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Multiview Label Sharing for Visual Representations
and Classifications

Chunjie Zhang , Jian Cheng , and Qi Tian , Fellow, IEEE

Abstract—Different views represent different aspects of images.
It is more effective to combine them for visual classifications. This
paper proposes a novel multiview label sharing method to combine
the discriminative power of different views for classifications.
Especially, we linearly transfer different views into a shared
space for representations. The inter-view similarities are kept
in the shared space for each view. We also ensure the intra-
view similarities of the same class between different views are
preserved in the shared space. We jointly learn the classifiers and
transformation matrices by minimizing the summed classification
loss along with the inter-view and intra-view similarity constraints.
In this paper, the inter-view constraints refer to the similarities
between images of the corresponding view, whereas the intra-
view constraints refer to the similarities between different views of
images with the same semantics. Experimental results and analysis
on several public datasets show the effectiveness of the proposed
multiview label sharing method for visual classifications.

Index Terms—Multi-view learning, linear transformation,
shared space, image representation, visual classification.

I. INTRODUCTION

THE Internet has huge volumes of multimedia contents.
Visual information plays an important role for efficiently

analyzing of these multimedia contents. Hence, how to develop
discriminative image representations becomes a problem which
needs to be solved. Researchers have proposed many visually
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based methods. For example, the bag-of-visual-words (BoW)
model [1], spatial pyramid matching model [2], the sparse cod-
ing spatial pyramid matching model (ScSPM) [3], fisher vector
based model (FV) [4] and the convolutional neural network
(CNN) based model [5] with many variants [6]–[16].

Due to the varieties of images, we often need multiple views
for joint representations. In this paper, the views can refer to
the visual representations generated by different methods [1]–
[5] and can also refer to image representations using different
types of features (e.g. color histogram and SIFT) with varied
encoding strategies (sparse coding and fisher vector). Combing
the discriminative power of different views can greatly improve
the classification accuracies. However, different views cannot
be compared directly. Simply concatenating them together may
not be able to fully explore the discriminative power of different
views.

To make use of the discriminative information of multiple
views, researchers have proposed many methods [17]–[25].
Some works [17]–[18] try to combine different views by graph
fusion. Others [19]–[21] make transformations either by trans-
fer learning or learning general spaces for representations. on
one hand, the similarities of samples within one view are of-
ten used while the correlations of different views are ignored
or contaminated by noisy correlations. On the other hand, the
combinations of different views are independent of the classifier
training process.

Similarity preserving strategy is often used to ensure consis-
tency during transformation. This is often based on the assump-
tion that the initially similar samples should be transformed
to similar representations. There are mainly two types (feature
based [26]–[28] and semantics based [29]–[32]) of similarity
preserving methods. The feature based methods assume visu-
ally similar features should be transformed into similar repre-
sentations while the semantic based methods use the semantic
similarities during transformation. However, the two types of
similarity preserving strategies are often used independently
without jointly considering their discriminative abilities. The
similarity consistency constraints work well but may occasion-
ally fail on the borders of different classes. The visually similar
constraints should be combined with their semantic correlations.

To solve the problems mentioned above, in this paper, we
propose a novel multi-view label sharing method (MVLS) for
efficient visual classifications. To bridge the gaps of different
views, we linearly transform them into a shared space. For each
view, we try to preserve the inter-view similarity in the shared
space. The intra-view similarities of images of different views
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are also combined along with the classifier training process.
We alternatively optimize over the classifier parameters and the
transformation matrixes for visual representations and classifi-
cations. Experimental results on several datasets well demon-
strate the effectiveness of the proposed MVLS method for image
classification.

The proposed method differs with latent models (e.g. Latent
Semantic Analysis [33], Probabilistic Latent Semantic Analysis
[34] and Latent Dirichlet Allocation [35]). Latent spaces are
not explicitly generated while the shared space can be obtained
directly. MVLS is also different from Canonical Correlation
Analysis [21] as it jointly learn classifiers along with transfor-
mation matrixes.

The main contributions of this paper lie in three aspects:
� First, we linearly transfer the information of different views

into a shared space for visual representations and classifi-
cations.

� Second, we combine the classifier training and transforma-
tion matrix learning into a unified process by considering
both the inter-view similarities and intra-view similarities.

� Third, we alternatively optimize over the classifier param-
eters and transformation matrixes. We achieve superior
classification performances compared with other baseline
methods.

The rest of this paper is organized as follows. We discuss
the related work in Section II. The details of the proposed
multi-view label sharing method for visual representations and
classifications are given in Section III. Image classification ex-
periments on several datasets are given in Section IV. Finally,
we conclude in Section V.

