Bai et al.26 proposed

dividing the input images into several subsets according to

their shapes and colours. Each subset was then learned

separately to extract features using RNNs. Cheng et al. 27

proposed a convolutional Fisher kernel method which inte-

grated the advantages of both CNNs and Fisher kernel

encoding. Two SVMs were separately trained for the RGB

and depth modalities, and the combined scores were then

used to predict the category.

However, most feature-learning methods learn features

either from the RGB and depth image separately or treat

RGB-D images as multichannel input. This does not ade-

quately exploit the relationship between the RGB and depth

information.

To realize feature descriptions that are more discrimina-

tory, some methods employ specifically designed fusion

approaches for RGB and depth. Wang et al.11,28 designed

a multimodel layer which followed the CNN layers and was

able to fuse colour and depth information by enforcing a

common part to be shared by features of different modal-

ities. Sanchez et al.29 presented a comparative study of data

fusion for RGB-D recognition. They compared the perfor-

mances of different fusion techniques and different feature

extraction approaches. Their results showed that early

fusion was the most effective approach to combining data

from RGB and depth information, and that CNN-based

methods are superior to other methods. Thus, in this article,

a kind of early-fusion method is employed. Zaki et al.30

employed a CNN that had been pretrained on RGB data as

the feature extractor for both RGB and depth channels and

proposed a fusion scheme to combine the features of a

hypercube pyramid. Zaki et al.31 constructed a joint and

shared multimodel representation by bilinearly combining

the CNN streams of the RGB and depth channels. In addi-

tion, Cheng et al.32 used a CNN–RNN method to generate

top-ranking candidate categories and also proposed a mea-

sure of similarity method to improve accuracy. Their meth-

ods lead to a great improvement in accuracy. Although

CNN-based methods can be highly accurate, it must be

remembered that they always need fussy fine-tuning of the

parameters and extra GPUs to accelerate them.

Recently, Chan et al.9 proposed a simple deep learning

model called PCANet in which PCA is employed to learn

the multistage filter banks. The method can learn robust

invariant features for various image recognition tasks and

is easy to design and train. These workers also introduced

two simple variants which possess the same structure as

PCANet but employ filters that are randomly selected or

learned from linear discriminant analysis. The variant meth-

ods also have good performance which demonstrates the

effectiveness of this simple topological approach in image

classification. We should also mention that many other mod-

ified methods have been employed to improve recognition

performance, for example, stacked PCANet (SPCANet),33

2-dimension PCANet (2DPCANet),34 weighted-PCANet,35

quaternion PCANet36 and so on. However, these methods

can only deal with RGB images. Our method employs a

similar topology but simultaneously uses the RGB and depth

information to obtain a representation of the discriminating

features.

RGB-D image preprocessing

The RGB-D data cannot be used directly in its original

form because the raw information in the depth images is

not in standard image format. The sizes of the input images

are also not uniform. Image preprocessing must therefore

be carried out, which consists of two steps. The first step is

to encode the raw depth image to give a pseudocolour depth

image. The second step is to scale the colour and depth

images to a consistent size.

Encoding the raw depth images

A pixel in a raw depth image represents the distance between

the camera and the corresponding point in the object. To

make full use of this information, the raw depth image is

first encoded to produce a pseudocolour depth image. First,

all the depth values are normalized to lie in the range 0–255,

which could be used to construct a grey image of the raw

depth data. Then, the normalized depth image is transformed

to a three-channel RGB image. This allows the depth infor-

mation to be distinguished better. To accomplish this, a

hierarchical mapping method is applied to the normalized

depth image. For each pixel in the depth image, the grey

value is transformed to a colour value which encodes the

depth information using RGB values. Examples of normal-

ized and pseudocolour depth images are shown in Figure 1.

Image scaling

To meet the requirements of the feature extraction process,

the input colour and depth images need to be scaled to an

appropriate size. The simplest method is to resize the

cropped image by warping it. However, the object may lose

its inherent shape information as a result. Therefore, we

employ the scaling process proposed by Eitel et al;12 that

is, the original image is expanded to a square image by

tiling the borders of the longest sides so that the shorter

sides become enlarged. Then, the square image is scaled to

a constant size. Figure 2 shows a comparison of the results

of scaling some images using the two methods.

Sun et al. 3

The PCA–CCA network

The proposed PCA–CCA network is designed to extract

features of objects using RGB and depth information

jointly. Figure 3 presents a block diagram of the PCA–CCA

network for RGB-D object recognition. As can be seen, the

proposed method consists of two convolution layers and

one output layer. Only the PCA filters in the first layer and

CCA filters in the second layer need to be learned from the

input RGB-D images. Further details of the processes

involved are given below.

The first convolution layer

In the first convolution layer, we employ two groups of

PCA filters for the RGB and depth components. Each group

of filters are learned separately. The data input into this

layer correspond to the cropped and preprocessed RGB-D

images. The pseudocolour depth images can also be

regarded as three-channel RGB images, so the RGB and

depth components in the first layer are the same. Therefore,

we will only describe the RGB component in detail for the

sake of brevity.

