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Abstract In this paper, we analyze the well-posedness of an image segmentation model. The main idea of that

segmentation model is to minimize one energy functional by evolving a given piecewise constant image towards

the image to be segmented. The evolution is controlled by a serial of mappings, which can be represented by

B-spline basis functions. The evolution terminates when the energy is below a given threshold. We prove that

the correspondence between two images in the segmentation model is an injective and surjective mapping under

appropriate conditions. We further prove that the solution of the segmentation model exists using the direct

method in the calculus of variations. These results provide the theoretical support for that segmentation model.
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1 Introduction

In computer vision, image segmentation is the process of partitioning a digital image into
multiple segments, with each segment having a label for every pixel in the image such that pixels
with the same label share certain visual characteristics. As a very important problem in the
field of image processing, image segmentation is the basis of image analysis and understanding.
The goal of segmentation is to simplify and/or change the representation of an image into
something that is more meaningful and easier to analyze[14].

In the past two decades, several methods have been developed for image segmentation,
such as clustering method, region-growing method, watershed transformation, edge detection
method, Mumford-Shah method, etc. We review two methods, the edge detection method
and the Mumford-Shah method, in our paper. Edge detection methods depend on a sharp
adjustment in intensity at the region boundaries. Hence the gradient ∇I(x) of the image I can
be used as an edge detection operator. The classic snake(or active contour) model proposed
by Kass[11] in 1987 is the most important and influential edge detection method. A snake
is an energy-minimizing spline guided by external constraint forces and influenced by image
forces that pull it toward features such as lines and edges. Some researchers rely on level-set
formulation to define edge-function, including Caselles et al.’s mean curvature based geometric
active contour model[2], Malladi et al’s level-set based active contour model[3], and Caselles et
al’s geodesic model[15]. However, dependence on the image gradient to stop the evolution only
works for objects with edges defined by gradient. This is because the discrete gradients are
bounded, and the stopping function is never zero on the edges and the curve may pass through
the boundary. Moreover, the edge-function contains a Gaussian function for the purpose of

Manuscript received April 19, 2012. Revised June 18, 2016.
Project support in part by NSFC grant 61379096 and Chinese-Guangdong’s S & T project (2014A050503004).



66 Z.C. JING, J. YE, G.L. XU

smoothing. In case of the image being very noisy, the smoothing term has to be strong, which
will blur the edge features as well.

Another type of methods are Mumford-Shah methods, first proposed by Mumford and Shah
on 1989[17], which do not rely on the gradient of the image and can detect objects with smooth
or discontinuous boundaries. These methods belong to a variational approach which express the
simplified image as the minimizer of an energy, thus invariably involve minimizing over curves
in the plane, which is a challenging task from a numerical perspective. As such, there have been
many research activities on how to numerically minimize the Mumford-Shah functional or its
simplified versions [5,12,16,21]. For example, the very popular Chan-Vese model[5] is a level-set
implementation of one special case of Mumford-Shah model. This model was further extended
and generalized to segmentation of multi-channel images[4], and segmentation of an image into
arbitrary regions[24]. The computational efficiency of these models has also been improved later-
on[7,8,19]. Lie et al. made it possible that only one level-set function is needed to represent 2n

unique regions[13]. More recent work includes Sumengen and Manjunath’s graph partitioning
active contour[20] and Li et al.’s work that eliminates the need of level-set reinitialization [12].

In [9], we propose a wavelet orthonormal bases based iteration method by refining alterna-
tively the orientations and the map using Levenberg-Marquardt algorithm and soft-thresholding,
respectively. The convergence analysis of the proposed algorithm is provided and numerical ex-
periments for simulated particle images show promising performance. In [10], a new algorithm
with nonmonotone line search to solve the non-decomposable minimax optimization is proposed.
We prove that the new algorithm is global convergent. Numerical results show the proposed
algorithm is effective.

In this paper, our model, by no exception, minimizes the Mumford-Shah functional and seg-
ments an image into a number of piecewise-constant regions. Yet it is essentially different from
popular level-set based implementations for this problem. We intends to derive a mapping x

that deforms given contours or regions towards objects in the image. We assume the segmenta-
tion region is fixed, and the value of the piecewise-constant function I1(u) on one segmentation
region is the average value of image on this segmentation region, then the sub-domains {Ωi}
are reshaped by the mapping x. This iterative process is stopped until it reaches stable state.
Fig 1.1 shows a result of our model.