II. RELATED WORK

Many methods had been introduced to improve the accuracy
of image classification [1]–[16], e.g. the BoW model [1], SPM
[2], ScSPM [3], FV [4] and locality constrained linear coding
(LLC) [6]. In recent years, the deep convolutional neural net-
work based methods [5], [8], [9] became popular. Krizhevsky
et al. [8] proposed to use deep convolutional neural networks
for large scale image classification. Simonyan and Zisserman [5]
increased the depth of convolutional neural networks. Perronnin
and Larlus [9] proposed a hybrid architecture by combing the
fisher vector with convolutional neural networks. Motivated by
these methods, many works [10]–[16] were made. The low-rank
sparse coding was used by Zhang et al. [10] to generate general
and class specific codebooks. Gao et al. [11] incorporated sim-
ilarity preserving term into the sparse coding process. Huang
et al. [13] targeted the fine-grained classification problem with
polygon based classifier learning while Zhao et al. [14] made
use of diversified attention networks. Wu et al. [15] combined
active learning with label correlation while Puthenputhussery
et al. [16] used the complete marginal fisher analysis technique.
However, these methods only tried to classify images from sin-
gle view without exploring the correlations of different views.
Graph based fusion [17]–[18] strategies were used to combine
various information. Liu et al. [17] constructed hypergraph for
image clustering and classification. Shao and Fu [18] proposed

a novel hierarchical hyperlingual-words algorithm to classify
faces with different modalities. The joint consideration of dif-
ferent views helped to boost the performances over single view.

Instead of using the initial representations, transformation
based strategies [19]–[22] were also used. It worked by trans-
ferring the initial representations to new features which were
more discriminative and effective for new applications. Zhang
et al. [19] implicitly transferred pre-learned codebooks for im-
age classification. Dai et al. [20] tried to transfer knowledge
among different feature spaces while Gong et al. [21] used multi-
view embedding space. Wang et al. [22] tried to learn compact
hash codes for multimodal representation. Chou et al. [23] made
use of different information for video annotation. Wang and Guo
[24] imposed sparse constraint to embed different modalities
while Li et al. [25] explored the correlations between image
and text for news topic analysis. To ensure consistency of the
transformed representations, researchers also used various sim-
ilarity preserving constraints [26]–[39]. Zhang et al. [26] con-
textualized exemplar classifiers while Dong et al. [27] learned
the subcategory for classification. Yuan and Yan [28] explored
multi-task sparse representation. Oquab et al. [29] used convo-
lutional neural networks for mid-level image representations. Li
et al. [30] learned low-rank constrained subspace while Zhang
et al. [31] classified objects in sub-semantic space. To cope with
the data missing problem, Shao et al. [32] proposed a novel
sparse low-rank fusion based deep features for face recognition
while Ding et al. [39] made use of the latent low-rank constraint
with improved performances. Researchers also tried to learn
the transformation implicitly [33]–[35]. Most of these methods
only considered the inter-view similarities. Multiple views were
needed for efficient representations. However, the correlations
between different views were often ignored. This information
should also be used for reliable transformations.

To improve the classification performances, researchers made
use of many strategies [40]–[55] and greatly boosted the accu-
racies. The local feature based strategies tried to go beyond
the Euclidean distance [40] or make use the detection and seg-
mentation techniques [41]–[42]. Xie et al. [40] used bin-ratio
similarity for classification. Angelova and Zhu [41] combined
object detection and segmentation strategies for fine-grained
application while Chai et al. [42] proposed a co-segmentation
method. Zhang et al. [48] proposed a low-rank sparse coding
scheme for classification. Boiman et al. [43] went beyond lo-
cal feature encoding process and used local features directly
with class-level similarity. To bridge the semantic gap, Li et al.
[44] collected images from the Internet and used the Object-
Bank for semantic representations of images. The CNN based
methods were widely used recently [45], [47]. Sohn et al. [45]
tried to learn sparse convolutional features while Bo et al. [46]
used a hierarchical strategy. Zeiler and Ferugs [47] studied the
details of convolutional networks while Sermanet et al. [50]
used convolutional networks to integrate localization, detec-
tion and classification into a unified framework. Chatfield et al.
[52] evaluated the implementation details of different convolu-
tional network based methods. Wei et al. [53] studied the multi-
label classification problem with CNN based methods while
Yang et al. [54] used bounding box information. One problem
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TABLE I
THE SYMBOLS AND THEIR CORRESPONDING DESCRIPTIONS USED IN

THIS PAPER

Symbol Description

M view number
N number of training images
Dm dimension of the m-th view
Z shared space
d dimension of Z
xm

n representation of n-th image of m-th view
yn label of the n-th image
Wm transformation matrix of m-th view
f (z) linear classifier for prediction
�(∗, ∗) hinge loss function
αT transpose of α
sm
i,j similarity between the i-th and j-th images of m-th view

ŝm ,m̃
i ,j similarity between the i-th image of m-th view and the

j-th image of m̃-th view
λ, λ1 , λ2 balancing parameters

with these methods was that they only used the visual informa-
tion and worked well on carefully collected datasets. However,
combining multiple types of information was more proper for
real applications [56]–[67]. Rasiwasia et al. [56] used both im-
ages and text descriptions for cross-modal retrieval. CCA [57]
was used by Yang et al. for face matching [58]. Wang et al.
[59] combined the deep semantic network for multimodal rep-
resentations while Sharma et al. [60] used generalized multi-
view analysis technique. The cross-modal correlation problem
was also explored by feature selection with subspace learning
[61] and deep metric learning [62]. However, they treated the
combination of multi-views and classifier training separately.
It would be more effective to incorporate the discriminative
power of multi-views along with classifier training into a unified
framework.