Suppose that there are N RGB images input for training

purposes which we denote by fIc
i g

N
i¼1. The image size is

assumed to be m� n and the patch size k1 � k2. For each

channel in the RGB images, all the patches in the i th image

are collected taking an overlapping approach; that is, we

have xi;1; xi;2 ; :::; xi;mn 2 Rk1k2 where xi;j denotes the j th

vectorized patch in Ic
i . Then, we subtract the patch mean

from each patch to get X i ¼ ½�xi;1; �xi;2; :::; �xi;mn�, where �xi;j is

a mean-removed patch. By constructing the similar matrix

for all input images and putting them together, we get

X ¼ ½X 1;X 2 ; :::;X N � 2 Rk1k2�Nmn ð1Þ

For a given RGB image, we gather the same individual

matrices for the three channels of the RGB images denoted

by Xr;Xg;Xb 2 Rk1k2�Nmn. Assuming that the number of

filters in layer i is Li, we use PCA to minimize the recon-

struction error within a set of orthogonal filters

min
V2R3k1k2�L1

jj ~X � VV T ~X jj2F ; s: t: V T V ¼ IL1
ð2Þ

where ~X ¼ ½X T
r ;X

T
g ;X

T
b �, IL1

is the L1 � L1 identity matrix,

and V is a matrix consisting of a set of eigenvectors. On

solving the optimization problem, we get the L1 principal

eigenvectors of XX T . Then, the PCA filters of the first stage

can be written as follows

W c
l ¼ matk1;k2 ;3 ql

~X ~X
T

� �� �
2 Rk1�k2�3 ð3Þ

where l ¼ 1; 2; :::; L1, ql
~X ~X

T
� �

is the l th principal eigen-

vector of ~X ~X
T

, and matk1;k2 ;3ðvÞ is a function that maps

v 2 R3k1k2 to a matrix W 2 Rk1�k2�3. Finally, the output

from the RGB component in first layer has the form

I
c;l
i ¼ Ic

i �W c
l ; i ¼ 1; 2; :::;N ð4Þ

where Ic
i is the i th input RGB image, and W c

l is the l th

filter of the PCA filter bank for the RGB component in the

first layer.

Similarly, for the depth images that are input, the PCA

filters can be denoted as W d
l ; l ¼ 1; 2; :::; L1. The output

from the depth component in the first layer has the form

I
d;l
i ¼ Id

i �W d
l ; i ¼ 1; 2; :::;N ð5Þ

where Id
i is the i th input depth image, and W d

l is the l th

filter of the PCA filter bank for the depth component.

The second convolution layer

The data input into this layer consists of the output from the

first layer. We employ the CCA method to generate the

filters for the RGB and depth components.

For the RGB or depth component, all the overlapping

patches of Ii
l are collected and the patch means subtracted.

This yields Y i
l ¼ ½�yi;l;1; �yi;l;2; :::; �yi;l;mn� 2 Rk1k2�mn, where

�yi;l;j is the j th mean-removed patch in Ii
l. We then define

Y l ¼ ½Y 1
l; Y 2

l ; :::; Y N
l� 2 Rk1k2�Nmn to be all the mean-

removed patches of the l th filter output. Thus, all of the

filter outputs in a single component can be expressed as

follows

Y ¼ ½Y 1; Y 2 ; :::; Y L1 � 2 Rk1k2�L1Nmn ð6Þ

so that we can obtain Yc and Yd for the RGB and depth

components, respectively.

Figure 1. Example depth images showing the normalized
image (top) and RGB pseudocolour image (bottom). Best viewed
in colour.