Fig.1. (a) Image to be segmented; (b) I(0) specified by user; (c) after 200 iterations; (d) after 400 iterations

The remaining of the paper is organized as follows: In Section 2, we review the segmentation
model and algorithm, and list the new theoretical results. In Section 3, we give proof details of
the regularity of the mapping x(u, v). Based on the analysis results of Section 3, we consider
in Section 4 the existence problem of our segmentation model. We show that there exists a
mapping x0(u, v) ∈ X minimizing the new model. We conclude the paper in Section 5.
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2 Algorithm Review and Theoretical Results

In this section we first review the segmentation model proposed by Ye and Xu[22]. For experi-
mental results of this method please refer to [22]. In this paper, we give some theoretical results
which are summarized in this section.

2.1 Model and Algorithm Review

Given an image I0(u, v) defined on Ω = [0, 1]2 ⊂ R
2 and let Ωi be a decomposition of Ω, and

ci =

∫
Ωi

I0(u)du

Area (Ωi)
, (2.1)

thus the minimization problem can be solved by tackling two sub-problems inter-changeably:
(1) for fixed ci, change the shape of Ωi,
(2) for fixed Ωi, according to (2.1), compute the new constant ci.
We assume that the boundary of Ωi is piecewise smooth. Since the second sub-problem is

trivial to solve, how to solve the first one is the main focus.
We define the piecewise-constant function space over partition P as:

S(p) =
{
f(u) =

n∑

i=1

ciψi(u) : ci ∈ R

}
, (2.2)

where ψi(u) is the characteristic function of Ωi:

ψi(u) =

{
1, u ∈ Ωi,

0, otherwise.

According to [23], we have

|Γ| =
n∑

i=1

|ΓΩi
| =

n∑

i=1

∫

Ω

‖∇ψi(u)‖du. (2.3)

Sub-problem (1) desires that the sub-domains Ωi are reshaped with the function values ci on
Ωi unchanged. The objective of reshaping Ωi is to find a best fit to the image. To achieve this,
the mapping x is defined and the sub-domains are reshaped by the mapping. Thus the minimal

partition problem is defined as follows. For a given partition Ω =
n⋃

i=1

Ωi ∪ Γ of Ω for the image

I0 and the corresponding piecewise-constant image I1 ∈ S(P1), we find x(u) : Ω → Ω satisfying
(i) x is a C2 mapping;
(ii) x(0, v) = [0, v]T , x(1, v) = [1, v]T , x(u, 0) = [u, 0]T and x(u, 1) = [u, 1]T ;
(iii) For a given0 < γ < 1, det(xu,xv) ≥ γ;

such that

E(x) =

∫

Ω

((
I0(u, v) − I1(x(u, v))

)2
+ β

n∑

i=1

‖∇ψi(x(u, v))‖
)
dudv (2.4)

is minimized. Once the mapping x(u, v) is determined, resample the image by I2(u, v) =
I1(x(u, v)), then I2(u, v) is the segmented image we need on the sub-problem (2).

Remark 2.1. (iii) in the definition of x, that is det(xu,xv) ≥ γ, can guarantee the mapping
x to be an injection and surjection (see the proof of Theorem 2.1). Only the mapping x is an
injection and surjection, then resample is successful. Otherwise, it will emerge the self-mapping,
see Fig.2. Then the control points need to reset.
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Fig.2. (a) Parameterize the domain with the self-mapping x(u) = u consisting of 80 control points; (b)

evolving the control points deforms and the image on it; (c) at some point, the mapping x(u) is no longer 1-to-1,

the control points need to reset otherwise divergence occurs

Now we construct an L2-gradient flow to minimize the energy functional E(x). Let

x(u, v, ε) = x + εΦ(u, v), Φ ∈ C1
0 ([0, 1]2)2,

then we have,

δ(E(x),Φ) =
d

dε
E(x(·, ε))|ε=0 =

∫

Ω

(
2|I0(u) − I1(x)|∇I1(x)φ + β

n∑

i=1

∇2ψi(x)∇ψi(x)

‖∇ψi(x)‖
φ
)
du.