III. MULTI-VIEW LABEL SHARING BASED VISUAL

REPRESENTATIONS AND CLASSIFICATIONS

In this section, we give the details of the proposed multi-view
label sharing method for visual representations and classifica-
tions (MVLS). The symbols and their descriptions used in this
paper are given in Table I.

A. Linear Transformation

Let M be the view number, Dm is the dimension of the
m-th view with m = 1, . . . ,M . Suppose we have N train-
ing images with their multi-view representations and labels as
(xm

n , yn ),m = 1, . . . ,M, n = 1, . . . , N . Different views can-
not be directly compared. To combine the discriminative power
of each view, we try to linearly transform each view into a shared
space Z ∈ Rd×1 as:

zm
n = W m × xm

n (1)

where W m ∈ Rd×Dm
is the linear transformation matrix for

the m-th view. Linear transformation is used because it can
be efficiently combined for visual representations. It is also
differentiable for efficient optimization.

B. Inter-View and Intra-View Similarity Measurements

we can use the linearly transferred representations for classi-
fication directly as:

ŷ = f(z) (2)

where f is the corresponding classifier to be learned. We can
learn this classifier by minimizing the summed loss of training
images with constraints as:

f = argminf

N
∑

n=1

M
∑

m=1

�(f(zm
n ), yn ) + λΩ(f(∗)) (3)

where �(∗, ∗) is the loss function to be learned, Ω(∗) is the reg-
ularization term. λ is the parameter for balancing the influences
of summed loss and the regularization term. N is the number
of training images and M is the number of views. Usually, the
hinge loss is used:

�(f(zm
n ), yn ) = max(0, 1 − f(zm

n ) × yn ) (4)

In this paper, we use the linear classifier f(z) = αT z with
L2 regularization. Problem 3 can be rewritten as:

α = argminα

N
∑

n=1

M
∑

m=1

max(0, 1 − αT zm
n × yn )

+ λ‖α‖2 (5)

We can learn the classifiers by solving Problem 5 directly.
However, it does not fully explore the similarity information. We
transform the representations of different views into the shared
space. However, the transformed representations of different
views have varied semantic meanings. Hence, it is necessary to
impose some constraints on the transformation process to ensure
semantically consistent transformation. We leverage two types
of constraints (inter-view similarity and intra-visual similarity)
in this paper. On one hand, visually similar images should have
similar representations in the shared space for each view. This
inter-view similarity constraint is widely used by researchers
[3], [6], [7], [10], [11], [20]. On the other hand, one image may
be represented with different views. The representations with
the same semantics should also be transformed with correlated
representations in the shared space. Due to the semantic gap, the
similarity constraint may fail on some images and lead to the
over-fitting problem. However, we can try to minimize a proper
loss function to statistically ensure efficient combinations of
inter-view and intra-view similarities. Balancing parameters can
also be used to avoid the over-usage of similarities.

To ensure inter-view similarity, we add an inter-view simi-
larity preserving term to Problem 5 with weighting parameter
λ1 as:

α = argminα

N
∑

n=1

M
∑

m=1

max(0, 1 − αT zm
n × yn )

+ λ‖α‖2 + λ1

M
∑

m=1

N
∑

i,j=1

sm
i,j‖zm

i − zm
j ‖2

2 (6)



906 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 4, APRIL 2018

The similarity between xm
i and xm

j is defined as:

sm
i,j = exp−‖xm

i −xm
j ‖2 /σ (7)

where σ is the scaling parameter.
To model the intra-class similarity, we add another term by

considering the intra-view similarity to Problem 6:

α = argminα

N
∑

n=1

M
∑

m=1

max(0, 1 − αT zm
n × yn )

+ λ‖α‖2 + λ1

M
∑

m=1

N
∑

i,j=1

sm
i,j‖zm

i − zm
j ‖2

2

+ λ2

M
∑

m=1

M
∑

m̃=1

N
∑

i,j=1

ŝm ,m̃
i,j ‖zm

i − zm̃
j ‖2

2 (8)

with λ2 is the weighting parameter. The intra-view similarity
ŝm ,m̃

i,j is defined as:

ŝm ,m̃
i,j =

{

1, if yi == yj

0, otherwise
(9)

It is used to ensure that we only consider the intra-view similar-
ities of images with the same semantics.