4 International Journal of Advanced Robotic Systems

The aim of CCA is to find projections of two sets of

samples that simultaneously yield the maximum correla-

tion. Here, the CCA filters in this layer are the projec-

tions that make the outputs of the RGB and depth

components (Yc and Yd) have maximal correlation. The

first projection directions a1 and b1 (for colour and

depth, respectively) can be obtained by solving the fol-

lowing optimization problem

maxaT
1SYcYd

b1

s :t :aT
1SYcYc

a1 ¼ bT
1SYdYd

b1 ¼ 1
ð7Þ

where SYcYc
and SYd Yd

denote the intraclass and SYcYd
and

SYdYc
(¼ SYcYd

) the extraclass covariance matrices, respec-

tively. Optimization can be carried out using the Lagrange

multiplier technique. The optimization problem in Equa-

tion (7) is thus written in the form

Lða1;b1; lÞ ¼ aT
1SYcYd

b1 �
l1

2
ðaT

1SYcYc
a1 � 1Þ�

l2

2
ðbT

1SYdYd
b1 � 1Þ

ð8Þ

where l1 and l2 are Lagrange multipliers. Setting

qL=qa1 ¼ 0 and qL=qb1 ¼ 0, we find

S�1
YcYc

SYcYd
S�1

YdYd
SYd Yc

a1 ¼ l2a1

S�1
YdYd

SYdYc
S�1

YcYc
SYcYd

b1 ¼ l2b1

ð9Þ

where l ¼ l1 ¼ l2. Thus, a1 and b1 are the eigenvectors of

S�1
YcYc

SYcYd
S�1

YdYd
SYdYc

andS�1
Yd Yd

SYdYc
S�1

YcYc
SYcYd

, respectively,

corresponding to the largest eigenvalue, l2. Given the first

‘� 1 directions, the ‘ th projection direction can be calculated

by solving the problem in Equation (7) with the additional

constraints that aT
i SYcYc

a‘ ¼ bT
i SYd Yd

b‘ ¼ 0 (i < ‘).
The CCA filters of the second layer can now be

expressed as follows

V c
‘ ¼ matk1;k2

ða‘Þ 2 Rk1�k2

V d
‘ ¼ matk1;k2

ðb‘Þ 2 Rk1�k2
ð10Þ

where ‘ ¼ 1; 2; :::; L2 and matk1;k2
ða‘Þ maps the vector

a‘ 2 Rk1k2 to the matrix V c
‘ 2 Rk1�k2 . The matrices V c

‘ and

V d
‘ represent the ‘ th filter of the RGB and depth compo-

nents, respectively.

Figure 2. The results of image scaling. The top row shows the original images. The middle row shows the warped results, while the
bottom row shows the results of using the method of Eitel et al.12 Best viewed in colour.

Sun et al. 5

Finally, for each input Ii
l of the second layer, we will

have L2 outputs, each found by convoluting Ii
l with V‘ for

‘ ¼ 1; 2; :::; L2

O
c;l
i ¼ fIi

c;l � V‘
cgL2

‘¼1

O
d;l
i ¼ fIi

d;l � V‘
dgL2

‘¼1

ð11Þ

The total number of outputs from the second layer is

therefore 2L1L2.

The output layer

The output layer is used to generate the final feature expres-

sion of each training RGB-D image. RGB and depth com-

ponents are handled separately, and the processes are the

same. Hence, we will only describe the process for the

RGB component for the sake of brevity, as we did before.

After the second layer, for each of the L1 inputs Ii
c;l in

the RGB component, there are L2 real-valued outputs

fIi
c;l � V‘

cgL2

l¼‘
. These outputs are binarized into the form

fHðIi
c;l � V‘

cÞgL2

‘¼1
where the Heaviside function is such that

the value of Hð�Þ is 1 if the argument is positive, and 0

otherwise. Then, we view each corresponding pixel of the

L2 output as L2 binary bits which we convert to a decimal

number, T
c;l
i , given by

T
c;l
i ¼

XL2

‘¼1

2‘�1HðIi
c;l � V‘

cÞ ð12Þ

The above process converts the L2 outputs in O
c;l
i back

into a single integer-valued ‘image’, whose every pixel is

an integer in the range ½0; 2L2 � 1�.
Now L1 single integer-valued ‘images’ are obtained.

Each of these is partitioned into H blocks and a histogram

of the decimal values in each block is computed. Finally,

the H histograms are concatenated into one vector

HistðTc;l
i Þ; l ¼ 1; 2; :::; L1. After the encoding process

above, the feature of the input RGB component Ic
i is

defined as follows

f c
i ¼

h
Hist T

c;1
i

� �
; :::; Hist

�
T

c;L1

i

�iT

2 Rð2L2 ÞL1H ð13Þ

Similarly, the feature of the depth component is denoted

as follows

f d
i ¼

h
Hist

�
T

d ;1
i

�
; :::; Hist

�
T

d;L1

i

�iT

2 Rð2L2 ÞL1H ð14Þ

Finally, the feature of the i th input RGB-D data is

fi ¼ ½f c
i f d

i � 2 R2�ð2L2 ÞL1H .

Figure 3. The block diagram of the PCA–CCA network. PCA filters in the first convolution layer are learned using the RGB and depth
images separately. Wc

1; W
c
2 :::W

c
L1

and Wd
1; W

d
2 :::W

d
L1

are the PCA filters in the first layer for RGB and depth components. Then,
outputs of RGB and depth components in the first layer are fused to generate the CCA filters in the second convolution layer.
Vc

1; V
c
2 ::: V

c
L2

and Vd
1; V

d
2 ::: V

d
L2

are the CCA filters in the second layer for RGB and depth components. Best viewed in colour.
PCA: principal component analysis; CCA: canonical correlation analysis.

6 International Journal of Advanced Robotic Systems

Experiments

The proposed method was implemented using MATLAB on a

computer built around an Intel Xeon E5 CPU (8-cores operat-

ing at 2.4 GHz). To evaluate the effectiveness of the proposed

PCA–CCA network, experiments were conducted on the

challenging Washington RGB-D object data set.17 The details

of these experiments and the results are described below.

Data set and experiment set-up

There are 300 household objects in 51 categories in the

Washington RGB-D object data set. Each object was captured

using a Kinect-style 3D camera which was placed at three

different heights and multiple views. The object recognition

experiments in this article are focused on category recogni-

tion. Therefore, the proposed PCA–CCA network method

was evaluated using the same (10) cross-validation splits as

used by Lai et al.17 Each split consists of roughly 35,000

training and 7000 testing images. The task of the PCA–CCA

network is to correctly predict the category of a new instance.