This yields the following weak-form L2 gradient flow that defines the motion of x(u),

∫

Ω

∂x

∂t
φdu = −

∫

Ω

(
2|I0(u) − I1(x)|∇I1(x)φ + β

n∑

i=1

∇2ψi(x)∇ψi(x)

‖∇ψi(x)‖
φ
)
du, (2.5)

where t is a time parameter, the first and second-order partial derivatives of the characteristic
functions are in the distribution sense.

Our algorithm is based on the space constructed by finite dimensional B-spline basis func-
tion. We solve (2.5) interchangeably using finite element method in the spatial discretization
and explicit Euler scheme in the temporal discretization.

Let x(u, v) be the bi-cubic B-spline function defined on [0, 1]2.

x(u, v) = [x1(u, v), x2(u, v)]
T =

m+2∑

i=0

n+2∑

j=0

aijNi,3(u)Nj,3(v),

where Ni,3(u) is the cubic B-spline basis function defined on the equi-spaced knots, aij are
control points of B, (m+3)× (n+3) is the number of all control points. An experimental result
using our algorithm shows on Fig.3.

2.2. Theoretical Results

To state the results, we define the space X as following,

X =
{
x(u, v) : x(u, v) = [x1(u, v), x2(u, v)]

T

=
m+2∑

i=0

n+2∑

j=0

aijNi,3(u)Nj,3(v) satisfying (i)–(iii)
}
.

We define the norm x ∈ X as:

‖x‖X =
(∫ 1

0

∫ 1

0

|x|2dudv
) 1

2

=
( ∫ 1

0

∫ 1

0

(x2
1 + x2

2)dudv
) 1

2

.
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Then we have (see Sections 3–4)

Theorem 2.1. x : [0, 1]2 → [0, 1]2 satisfying (i)–(iii) is an injection and surjection.

Theorem 2.2. There exists a mapping x0(u, v) ∈ X such that (2.4) is minimized.

Fig.3. Detection of three geometric objects,one of which has a smooth boundary. Size: 320× 240, control

grid30× 40, total iterations:150, CPU time: 13s

3 Regularity Analysis of Mapping x

In this section, we first introduce the used definitions, terminologies and theorems. Then we
provide the details of proof for Theorem 2.1.

3.1 Definitions and Theorems

Definition 3.1[18]. Let X and Y be topological spaces; let f : X → Y be a bijection. If
both the function f and the inverse function f−1: Y → X are continuous, then f is called a
homemorphism. f is a local homeomorphism, if for every point x in X, there exists an open
set U containing x, such that f(U) is open in Y and is a homeomorphism.
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Definition 3.2[6]. Let B̃ and B be subsets of R
2. We say that π : B̃ → B is a covering

mapping if
1. π is continuous and π(B̃) = B.
2. Each point p ∈ B has a neighborhood U in B (to be called a distinguished neighborhood

of p) such that

π−1(U) =
⋃

α

Vα,

where the Vα’s are pairwise disjoint open sets such that the restriction of π to Vα is a homeo-
morphism of Vα onto U .

Definition 3.3[9]. Assuming that (X, ρ) is a metric space, A is a subspace of X. If every
sequence in A has a convergence subsequence and the limit point of the convergence subsequence
lies in A, we named that A is a self-sequentially compact set.

Definition 3.4[6]. A ⊂ R
n is arcwise connected if, given two points p, q ∈ A, there exists an

arc in A joining p to q.

Definition 3.5[6]. A ⊂ R
n is connected when it is not possible to write A = U1 ∪ U2, where

U1 and U2 are nonempty open sets in A and U1 ∩ U2 = ∅.

Theorem 3.1[6]. Let T be of class C1 in a set D with J(p) 6= 0 for each p ∈ D, and let T
map D one-to-one onto a set T (D). Then, the inverse T−1 of T is of class C1 on T (D) and
the differential of T−1 is (dT )−1, the inverse of the differential of T . J(p) denotes the Jacobian
determinant of T in the point p.

Theorem 3.2[6]. Let π : B̃ → B be a local homeomorphism, B̃ compact and B connected.
Then π is a covering mapping.

Theorem 3.3[6]. Let π : B̃ → B be a covering mapping, B̃ arcwise connected, and B simply
connected. Then π is a homeomorphism.

3.2 Theoretical Analysis of mapping x

Now, we prove the correspondence x(u, v) is an injection and surjection.