For fixed transformation matrixes W m ,m = 1, . . . ,M , the
second and third terms of Problem 8 have no influences on α.
However, we do not know the transformation matrixes in ad-
vance. W m ,m = 1, . . . , M should also be learned from train-
ing images as:

[α,W m ] = argminα,W m + λ‖α‖2

+
N

∑

n=1

M
∑

m=1

max(0, 1 − αT zm
n × yn )

+ λ1

M
∑

m=1

N
∑

i,j=1

sm
i,j‖zm

i − zm
j ‖2

2

+ λ2

M
∑

m=1

M
∑

m̃=1

N
∑

i,j=1

ŝm ,m̃
i,j ‖zm

i − zm̃
j ‖2

2

∀zm
i = W m xm

i ,m = 1, . . . ,M (10)

C. Alternative Optimization for Visual Representations
and Classifications

It is hard to learn the optimal classifier parameter α and
the transformation matrixes W m ,m = 1, . . . ,M simultane-
ously. To solve Problem 10, we alternatively optimize over
the classifier parameter α and the transformation matrixes
W m ,m = 1, . . . , M . When W m ,m = 1, . . . ,M are fixed,
Problem 10 equals to:

α = argminα

N
∑

n=1

M
∑

m=1

max(0, 1 − αT zm
n × yn )

+ λ‖α‖2 (11)

which is a standard support vector machine learning problem
with hinge loss and L2 constraint. It can be solved efficiently
with the state-of-the-art SVM solver.

When α is fixed, Problem 10 equals to:

W m = argminW m λ1

M
∑

m=1

N
∑

i,j=1

sm
i,j‖zm

i − zm
j ‖2

2

+
N

∑

n=1

M
∑

m=1

max(0, 1 − αT zm
n × yn )

+ λ2

M
∑

m=1

M
∑

m̃=1

N
∑

i,j=1

ŝm ,m̃
i,j ‖zm

i − zm̃
j ‖2

2

∀zm
i = W m xm

i ,m = 1, . . . ,M (12)

We try to optimize over each transformation matrix by fixing
the other matrixes. By ignoring the fixed terms, for the m-
th transformation matrix, Problem 12 equals to the following
optimization problem as:

W m = argminW m

N
∑

n=1

max(0, 1 − αT zm
n × yn )

+ λ1

N
∑

i,j=1

sm
i,j‖W m (xm

i − xm
j )‖2

2

+ λ2

M
∑

m̃=1

N
∑

i,j=1

ŝm ,m̃
i,j ‖W m xm

i − W m̃ xm̃
j ‖2

2 (13)

which can be solved using gradient descent. Let

Φ(W m ) =
N

∑

n=1

max(0, 1 − αT zm
n × yn )

+ λ1

N
∑

i,j=1

sm
i,j‖W m (xm

i − xm
j )‖2

2

+ λ2

M
∑

m̃=1

N
∑

i,j=1

ŝm ,m̃
i,j ‖W m xm

i − W m̃ xm̃
j ‖2

2

(14)

we can calculate the gradient of Φ(W m ) as:

∂Φ
∂W m =

N
∑

n=1

∂ max(0, 1 − αT zm
n × yn )

∂W m

+ 2λ1

N
∑

i,j=1

sm
i,jW

m (xm
i − xm

j )(xm
i − xm

j )T

+ 2λ2

N
∑

i,j=1

ŝm ,m̃
i,j (W m xm

i − W m̃ xm̃
j )(xm

i )T

(15)

with ∂ max(0,1−αT zm
n ×yn )

∂W m = 0, if 1 − ynαT W m xm
n ≤ 0 and

∂ max(0,1−αT zm
n ×yn )

∂W m =−ynα(xm
n )T , if 1−ynαT W m xm

n > 0.
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Algorithm 1: The Alternative Optimization Strategy for
Solving Problem 10
Input:

The parameters: λ, λ1 , λ2 ; training images of M views
(xm

n , yn ), n = 1, . . . , N,m = 1, . . . ,M , maximum
iteration number Miter, the stopping threshold θ.

Output:
The classifier parameter α and the transformation
matrixes W m ,m = 1, . . . ,M ;

1: for iter = 1:Miter

2: Search for the optimal classifier parameter α while
keeping the transformation matrixes W m ,m = 1, . . . ,
M fixed using the state-of-the-art SVM classifiers;

3: Search for the optimal transformation matrix W m

for the m-th view iteratively with fixed classifier
parameter α and the other transformation matrixes
by solving Problem 13;

4: Check the decrement of the objective value
of Eq. (10).

If the decrement falls below θ, stop, go to step 5.
else go to step 2.

5: end for.
6: return The learned α and W m ,m = 1, . . . , M .

We alternatively optimize over the parameter α and the trans-
formation matrixes W m ,m = 1, . . . ,M for a pre-defined iter-
ations or the changes of the objective value of Problem 10 falls
below a threshold. Algorithm 1 gives the procedure of the alter-
native optimization method. After the transformation matrixes
and the classifier parameters are learned, we can use them for
representations and classifications of images. We assign the im-
ages with the class whose corresponding classifier has the largest
response.