In our experiments, the image size used was 90 � 90,

the patch size was 5 � 5, the filter numbers were L1 ¼ 12

and L2 ¼ 8, and the block size was 4 � 4. As the object

images consist of complex poses, spatial pyramid pool-

ing37 was applied to the output layer (a pyramid of 4� 4, 2

� 2, 1 � 1 was used). The dimension of each pooled

feature is reduced to 640 by the PCA process. Hence, the

feature dimension of each input RGB-D image pair is

640� ð4� 4þ 2� 2þ 1Þ � 2 ¼ 26; 880. The process

not only extracts the information that is invariant to large

changes in pose but also reduces the runtimes necessary

for training of the classifier and prediction.

For classification purposes, a linear SVM was employed

and the LIBLINEAR library38 was used for its implementation.

Results and analysis

Comparison with different baselines

Our method is designed for RGB-D images and has a struc-

ture similar to that of PCANet. Therefore, the original

PCANet method can also be applied to the RGB-D data

with some common multimodal fusion approaches. Thus,

we conducted six different PCANet baselines:

1. RGB PCANet: PCANet trained using only RGB

images.

2. Depth PCANet: PCANet trained using only depth

images.

3. Early-fusion PCANet: PCANet with separate train-

ing for colour and depth images, followed by con-

catenating the features of the colour and depth

images. This method is similar to that used by

Schwarz et al.25 (This is actually an example of

an early-fusion scheme as described by Sanchez

et al.29 hence the name).

4. Late-fusion PCANet: PCANet with separate train-

ing for colour and depth images and classifiers that

are also trained separately. The final result is

obtained by selecting the modality with the maxi-

mum classification score. (Named after the late-

fusion scheme described by Sanchez et al.29).

5. Early-fusion PCANet with pseudocolour depth: The

same structure used in early-fusion PCANet but

pseudocolour depth images is used.

6. Late-fusion PCANet with pseudocolour depth: The

same structure used in late-fusion PCANet but

pseudocolour depth images is used.

A linear SVM method is used as classifier when testing

each of the six baselines.

Table 1 shows a comparison of the accuracy of the rec-

ognition results achieved using our method and the six

baselines. Methods using both the RGB and depth compo-

nents achieve a significantly greater accuracy compared to

the RGB PCANet method. The performance of the early-

fusion methods is better than that of the late-fusion meth-

ods. The pseudocolour depth images help improve the

accuracy in both the early- and late-fusion methods which

means that the pseudocolour information helps with the

discrimination process. The best of the baseline results was

achieved by the early-fusion PCANet with pseudocolour

depth method (whose structure is the most similar to ours).

However, our method achieves an even better result (by

2%). The reason for this is that in our method, the correla-

tion features are extracted jointly by the CCA filters (the

discriminative features learned by the PCA filters are sim-

ilar to those in the early-fusion PCANet with pseudocolour

depth method). This results in a more discriminative

description of the features of the RGB-D data which can

also eliminate redundant information at the same time.

Comparison with state-of-the-art methods

We next compared the accuracy of our proposed method

with that obtained using some state-of-the-art methods

(Table 2). The recognition accuracy of our method is

91.7% (on average) over the 51 categories of objects. This

Table 1. Comparison of different baselines obtained using the
Washington RGB-D object data set.

Method Accuracy (%)

RGB PCANet 82.3 + 3.4
Depth PCANet 75.6 + 2.0
Early-fusion PCANet 88.4 + 3.4
Late-fusion PCANet 87.6 + 1.9
Early-fusion PCANet with pseudocolour depth 89.7 + 2.3
Late-fusion PCANet with pseudocolour depth 89.2 + 2.5
Ours 91.7 + 1.4

PCA: principal component analysis. The bold values show the accuracy
result of our method and the best one within other methods listed in this
table.

Sun et al. 7

outperforms all of the approaches listed except for the

query adaptive similarity measure (QASM) method.32 We

note that QASM is a higher level ensemble method rather

than a classification method. Our method and the other

methods in Table 2 (except QASM) are essentially classi-

fication methods. More specifically, the whole process of

QASM consists of two steps. In the first step, an object

classification method is used to obtain the classification

scores, and in the second step, the similarity measurement

method is conducted using the output scores. In the article of

QASM,32 the CNN–RNN method was used in the first step.

A comparison of runtime costs is presented in Table 3, which

indicates that our method is more efficient than the CNN-

RNN method. (The runtimes shown in Table 3 are discussed

in greater detail later on in this article.) CNN–RNN method

is more efficient than QASM method, so our method is also

more efficient than QASM. Moreover, QASM is not specif-

ically designed for CNN–RNN and can also be used with

other object classification methods, including ours. In future

application, therefore, we may, in principle, be able to

achieve an even better accuracy using their ensemble

mechanism.

The more recently developed CNN-based methods gen-

erally have a complex network structure. For example,

Schwarz et al.25 (CNN Features) and Fus-CNN12 used

CNNs with eight layers. Zaki et al.30 (hypercube pyramid)

employed a network with six layers and proposed the use of

a hypercube pyramid scheme. However, in our method,

there are only two convolution layers and an output layer

which is clearly a simpler approach. In addition, Schwarz

et al.25 (CNN Features) extracted the features of the RGB

and depth images separately whereas, in our method, the

correlation between RGB and depth is considered which

gives a better performance.