Remark 3.1. [0, 1]2 is regarded as a topological space, i.e. [0, 1]2 is a clopen set.

Lemma 3.1. x : [0, 1]2 → [0, 1]2 satisfying (i)–(iii) is a locally one to one mapping.

Proof. Let a point p ∈ [0, 1]2 , we determine a neighborhood B of p in which x is one to one.
Let p′ and p′′ be two points near p such that the line segment jointing p′ and p′′ lies in [0, 1]2.
According to the mean value theorem, we may choose two points p∗1, p

∗
2 on this line segment

such that
x(p′′) − x(p′) = L(p′′ − p′), (3.1)

where L is the linear transformation represented by L = (xu(p∗1),xv(p∗2)).
Let

F (p1, p2) = det(xu(p1),xv(p2)),

then F (p∗1, p
∗
2) = det(L). Moreover, since x is C2, then F is C1 continuous, and F (p, p) ≥ γ.

There exists a circular neighborhoodB of p lying in [0, 1]2, such that F (p1, p2) ≥ γ for all choices
of the points p1, p2 in B. We shall prove that x is a one to one mapping in B. Assuming that
p′ and p′′ lie in B and x(p′) = x(p′′), we will prove p′ = p′′. Since p′ and p′′ lie in B and B is
convex, the entire line segment joining p′ to p′′ also lies in B, hence both p∗1 and p∗2 are points
of B. Using the property of B, we have F (p∗1, p

∗
2) = det(L) 6= 0. The linear transformation L

is therefore nonsingular. According to (3.1) and using the assumption that x(p′) = x(p′′), we
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have L(p′′ − p′) = 0. Since L is nonsingular, therefore we deduce that p′ = p′′, i.e., x is a one
to one mapping in B. 2

Lemma 3.2. x : [0, 1]2 → [0, 1]2 satisfying (i)–(iii) is a locally homeomorphism.

Proof. According to Lemma 3.1, x is a locally one to one mapping in [0, 1]2. Given a point
p ∈ [0, 1]2, assuming that x is one to one in a neighborhood B of p, then it is obvious that
x : B → x(B) is surjective, where x(B) denotes the range of x in B. And from Theorem 3.3,
we know that x−1 is continuous in x(B). Thus, x is homeomorphic in B, i.e., x is a local
homeomorphism.

Proof of Theorem 2.1. It is obvious that [0, 1]2 is connected and compact. From Lemma 3.2 and
Theorem 3.2, we deduce that x is a covering mapping. And since [0, 1]2 is arcwise connected
and simply connected, according to Theorem 3.3, x is a homeomorphism. Thus, we obtain that
x is an injection and surjection. The result is deduced. 2

4 The Existence of the Solution to the Energy Minimizer

This section devotes to the proof of Theorem 2.2.

Lemma 4.1. (X, ρ) is a closed set.

Proof. Suppose that {xk} is a fundamental sequence in the space (X, ρ). This sequence can be

written as xk(u, v) =
m+2∑
i=0

n+2∑
j=0

(aij)kNi,3(u)Nj,3(v). It is easy to deduce that (aij)k are bounded,

hence there exists a subsequence (aij)kl
converging to (aij)0. Because {xk} is a fundamental

sequence, we obtain that,

lim
k→∞

xk(u, v) = lim
l→∞

xkl
(u, v)

= lim
l→∞

m+2∑

i=0

n+2∑

j=0

(aij)kl
Ni,3(u)Nj,3(v)

=

m+2∑

i=0

n+2∑

j=0

(aij)0Ni,3(u)Nj,3(v).

Let x0(u, v) =
m+2∑
i=0

n+2∑
j=0

(aij)0Ni,3(u)Nj,3(v). Because the range of xk is [0, 1]2 which is a closed

set, we obtain that x0(u, v) ∈ [0, 1]2.

On the other hand, it is obvious that x0(0, v) = [0, v]T , x0(1, v) = [1, v]T , x0(u, 0) = [u, 0]T

and x0(u, 1) = [u, 1]T . Moreover, since det((xk)u, (xk)v) ≥ γ, hence det((x0)u, (x0)v) =
lim

k→∞
det((xk)u, (xk)v) ≥ γ, i.e. x0(u, v) ∈ X . Therefore, X is a closed set. 2

Lemma 4.2. X is a self-sequentially compact set.