IV. EXPERIMENTS

To evaluate the performances of the proposed method, we
conduct image classification experiments on several datasets:
the Flower-102 dataset [36], the Caltech-256 dataset [37], the
PASCAL VOC 2007 dataset and the PASCAL VOC 2012 dataset
[38]. Fig. 1 shows some example images of these datasets. We
also test the effectiveness of the proposed method on the wiki
dataset [56].

A. Experimental Setup

We extract different types of features for image presentations
and treat each type of representations as one view. Specially,
we use both the local feature based methods and convolutional
neural network based methods for representations. As to the
local feature based methods, the SIFT and color-SIFT [39] are
used and encoded with the BoW model, the ScSPM model and
the FV model respectively. We extract local features densely
by grid search with overlap. The overlap is set to 6 pixels
with the minimum local region of 16 × 16 pixels. The code-
book size is set to 1,000 for the BoW model and the ScSPM
model. 200 is used for the FV model. We use the code provided

by [3]–[6] to get the image representations of different views.
This results in a total of six views for local feature based repre-
sentations. We use three views of convolutional neural network
based strategies. Specially, we adopt the same structure as [5]
and [8] for image representations with 4,096 dimensions. We
use the pre-trained AlexNet [8], VGG [5] and ResNet [55] with
50 layers on the ILSVRC 2014 dataset for initialization. We
then finely tune the networks with the training images of each
dataset. Finally, we remove the last fully-connected layer and
use the 4,096 dimensions of the penultimate layer as image rep-
resentations of the corresponding network (view). Hence, we
can get a total of nine views for image representations. The
maximum iteration number in Algorithm 1 is set to 50. We
only use the six local feature based views for classifications
on the Flower-102 dataset (MVLS (6 views)) as this dataset
is relatively easier to classify. The classification rate is used
for performance evaluations on the Flower-102 dataset and the
Caltech-256 dataset. Mean average precision (mAP) is used on
the PASCAL VOC 2007 dataset and the PASCAL VOC 2012
dataset for evaluations.

We follow the experimental setup as other baseline methods
and compare with the reported results directly for fair compar-
ison. The baseline methods are chosen for three reasons. First,
the proposed method combines multiple views for classifica-
tion. Hence, we compare with the performances of different
views [3], [4], [5], [6], [11], [51] to show the effectiveness of
multi-view combination. Second, we transfer different views for
joint classification. Hence, we also compare with some of the
transformation based methods [10], [19], [31], [40], [44], [46].
Third, we test the proposed method on several public datasets.
Many works have tested their performances on these datasets.
We compare with several the state-of-the-art methods [28], [36],
[37], [41]–[43], [47]–[54] which use local features and convo-
lutional neural networks. We give the performances of MVLS
(6 views, no intra), MVLS (6 views, no inter+intra), MVLS
(6 views) and MVLS (9 views) on the Flower-102 dataset and
the Caltech-256 dataset to show the detailed effectiveness of the
proposed method. Since the combination of inter-view and intra-
view information of different views can consistently improve the
classification performances, we only give the performances of
MVLS (9 views) on the PASCAL VOC 2007 and 2012 datasets.

B. The Flower-102 Dataset

The Flower-102 dataset has 102 classes of 8,189 images with
varied numbers for each class. The images are divided into
10/10/rest for train/validate/test respectively [36]. We follow this
setup and conduct image classification experiments accordingly.
Table II gives the performances of the proposed method along
with other baseline methods. We also give the performance of the
proposed method when no intra-view similarity is added (MVLS
(6 views, no intra)). This corresponds to set λ2 in Problem 10 to
zero. The performance of MVLS with no inter-view and intra-
view similarities is also given in Table II (MVLS (6 views, no
inter+intra)). Its performance can be obtained by setting λ1 and
λ2 to zero in Problem 10.



908 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 4, APRIL 2018

Fig. 1. Example images of (a) the Flower-102 dataset, (b) the Caltech-256 dataset, (c) the PASCAL VOC 2007 dataset and (d) the PASCAL VOC 2012 dataset.

TABLE II
CLASSIFICATION RESULT COMPARISONS (%) ON THE FLOWER-102 DATASET

Methods Classification rate

LR-GCC [10] 75.7
ICT [19] 77.3
KMTJSRC-CG [28] 74.1
S3 R [31] 85.3
Nilsback [36] 72.8
Xie [40] 86.8
Det+Seg [41] 80.7
TriCoS [42] 85.2

MVLS (6 views, no inter+intra) 86.3
MVLS (6 views, no intra) 89.5
MVLS (6 views) 91.6

We can see from Table II that the proposed method can im-
prove the classification performances over baseline methods.
Specially, MVLS (6 views) is able to outperform both visual
and semantic based methods. MVLS (6 views) also improves
over KMTJSRC-CG [28] which automatically learns the com-
binations from images. Yuan and Yan [28] make use of joint
sparse reconstruction minimization for image classification with
improved performances. Moreover, the proposed method works
better than [41] which makes use of the region level annota-
tion while the proposed method only uses image level labels.
Finally, by combining the inter-view similarity and the intra-
view similarity, we can consistently improve the classification
performances over MVLS (6 views, no inter+intra) and MVLS
(6 views, no intra). These results on the Flower-102 dataset
prove the effectiveness of the proposed multi-view label sharing
method for image classification.