One of the benefits of the simplicity of the structure used

in our method is that there are few parameters to be tuned

when training the network (patch size, number of filters and

block size of the histograms). The parameters that need to

be fine-tuned in CNN-based methods include the network

weights and biases and the hyperparameters (these include

learning rate, batch size, number of epoch, number of ker-

nels, kernel size and pooling size). The hyperparameters

are tuned manually while the weights and biases are tuned

iteratively using back-propagation until convergence is

achieved. This process is very time-consuming because

there are numerous weight parameters to be tuned. There-

fore, the training in CNN-based methods generally uses

GPUs to accelerate the process. For example, the training

of a single network took 10 h using an NVIDIA 790 GPU in

the work by Eitel et al.12 and a training time of 4.5 h is

reported by Wang et al.28 using a Titan GPU. In our

method, only PCA and CCA filters need to be learned

directly and there is no need to iteratively tune weights.

Moreover, the hyperparameters in our method are few in

number. As a result, it only takes 1.5 h to train our network

using a CPU-only platform.

Parameter analysis

The images in the Washington RGB-D object data set had

to be scaled using the previously mentioned scaling

approach in order to satisfy the requirements of the PCA–

CCA network. The image size was set to 90 � 90 (as most

of the original images in the data set are around this size). If

the scaled image is much smaller than the original, then

some local information may be lost which is a very impor-

tant issue if classification is to be accurate. Moreover, using

a size larger than 90 cannot yield a higher accuracy in our

experiments, but it will increase the feature extraction run-

time significantly.

The model parameters in the PCA–CCA network that

affect classification performance are patch size and filter

number. To show the effect of using different patch sizes,

we fixed the filter numbers (with L1 ¼ 12 and L2 ¼ 8) and

varied the patch size from 3 � 3 to 9 � 9. The results are

shown in Figure 4. The best accuracy appears to occur

Table 2. Comparison with other approaches reported for the
Washington RGB-D object data set.

Method Accuracy (%)

Nonlinear SVM17 (2011) 83.9 + 3.5
KDES18 (2011) 86.2 + 2.1
Upgraded HMP2 (2013) 87.5 + 2.9
CKM22 (2012) 86.4 + 2.3
CNN-RNN24 (2012) 86.8 + 3.3
LMMM28 (2015) 86.9 + 2.6
CNN features25 (2015) 89.4 + 1.3
Fus-CNN12 (2015) 91.3 + 1.4
CFK27 (2015) 91.2 + 1.5
Hypercube pyramid30 (2016) 91.1 + 1.4
QASM32 (2015) 92.7 + 1.0
Ours 91.7 + 1.4

SVM: support vector machine; CNN: convolutional neural network; RNN:
recursive neural network; KDES: kernel descriptors; HMP: hierarchical
matching pursuit; CKM: convolutional k-means descriptors; LMMM: large-
margin multi-modal; CFK: convolutional fisher kernels. The bold values
show the accuracy result of our method and the best one within other
methods listed in this table.

Table 3. A comparison of runtime costs.a

Method Runtime (s)

CKM22 (2012) 1.13
CNN–RNN24 (2012) 1.01
Upgraded HMP21 (2013) 1.22
Fus-CNN12 (2015) 0.46
Early-fusion PCANet with pseudocolour depth 0.43
Ours 0.44

PCA: principal component analysis; CNN: convolutional neural network;
RNN: recursive neural network. The bold values show the runtime result
of our method and the best one within other methods listed in this table.
aThe times include all preprocessing steps and were achieved using a
computer powered by an Intel Xeon E5 2.4 GHz CPU (no GPU was used).

8 International Journal of Advanced Robotic Systems

when the patch size is 5� 5. When the patch size exceeds 5

� 5, the accuracy decreases significantly. This is because

larger sized patches cannot capture enough local informa-

tion, which is of vital importance in describing the objects.

To investigate the effect of changing the number of

filters, we varied the PCA filter number L1 from 8 to 14,

keeping the other quantity fixed with L2 ¼ 8 (Figure 5).

Clearly, accuracy tends to increase as L1 becomes larger.

When L1 > 12, however, the accuracy drops off to some

extent. This is because some redundant information may be

included in the final feature representation. Note that using

more filters will dramatically increase runtime and memory

usage. Hence, L1 was set to 12 to obtain good results while

keeping the computational burden bearable.

Next, the number of CCA filters L2 was varied from 6 to

12, keeping L1 fixed at 12 (Figure 6). We can see that, in

this case, the best accuracy occurs when L2 ¼ 8 and that

increasing L2 further only reduces performance.

Error analysis

Figure 7 shows the confusion matrix of the recognition

results obtained using the proposed method applied to the

Washington RGB-D data set. As can be seen, most cate-

gories can be classified correctly, which demonstrates the

effectiveness of the proposed method. However, there are

some categories which are often misclassified, for example,

pitcher, mushroom, peach and food jar (Figure 8). These

misclassifications occur because some instances share sim-

ilar colours and shapes with other instances in different

categories. In addition, there are only a very small number

of training samples for the category mushroom and great

differences between instances. These categories may be

very difficult to recognize correctly, even for humans.