Proof. Because the number of the bicubic B-spline bases is finite, X is a finite dimensional
space. On the other hand, x(u, v) : [0, 1]2 → [0, 1]2, hence ‖x(u, v)‖ ≤ 2. According to Lemma
4.1, X is a closed set. Then we conclude that X is a self-sequentially compact set. 2

To prove the existence of the solution of energy Model (2.4), we need to prove that the
model is continuous about x.
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Let

I1(u) =






c1, u ∈ Ω1,

c2, u ∈ Ω2,

...
...

cn, u ∈ Ωn,

then

I1(x(u)) =






c1, x(u) ∈ Ω1,

c2, x(u) ∈ Ω2,

...
...

cn, x(u) ∈ Ωn,

I1(y(u)) =






c1, y(u) ∈ Ω1,

c2, y(u) ∈ Ω2,

...
...

cn, y(u) ∈ Ωn.

Definition 4.1.

Ωx
i = {u = (u, v) : x(u) ∈ Ωi}, i = 1, · · · , n, (4.1)

Ωy

i = {u = (u, v) : y(u) ∈ Ωi}, i = 1, · · · , n. (4.2)

Remark 4.1. Because x and y are continuous mappings, Ωi is an open set, thus Ωx
i and Ωy

i

are both open sets, i = 1, · · · , n.

Lemma 4.3. For any ε > 0, there exists δ > 0, when |(w, z) − (u, v)| > ε, then |x(w, z) −
x(u, v)| ≥ δ.

Proof. Reduction to absurdity. Assuming that there exists ε0 > 0, such that for any δ >
0, exists the point (wδ, zδ) and (uδ, vδ), satisfying |(wδ, zδ) − (uδ, vδ)| > ε0 and |x(wδ, zδ) −
x(uδ, vδ)| < δ.

Let δ = 1, 1/2, · · · , 1/k, · · ·, we get the corresponding points {(wk, zk)} and the points
{(uk, vk)}, then

|(wk, zk) − (uk, vk)| > ε0 (4.3)

and

|x(wk, zk) − x(uk, vk)| <
1

k
. (4.4)

On the other hand, according to Theorem 2.1 and Theorem 3.3, x−1 is C1 continuous. And
because x−1: [0, 1]2 → [0, 1]2, x−1 is uniformly continuous on [0, 1]2. Thus for any ε > 0, there
exists N , when k > N , |x(wk, zk)−x(uk, vk)| < 1/k, we get |x−1(x(wk, zk))−x−1(x(uk, vk))| <
ε, that is, |(wk, zk)− (uk, vk)| < ε, this is in contradiction with (4.3), this lemma is proved. 2

Lemma 4.4. For any ε > 0, there exists δ > 0, when ‖y−x‖ < δ, we have ‖y−1 −x−1‖ < ε.

Proof. Reduction to absurdity. Assuming that there exists ε0 > 0, for any δ > 0, existing yδ

and uδ, satisfying ‖yδ − x‖ < δ, and

|y−1
δ (uδ) − x−1(uδ)| ≥ ε0. (4.5)

Let δ = 1, 1
2 , · · · ,

1
k
, · · ·, we get the sequence {yk} and {uk}, satisfying

‖yk − x‖ <
1

k
, (4.6)

and
|y−1

k (uk) − x−1(uk)| ≥ ε0. (4.7)
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On the other hand, as the mapping x and y are surjections, hence for uk in (4.7), there exist
(uxk

, vxk
) and (uyk

, vyk
), satisfying x(uxk

, vxk
) = uk and yk(uyk

, vyk
) = uk. According to

(4.7), we obtain
|(uyk

, vyk
) − (uxk

, vxk
)| ≥ ε0. (4.8)

According to Lemma 4.3, we get that there exists η0, satisfying

|x(uyk
, vyk

) − x(uxk
, vxk))| ≥ η0. (4.9)

Furthermore, according to (4.6), there exists k0, when k > k0, getting ‖yk − x‖ < η0

2 , hence

|yk(uyk
, vyk

) − x(uyk
, vyk

)| <
η0
2
. (4.10)

Because

0 = |uk − uk| =|x(uxk
, vxk) − yk(uyk

, vyk
)|

=|x(uxk
, vxk) − x(uyk

, vyk
) + x(uyk

, vyk
) − yk(uyk

, vyk
)|

≥|x(uxk
, vxk) − x(uyk

, vyk
)| − |x(uyk

, vyk
) − yk(uyk

, vyk
)|

≥η0 −
η0
2

≥
η0
2
, (4.11)

contradiction is gotten, this lemma is proved. 2

Lemma 4.5. For any ε > 0, there exists δ > 0, when ‖y − x‖ < δ, for any u ∈ Ωx
i \ Ωy

i ,

having dist (u, ∂Ωy

i ) < ε.