C. The Caltech-256 Dataset

There are 29,780 images of 256 classes in the Caltech-256
dataset with at least 80 images for each class. We follow the

experimental setup as [37] and randomly select 15/30/45/60
training images per class for training and use the other images
for testing. The random selection process is repeated for ten
times and the mean and standard variation of the results are
used for performance evaluations.

Table III shows the experimental results of MVLS with dif-
ferent view settings along with other methods. We can have
three conclusions from Table III. First, the combination of dif-
ferent views is useful for reliable classification. MVLS is able
to improve over ScSPM [3], FV [4] and CNN based methods
[45], [47] dramatically. Second, the performances of MVLS
can be boosted by considering more views. Hence, MVLS (9
views) improves the performances dramatically over MVLS (6
views). Third, the inter-view and intra-view information can
help to represent images discriminatively as the performances
can be consistently improved with the adding of inter-view and
intra-view information.

D. The PASCAL VOC 2007 Dataset

There are twenty classes (aeroplane, bicycle, boat, bottle,
bus, bird, car, cat, cow, chair, dining table, dog, horse, person,
sheep, motorbike, train, potted plant, sofa and tv/monitor) of
9,963 images in the PASCAL VOC 2007 dataset. There are often
multiple objects with different poses and occlusions. Images are
divided with train/validate/test sets [38].

Table IV gives the average precision comparisons of MVLS (9
views) with other baseline methods on the PASCAL VOC 2007
dataset. We can have three conclusions from Table IV. First, the
proposed MVLS (9 views) method improves the performances
over baseline methods. By combining the discriminative infor-
mation of different views, we are able to improve over each view
[4]–[6], [38], [51]. Second, MVLS (9 views) also improves over
detection based methods [49], [50] which use more information
than class level annotations. Third, MVLS (9 views) has larger
improvements over non-rigid classes than rigid classes. We use
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TABLE III
PERFORMANCE COMPARISONS (%) ON THE CALTECH-256 DATASET

Methods 15 images 30 images 45 images 60 images

ScSPM [3] 27.73 ± 0.51 34.02 ± 0.35 37.46 ± 0.55 40.14 ± 0.91
FV [4] 38.50 ± 0.20 47.40 ± 0.10 52.10 ± 0.40 54.80 ± 0.40
VGG [5] − − − 86.20 ± 0.30
LLC [6] 27.74 ± 0.32 32.07 ± 0.24 35.09 ± 0.44 37.79 ± 0.42
LR-GCC [10] 39.21 ± 0.48 45.87 ± 0.41 − −
LScSPM [11] 30.00 ± 0.14 35.74 ± 0.10 38.47 ± 0.51 40.32 ± 0.32
S3 R [31] 37.85 ± 0.48 43.52 ± 0.44 46.86 ± 0.63 −
KSPM [37] 23.34 ± 0.42 29.51 ± 0.52 − −
NBNN(1 Desc) [43] 30.45 38.18 − −
ObjectBank [44] 39.00 − − −
SDC [45] 35.10 42.10 45.70 47.90
MSC [46] 40.50 ± 0.40 48.00 ± 0.20 51.90 ± 0.20 55.20 ± 0.30
VUCN [47] 65.70 ± 0.20 70.60 ± 0.20 72.70 ± 0.40 74.20 ± 0.30
LRSC [48] − 41.04 ± 0.23 − −
MVLS (6 views, no inter+intra) 63.58 ± 0.72 69.40 ± 0.81 71.28 ± 0.65 72.56 ± 0.62
MVLS (6 views, no intra) 66.76 ± 0.80 71.25 ± 0.74 73.51 ± 0.68 74.63 ± 0.66
MVLS (6 views) 72.53 ± 0.84 75.68 ± 0.61 77.45 ± 0.72 78.82 ± 0.69
MVLS (9 views) 77.39 ± 0.62 84.23 ± 0.58 87.72 ± 0.56 89.95 ± 0.63