Running time

Computing power is usually very constrained in mobile

robotic applications. We tested the average runtime of dif-

ferent feature extraction and prediction procedures using

the Washington RGB-D object data set. Our method

required 0.44 s per input object which is low enough to

allow frame rates of about 2.3 Hz. We also made a runtime

cost comparison with state-of-the-art methods whose

source codes are available. The results are shown in Table

3 and indicate that our method and baseline method are

more efficient than those used in other methods. Compar-

ing our baseline method with the early-fusion PCANet with

pseudocolour depth method, it is apparent that both

3*3 5*5 7*7 9*9 11*11
85

86

87

88

89

90

91

92

93

94

95
R

ec
og

ni
ti

on
 a

cc
ur

ac
y

(%
)

Patch Size

Figure 4. Recognition accuracy of the PCA–CCA network as a
function of patch size (L1 ¼ 12 and L2 ¼ 8). PCA: principal com-
ponent analysis; CCA: canonical correlation analysis.

8 9 10 11 12 13 14
85

86

87

88

89

90

91

92

93

94

95

R
ec

og
ni

ti
on

 a
cc

ur
ac

y
(%

)

PCA filter number (L1)

Figure 5. Recognition accuracy of the PCA–CCA network as a
function of PCA filter number (L2 ¼ 8). PCA: principal compo-
nent analysis; CCA: canonical correlation analysis.

6 7 8 9 10 11 12
85

86

87

88

89

90

91

92

93

94

95

R
ec

og
ni

ti
on

 a
cc

ur
ac

y
(%

)

CCA filter number (L2)

Figure 6. Recognition accuracy of the PCA–CCA network as a
function of CCA filter number (L1 ¼ 12). PCA: principal compo-
nent analysis; CCA: canonical correlation analysis.

Sun et al. 9

methods have nearly identical runtimes. However, the

accuracy of our method is better because of the special

structure designed for the RGB-D data.

CNN-based methods can usually achieve a high execu-

tion efficiency provided GPUs are available. Schwarz

et al.25, for instance, presented feature extraction runtimes

achieved using a computer equipped with an Intel Core i7

CPU chipset running at 2.7 GHz and an NVidia GeForce

GT 730 M GPU. On their experimental platform, the

method proposed by Bo et al.21 took 1.153 s to process one

frame, while the CNN-based method used by Schwarz

et al.25 took only 0.186 s. As expected, the runtime

achieved by this CNN-based method is low because of the

help provided by the GPU. However, in many lightweight

mobile robot applications (such as the unmanned aerial

vehicle), the presence of a GPU may be undesirable when

considering the limitation of energy consumption, weight,

size and so on. Our method is highly efficient and accu-

rate, even when it is just the CPU performing all the cal-

culations. This suggests that our proposed method is ideal

for use in lightweight mobile robots. We expect that our

method can also be parallelized and accelerated by the use

of extra GPUs (to accelerate, e.g. the convolution pro-

cesses involved in the first and second layers). Thus

enhanced, an optimized implementation of our method

should be able to provide RGB-D object recognition in

real time.

A
pp

le
B

al
l

B
an

an
a

B
el

l p
ep

pe
r

B
in

de
r

B
ow

l
C

al
cu

la
to

r
C

am
er

a
C

ap
C

el
l p

ho
ne

C
er

ea
l b

ox
C

of
fe

e
m

ug
C

om
b

D
ry

 b
at

te
ry

Fl
as

hl
ig

ht
Fo

od
 b

ag
Fo

od
 b

ox
Fo

od
 c

an
Fo

od
 c

up
Fo

od
 ja

r
G

ar
lic

G
lu

e
st

ic
k

G
re

en
s

H
an

d
to

w
el

In
st

an
t n

oo
dl

es
K

ey
bo

ar
d

K
le

en
ex

L
em

on
L

ig
ht

bu
lb

L
im

e
M

ar
ke

r
M

us
hr

oo
m

N
ot

eb
oo

k
O

ni
on

O
ra

ng
e

Pe
ac

h
Pe

ar
Pi

tc
he

r
Pl

at
e

Pl
ie

rs
Po

ta
to

R
ub

be
r

er
as

er
Sc

is
so

rs
Sh

am
po

o
So

da
 c

an
Sp

on
ge

St
ap

le
r

T
om

at
o

T
oo

th
br

us
h

T
oo

th
pa

st
e

W
at

er
 b

ot
tle

Apple
Ball

Banana
Bell pepper

Binder
Bowl

Calculator
Camera

Cap
Cell phone
Cereal box

Coffee mug
Comb

Dry battery
Flashlight
Food bag
Food box
Food can
Food cup
Food jar

Garlic
Glue stick

Greens
Hand towel

Instant noodles
Keyboard

Kleenex
Lemon

Lightbulb
Lime

Marker
Mushroom
Notebook

Onion
Orange

Peach
Pear

Pitcher
Plate

Pliers
Potato

Rubber eraser
Scissors

Shampoo
Soda can

Sponge
Stapler
Tomato

Toothbrush
Toothpaste

Water bottle
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7. Confusion matrix of the proposed method on Washington RGB-D data set. The y-axis shows the true labels of the testing
objects, and the x-axis shows the predicted labels. Best viewed in colour.