Proof. For any u ∈ Ωx
i \Ωy

i , we get x(u) ∈ Ωi. According to Lemma 4.4, we have |y−1(x(u))−
x−1(x(u))| < ε, that is |y−1(x(u))−u| < ε. As y(y−1(x(u))) = x(u) ∈ Ωi, hence y−1(x(u)) ∈

Ωy

i , note that Ωy

i is an open set, hence dist (u, ∂Ωy

i ) ≤ |u− y−1(x(u))| < ε. 2

Lemma 4.6. For any ε > 0, there exists δ > 0, when ‖y − x‖ < δ, for any u ∈ Ωy

i \ Ωx
i , we

have dist (u, ∂Ωx
i ) < ε.

Proof. Proof of this lemma is similar as Lemma 4.5, here omitted. 2

Lemma 4.7. For any ε > 0, there exists δ > 0, when ‖y−x‖ < δ, m
(
(Ωx

i ∪Ωy

i )\(Ωx
i ∩ Ωy

i )
)
<

ε.

Proof. Because

(Ωx
i ∪ Ωy

i ) \
(
Ωx

i ∩ Ωy

i

)
=

(
Ωx

i \ (Ωx
i ∩ Ωy

i )
)
∪

(
Ωy

i \ (Ωx
i ∩ Ωy

i )
)

= (Ωx
i \ Ωy

i ) ∪ (Ωy

i \ Ωx
i ),

hence

m
(
(Ωx

i ∪ Ωy

i ) \ (Ωx
i ∩ Ωy

i )
)

= m
(
(Ωx

i \ Ωy

i ) ∪ (Ωy

i \ Ωx
i )

)
≤ m(Ωx

i \ Ωy

i ) +m(Ωy

i \ Ωx
i ).

Reduction to absurdity. Assuming that there exists ε0 > 0, for any δ > 0, existing the mapping
yδ satisfying ‖yδ−x‖ < δ, we have m

(
(Ωx

i ∪Ωy

i )\(Ωx
i ∩ Ωy

i )
)
> ε0. Assuming m(Ωx

i \Ωy

i ) > ε0

2 ,

then Ωx
i \ Ωy

i is not empty, that is there exists u0 ∈ Ωx
i \ Ωy

i . Note that Ωx
i \ Ωy

i is an open

set, hence there exists r0, satisfying Ouo
(r0) ⊂ Ωx

i \ Ωy

i , hence we have dist
(
u0, ∂(Ωy

i )
)
> r0.

This is contraction with Lemma 4.5, this lemma is proved. 2

Lemma 4.8. For any ε > 0, there exists δ > 0, when ‖y−x‖ < δ,
∣∣|y(ΓΩi

)|− |x(ΓΩi
)|
∣∣ < ε.

Proof. Because the boundary of Ωi is piecewise smooth, the boundary is denoted by ΓΩi
.

Assuming that Γk is one of sections, the parametric equation of Γk is (α(t), β(t)), the range of
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t is [t1, t2], then arc length of Γk is

|Γk| =

∫ t2

t1

√
(α′(t))2 + (β′(t))2dt.

Parametric equation of the mapping acting on arc Γk is denoted by x(Γk) =
(
x1(α, β), x2(α, β)

)
,

the range of t is [t1, t2], then the arc length of x(Γk) is

|x(Γk)| =

∫ t2

t1

√
(∇x1 · Γ′

k)2 + (∇x2 · Γ′
k)2dt. (4.12)

Noting that the mapping x is C2 and represented by B-spline basis function as (4.12), we deduce
that |x(Γk)| is continuous about mapping x, the conclusion is proved. 2

Lemma 4.9. For any ε > 0, there exists δ > 0, when ‖y − x‖ < δ, we have

∥∥E(y) − E(x)
∥∥

=
∥∥∥

∫

Ω

((
I0(u) − I1(y(u))

)2
+ β

n∑

i=1

‖∇ψi(y(u))‖
)
du

−

∫

Ω

((
I0(u) − I1(x(u))

)2
+ β

n∑

i=1

‖∇ψi(x(u))‖
)
du

∥∥∥ < ε. (4.13)

Proof.