TABLE IV
PERFORMANCE COMPARISONS (%) ON THE PASCAL VOC 2007 DATASET

object class LLC [6] Best07 [38] FV [4] INRIA [49] Overfeat [50] DeCAF [51] VGG [5] Chatfield [52] HCP-VGG [53] MVLS (9 views)

airplane 74.8 77.5 80.0 77.2 88.5 87.4 − 95.3 98.6 99.2
bicycle 65.2 63.6 67.4 69.3 81.0 79.3 − 90.4 97.1 98.5
bird 50.7 56.1 51.9 56.2 83.5 84.1 − 92.5 98.0 98.8
boat 70.9 71.9 70.9 66.6 82.0 78.4 − 89.6 95.6 97.7
bottle 28.7 33.1 30.8 45.5 42.0 42.3 − 54.4 75.3 80.2
bus 68.8 60.6 72.2 68.1 72.5 73.7 − 81.9 94.7 96.4
car 78.5 78.0 79.9 83.4 85.3 83.7 − 91.5 95.8 96.7
cat 61.7 58.8 61.4 53.6 81.6 83.7 − 91.9 97.3 98.8
chair 54.3 53.5 56.0 58.3 59.9 54.3 − 64.1 73.1 78.1
cow 48.6 42.6 49.6 51.1 58.5 61.9 − 76.3 90.2 92.4
table 51.8 54.9 58.4 62.2 66.5 70.2 − 74.9 80.0 84.2
dog 44.1 45.8 44.8 45.2 77.8 79.5 − 89.7 97.3 97.9
horse 76.6 77.5 78.8 78.4 81.8 85.3 − 92.2 96.1 97.3
motorbike 66.9 64.0 70.8 69.7 78.8 77.2 − 86.9 94.9 96.7
person 83.5 85.9 85.0 86.1 90.2 90.5 − 95.2 96.3 98.2
plant 30.8 36.3 31.7 52.4 54.8 51.1 − 60.7 78.3 81.2
sheep 44.6 44.7 51.0 54.4 71.1 73.8 − 82.9 94.7 97.3
sofa 53.4 50.9 56.4 54.3 62.6 57.0 − 68.0 76.2 80.1
train 78.2 79.2 80.2 75.8 87.4 86.4 − 95.5 97.9 98.5
tv 53.5 53.2 57.5 62.1 71.8 68.0 − 74.4 91.5 93.3

mAP 59.3 59.4 61.7 63.5 73.9 73.4 89.3 82.4 90.9 93.1

both inter-view similarity and intra-view similarity jointly for
discriminative representations and classifications. The results
on PASCAL VOC 2007 dataset prove the usefulness of using
multi-view label sharing for classification.

E. The PASCAL VOC 2012 Dataset

This dataset has the same twenty classes as the PASCAL VOC
2007 dataset. There are 22,531 images with the train+val/test
splits as 11,540/10,991. We follow the same experimental
setup as [38] and train classifiers accordingly for image class
prediction.

We give the performance comparisons with other methods
in Table V. We can see that MVLS (9 views) outperforms

many convolutional neural networks based methods [5], [29],
[47], [52], [54] by combining the discriminative informa-
tion of different views. On analysis of the per-class perfor-
mances, we can have similar conclusions as on the PAS-
CAL VOC 2007 dataset. MVLS (9 views) is able to have
larger improvements on non-rigid classes over baseline meth-
ods because of the preserving of inter-view and intra-view
similarities. The proposed method is also able to improve
over HCP-VGG which uses object segment hypothesis to as-
sist the classification task. We only use the PASCAL VOC
2012 dataset instead of using learned architectures from other
sources. The classification improvements on the PASCAL VOC
2012 dataset prove the effectiveness of the proposed method
again.
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TABLE V
PERFORMANCE COMPARISONS (%) ON THE PASCAL VOC 2012 DATASET

object class VUCN [47] NUS-PSL [47] PRE-1000C [29] Chatfield [52] VGG [5] Yang [54] PRE-1000C [29] HCP-VGG [53] MVLS (9 views)

airplane 96.0 97.3 93.5 96.8 99.0 98.9 94.6 99.1 99.4
bicycle 77.1 84.2 78.4 82.5 88.8 93.1 82.9 92.8 95.3
bird 88.4 80.8 87.7 91.5 95.9 96.0 88.2 97.4 98.7
boat 85.5 85.3 80.9 88.1 93.8 94.1 84.1 94.4 96.1
bottle 55.8 60.8 57.3 62.1 73.1 76.4 60.3 79.9 82.8
bus 85.8 89.9 85.0 88.3 92.1 93.5 89.0 93.6 95.2
car 78.6 86.8 81.6 81.9 85.1 90.8 84.4 89.8 92.6
cat 91.2 89.3 89.4 94.8 97.8 97.9 90.7 98.2 98.9
chair 65.0 75.4 66.9 70.3 79.5 80.2 72.1 78.2 83.4
cow 74.4 77.8 73.8 80.2 91.1 92.1 86.8 94.9 96.5
table 67.7 75.1 62.0 76.2 83.3 82.4 69.0 79.8 83.6
dog 87.8 83.0 89.5 92.9 97.2 97.2 92.1 97.8 98.9
horse 86.0 87.5 83.2 90.3 96.3 96.8 93.4 97.0 99.1
motorbike 85.1 90.1 87.6 89.3 94.5 95.7 88.6 93.8 96.7
person 90.9 95.0 95.8 95.2 96.9 98.1 96.1 96.4 97.2
plant 52.2 57.8 61.4 57.4 63.1 73.9 64.3 74.3 79.5
sheep 83.6 79.2 79.0 83.6 93.4 93.6 86.6 94.7 95.6
sofa 61.1 73.4 54.3 66.4 75.0 76.8 62.3 71.9 77.8
train 91.8 94.5 88.0 93.5 97.1 97.5 91.1 96.7 98.4
tv 76.1 80.7 78.3 81.9 87.1 89.0 79.8 88.6 92.1