Figure 8. Examples of some easily misclassified categories. Mis-
classification occurs due to the strong similarities in the objects’
colours and shapes.

10 International Journal of Advanced Robotic Systems

Conclusions

In this article, we propose a PCA–CCA network method for

effective RGB-D object recognition. The proposed deep

learning method is a simple one which considers, in addi-

tion to the discriminative characteristics of the RGB and

depth modalities, the characteristics of the correlation

between the two modalities. The PCA–CCA network

method is composed of two convolution layer stages, bin-

ary hashing and block-wise histograms. In the first layer,

PCA filters are applied to the RGB and depth components

separately. Then, the CCA filters are learned using both of

the two components together.

Experiments were conducted on the Washington RGB-

D object data set which demonstrate that our method has an

accuracy that is comparable to state-of-the-art methods. In

addition, as our method has a simple structure, it is efficient

even without GPU acceleration. In future work, we intend

to focus on a more robust approach that can deal with

occlusion between objects. We also aim to perform more

experiments on real scenes.

Declaration of conflicting interests

The author(s) declared no potential conflict of interest with

respect to the research, authorship and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship and/or publication of this article: This

work was supported by the National Natural Science Foundation

of China under grant (61673378, 61421004) and was supported in

part by the basic research program under grant B132011.

References

1. Swain MJ and Ballard DH. Color indexing. Int J Comput

Vision 1991; 7(1): 11–32.

2. Lowe DG. Object recognition from local scale-invariant fea-

tures. In: The proceedings of the seventh IEEE international

conference on computer vision 1999, Kerkyra, Greece, 20–27

September 1999, vol. 2, pp. 1150–1157. IEEE.

3. Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features

(surf). Comput Vision Image Understand 2008; 110(3):

346–359.

4. Krizhevsky A, Sutskever I and Hinton GE. Imagenet classi-

fication with deep convolutional neural networks. In:

Advances in neural information processing systems, State-

line, United States, 3–8 December 2012, pp. 1097–1105.

5. Farabet C, Couprie C, Najman L, et al. Learning hierarchical

features for scene labeling. IEEE Trans Pattern Anal Mach

Int 2013; 35(8): 1915–1929.

6. Oquab M, Bottou L, Laptev I, et al. Learning and transferring

mid-level image representations using convolutional neural

networks. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition, Columbus, OH, United

States, 23–28 June 2014, pp. 1717–1724.

7. Girshick R, Donahue J, Darrell T, et al. Rich feature hierar-

chies for accurate object detection and semantic segmenta-

tion. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, Columbus, OH, United States,

23–28 June 2014, pp. 580–587.

8. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolu-

tions. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, Boston, MA, United States,

7–12 June 2015, pp. 1–9.

9. Chan TH, Jia K, Gao S, et al. Pcanet: a simple deep learning

baseline for image classification? IEEE Trans Image Proc

2015; 24(12): 5017–5032.

10. Jolliffe IT. Principal component analysis and factor anal-

ysis. In: Principal component analysis. New York:

Springer, 1986, pp. 115–128.

11. Wang A, Cai J, Lu J, et al. Mmss: multi-modal sharable and

specific feature learning for RGB-D object recognition. In:

Proceedings of the IEEE international conference on com-

puter vision, Santiago, Chile, 7–13 December 2015, pp.

1125–1133.

12. Eitel A, Springenberg JT, Spinello L, et al. Multimodal deep

learning for robust RGB-D object recognition. In: 2015 IEEE/

RSJ international conference on intelligent robots and sys-

tems (IROS), Hamburg, Germany, 28 September–2 October

2015, pp. 681–687. IEEE.

13. Hardoon DR, Szedmak S and Shawe-Taylor J. Canonical

correlation analysis: an overview with application to learning

methods. Neural Comput 2004; 16(12): 2639–2664.

14. Rusu RB, Blodow N, Marton ZC, et al. Aligning point cloud

views using persistent feature histograms. In: IROS 2008.

IEEE/RSJ international conference on intelligent robots and

systems, Nice, France, 22–26 September 2008, pp.

3384–3391. IEEE.

15. Rusu RB, Blodow N and Beetz M. Fast point feature

histograms (FPFH) for 3D registration. In: 2009 IEEE

international conference on robotics and automation,

Kobe, Japan, 12–17 May 2009, pp. 3212–3217. IEEE.

16. Rusu RB, Bradski G, Thibaux R, et al. Fast 3D recognition

and pose using the viewpoint feature histogram. In: 2010

IEEE/RSJ international conference on intelligent robots and

systems (IROS), Taipei, Taiwan, 18–22 October 2010, pp.

2155–2162. IEEE.