∥∥E(y) − E(x)
∥∥

=
∥∥∥

∫

Ω

((
I0(u) − I1(y(u))

)2
+ β

n∑

i=1

‖∇ψi(y(u))‖
)
du

−

∫

Ω

((
I0(u) − I1(x(u))

)2
+ β

n∑

i=1

‖∇ψi(x(u))‖
)
du

∥∥∥

≤
∥∥∥

∫

Ω

(
2I0(u) − I1(x(u)) − I1(y(u))

) (
I1(x(u)) − I1(y(u))

)
du

∥∥∥

+
∥∥∥

∫

Ω

β
n∑

i=1

(
‖∇ψi(y(u))‖ − ‖∇ψi(x(u))‖

)
du

∥∥∥. (4.14)

For simplicity, let f(u) = 2I0(u) − I1(x(u)) − I1(y(u)), we have

∫

Ω

(
2I0(u) − I1(x(u)) − I1(y(u))

)(
I1(x(u)) − I1(y(u))

)
du

=

∫

Ω

f(u)
(
I1(x(u)) − I1(y(u))

)
du

=

∫

Ω

(
f(u)I1(x(u)) − f(u)I1(y(u))

)
du

=

n∑

i=1

ci

∫

Ωx

i

f(u)du −
n∑

i=1

ci

∫

Ωy

i

f(u)du. (4.15)

As f(u) is bounded function on [0, 1]2, the upper bound of |f(u)| on [0, 1]2 denoted by M ,
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according to the Lemma 4.7, we know

∥∥∥
n∑

i=1

ci

∫

Ωx

i

f(u)du −
n∑

i=1

ci

∫

Ωy

i

f(u)du
∥∥∥

≤
n∑

i=1

ci

∫

(Ωx

i
∪Ωy

i
)\(Ωx

i
∩Ωy

i
)

|f(u)|du ≤Mε
n∑

i=1

ci. (4.16)

That is

∥∥∥
∫

Ω

(
2I0(u) − I1(x(u)) − I1(y(u))

)(
I1(x(u)) − I1(y(u))

)
du

∥∥∥ < Mε

n∑

i=1

ci. (4.17)

On the other hand, according to the Lemma 4.8, we get

∥∥∥
∫

Ω

β

n∑

i=1

(
‖∇ψi(y(u))‖ − ‖∇ψi(x(u))‖

)
du

∥∥∥

=β
n∑

i=1

∣∣|y(ΓΩi
)| − |x(ΓΩi

)|
∣∣ < nβε, (4.18)

hence when ‖y − x‖ < δ, we have

∥∥E(y) − E(x)
∥∥ < Mε

n∑

i=1

ci + nβε,

Thus the energy functional

E(x) =

∫

Ω

((
I0(u, v) − I1(x(u, v))

)2
+ β

∑

i

‖∇ψi(x(u, v))‖
)
dudv (4.19)

is continuous on x.

Proof of Theorem 2.2. Let xn be a minimizing sequence for the Model (2.4), i.e.,

lim
n→∞

E(xn) = inf
x∈X

E(x).

Due to the Lemma 4.2, X is a self-sequentially compact set. Thus, there exists a subsequence
xnk

and x0 in X such that xnk
→ x0.

Finally, since the energy functional

E(x) =

∫

Ω

((
I0(u, v) − I1(x(u, v))

)2
+ β

∑

i

‖∇ψi(x(u, v))‖
)
dudv (4.20)

is continuous on x0, then
E(x0) = lim

k→∞
E(xnk

) = inf
x∈X

E(x),

x0 is a minimum point of E(x). 2

5 Conclusion

An algorithm has been presented for solving image segmentation problem in [22]. This paper
analyzes the validity of the model from the theoretical point of view. After a brief introduction
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of the segmentation model and experimental results, we proved the regularity of mapping
x(u, v) when the mapping x(u, v) satisfies certain conditions. We also proved that there exists
a mapping x0(u, v) ∈ X satisfying (i)–(iii) such that the energy functional (2.4) is minimized.
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