mAP 79.0 82.2 78.7 83.2 89.0 90.7 82.8 90.5 92.9

Fig. 2. Influences of λ1 on (a) the Flower-102 dataset, (b) the Caltech-256
dataset(60 training images), (c) the PASCAL VOC 2007 dataset and (d) the
PASCAL VOC 2012 dataset.

F. Parameter Influences

λ1 and λ2 are the two parameters which control the influ-
ences of the inter-view and intra-view similarity. To show their
influences, we plot the performance changes with λ1 and λ2
on the Flower-102 dataset, the Caltech-256 dataset (60 train-
ing images), the PASCAL VOC 2007 dataset and the PASCAL
VOC 2012 dataset in Figs. 2 and 3 respectively. We can see
from Figs. 2 and 3 that adding the inter-view and intra-view
similarities can improve the classification performances. The
performances decrease if we place too much emphasis on the
similarity terms by setting λ1 and λ2 to 1. We can see from
Fig. 2 that setting λ1 and λ2 to 0.4∼ 0.8 is a better choice.

λ controls the influence of the L2 regularization term while
σ is the scaling parameter for measuring the visual similarity.

Fig. 3. Influences of λ2 on (a) the Flower-102 dataset, (b) the Caltech-256
dataset(60 training images), (c) the PASCAL VOC 2007 dataset and (d) the
PASCAL VOC 2012 dataset.

We also plot the performance changes with λ and σ jointly
on the Flower-102 dataset, the Caltech-256 dataset (60 training
images), the PASCAL VOC 2007 dataset and the PASCAL VOC
2012 dataset in Figs. 4 and 5 respectively. We can see from
Figs. 4 and 5 that their influences are relatively stable compared
with λ1 and λ2 . We believe this is because λ and σ measure the
similarities between images, their influences are consistent as
long as the similarities between images are preserved.

G. Wiki Dataset

We also conduct experiments on the Wiki image-text dataset
[56] for retrieval in a classification way by sorting the classi-
fication results in a descending order. This dataset has 2,866
image-text pairs with each pair having one image and text of 10
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Fig. 4. Influences of λ on (a) the Flower-102 dataset, (b) the Caltech-256
dataset(60 training images), (c) the PASCAL VOC 2007 dataset and (d) the
PASCAL VOC 2012 dataset.

Fig. 5. Influences of σ on (a) the Flower-102 dataset, (b) the Caltech-256
dataset(60 training images), (c) the PASCAL VOC 2007 dataset and (d) the
PASCAL VOC 2012 dataset.

semantic classes. We treat the 128-dimensional visual features
and the 10-dimensional text features as two different views. The
effectiveness of combining of different views has been proven on
the Flower-102 dataset, the Caltech-256 dataset, the PASCAL
VOC 2007 and 2012 datasets. Hence, we simply extract the con-
volutional neural network based features (VGG [5]) in the same
way as on the four image datasets described above and regard
it as the third view. In this way, a total of three views are used
for image-text pair retrieval. More views can be used to further
improve the performances. We use the same split setup as [56]
by using 2,173 pairs for training and 693 pairs for testing. Mean
average precision (mAP) is used to evaluate the performances in
Table VI. We can have three conclusions from Table VI. First,
the proposed method can improve the mAP over other baseline

TABLE VI
MAP COMPARISONS (%) OF THE PROPOSED METHOD AND

OTHER BASELINE METHODS ON THE WIKI DATASET

Methods mAP

CCA [57] 24.6
SCM [56] 27.7
MvDA [58] 16.2
RE-DNN [59] 35.3
GMMFA [60] 27.8
JFSSL [61] 42.8
DCML [62] 55.4

MVLS (3 views) 62.7

methods. Second, compared with local feature based methods
[56]–[60], the usages of convolutional neural network based im-
age representations are more discriminative. Third, MVLS also
improves over latent space based methods [57], [60] by jointly
learning the transformation and correlations.

V. CONCLUSION

This paper proposed a multi-view label sharing method for
visual representations and classifications. We transferred the vi-
sual representations of each view linearly to a shared space.
The inter-view similarity and the intra-view similarity were
jointly considered with the learning of classifiers. The transfor-
mation matrixes and classifiers were obtained by minimizing the
summed classification loss along with the inter-view and intra-
view similarities. This was achieved by alternatively optimizing
for the transformation matrixes and classifier parameters. We
conducted image classification experiments on several public
datasets and the results proved the usefulness of the proposed
method.
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