17. Lai K, Liefeng B, Xiaofeng R, et al. A large-scale hierarchical

multi-view RGB-D object dataset. In: 2011 IEEE international

conference on robotics and automation (ICRA), Shanghai,

China, 9–13 May 2011, pp. 1817–1824. IEEE.

18. Bo L, Ren X and Fox D. Depth kernel descriptors for object

recognition. In: 2011 IEEE/RSJ international conference on

intelligent robots and systems (IROS), San Francisco, CA,

USA, 25–30 September 2011, pp. 821–826. IEEE.

19. Browatzki B, Fischer J, Graf B, et al. Going into depth: Eval-

uating 2D and 3D cues for object classification on a new,

large-scale object dataset. In: 2011 IEEE international

conference on computer vision workshops (ICCV workshops),

Barcelona, Spain, 6–13 November 2011, pp. 1189–1195.

IEEE.

Sun et al. 11

20. Berker Logoglu K, Kalkan S and Temizel A. Cospair: colored

histograms of spatial concentric surflet-pairs for 3D object

recognition. Robot Auton Syst 2016; 75(Part B): 558–570.

21. Bo L, Ren X and Fox D. Unsupervised feature learning for

RGB-D based object recognition. In: Proceedings of interna-

tional symposium on experimental robotics (ISER), Québec,

Canada, 17–21 June 2012, pp. 387–402.

22. Blum M, Springenberg JT, Wulfing J, et al. A learned feature

descriptor for object recognition in RGB-D data. In: 2012

IEEE international conference on robotics and automation

(ICRA), Saint Paul, MN, USA, 14–18 May 2012, pp.

1298–1303. IEEE.

23. Asif U, Bennamoun M and Sohel F. Discriminative feature

learning for efficient RGB-D object recognition. In: 2015

IEEE/RSJ international conference on intelligent robots and

systems (IROS), Hamburg, Germany, 28 September–2 Octo-

ber 2015, pp. 272–279. IEEE.

24. Socher R, Huval B, Bath BP, et al. Convolutional-

recursive deep learning for 3D object classification. In:

NIPS, Stateline, United States, 3–8 December 2012, pp.

656–664.

25. Schwarz M, Schulz H and Behnke S. RGB-D object recog-

nition and pose estimation based on pre-trained convolutional

neural network features. In: 2015 IEEE international confer-

ence on robotics and automation (ICRA), Seattle, WA, USA,

26–30 May 2015, pp. 1329–1335. IEEE.

26. Bai J, Wu Y, Zhang J, et al. Subset based deep learning for

RGB-D object recognition. Neurocomputing 2015; 165:

280–292.

27. Cheng Y, Cai R, Zhao X, et al. Convolutional fisher kernels

for RGB-D object recognition. In: 2015 international confer-

ence on 3D vision (3DV), Lyon, France, 19–22 October 2015,

pp. 135–143. IEEE.

28. Wang A, Lu J, Cai J, et al. Large-margin multi-modal deep

learning for RGB-D object recognition. IEEE Trans Multi-

med 2015; 17(11): 1887–1898.

29. Sanchez-Riera J, Hua KL, Hsiao YS, et al. A comparative

study of data fusion for RGB-D based visual recognition.

Pattern Recognit Lett 2016; 73: 1–6.

30. Zaki HF, Shafait F and Mian A. Convolutional hypercube

pyramid for accurate RGB-D object category and instance

recognition. In: 2016 IEEE international conference on

robotics and automation (ICRA), Stockholm, Sweden, 16–

21 May 2016, pp. 1685–1692. IEEE.

31. Zaki HF, Shafait F and Mian A. Learning a deeply supervised

multi-modal RGB-D embedding for semantic scene and object

category recognition. Robot Auton Syst 2017; 92: 41–52.

32. Cheng Y, Cai R, Zhang C, et al. Query adaptive similarity

measure for RGB-D object recognition. In: Proceedings of

the IEEE international conference on computer vision, San-

tiago, Chile, 7–13 December 2015, pp. 145–153. IEEE.

33. Tian L, Fan C, Ming Y, et al. Stacked PCA network (spcanet):

an effective deep learning for face recognition. In: 2015 IEEE

international conference on digital signal processing (DSP),

Singapore, 21–24 July 2015, pp. 1039–1043. IEEE.

34. Jia Z, Han B and Gao X. 2dpcanet: Dayside aurora classifi-

cation based on deep learning. In: CCF Chinese conference

on computer vision, Xi’an, China, 18–20 September 2015, pp.

323–334. Springer.

35. Huang J and Yuan C. Weighted-PCAnet for face recognition.

In: International conference on neural information processing,

Istanbul, Turkey, 9–12 November 2015, pp. 246–254. Springer.

36. Zeng R, Wu J, Shao Z, et al. Color image classification via

quaternion principal component analysis network. Neuro-

computing 2016; 216: 416–428.

37. He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep

convolutional networks for visual recognition. In: European

conference on computer vision, Zurich, Switzerland, 6–12

September 2014, pp. 346–361. Springer.

38. Fan RE, Chang KW, Hsieh CJ, et al. Liblinear: a library for

large linear classification. J Mach Learn Res 2008; 9:

1871–1874.

12 International Journal of Advanced Robotic Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

