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Abstract Incremental learning enables continuous model
adaptation based on a constantly arriving data stream. It is
a way relevant to human cognitive system, which learns to
predict objects in a changing world. Incremental learning
for character recognition is a typical scenario that charac-
ters appear sequentially and the font/writing style changes
irregularly. In the paper, we investigate how to classify char-
acters incrementally (i.e., input patterns appear once at a
time). A reasonable assumption is that adjacent characters
from the same font or the same writer share the same style
in a short period while style variation occurs in characters
printed by different fonts or written by different persons
during a long period. The challenging issue here is how
to take advantage of the local style consistency and adapt
to the continuous style variation as well incrementally. For
this purpose, we propose a continuous incremental adap-
tive learning vector quantization (CIALVQ) method, which
incrementally learns a self-adaptive style transfer matrix
for mapping input patterns from style-conscious space onto
style-free space. After style transformation, this problem
is casted into a common character recognition task and
an incremental learning vector quantization (ILVQ) classi-
fier is used. In this framework, we consider two learning
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modes: supervised incremental learning and active incre-
mental learning. In the latter mode, samples receiving low
confidence from the classifier are requested class labels.
We evaluated the classification performance of CIALVQ in
two scenarios, interleaved test-then-train and style-specific
classification on NIST hand-printed data sets. The results
show that local style consistency improves the accuracies of
both two test scenarios, and for both supervised and active
incremental learning modes.

Keywords Continuous incremental adaptive learning
vector quantization · Style transfer mapping · Local style
consistency · Active learning

Abbreviation
NP: Nearest prototype
STM: Style transfer mapping
LVQ: Learning vector quantization
ILVQ: Incremental learning vector quantization
IALVQ: Incremental adaptive learning vector quantiza-
tion
CIALVQ: Continuous incremental adaptive learning vec-
tor quantization
Active CIALVQ: Active continuous incremental adaptive
learning vector quantization

Introduction

In the community of machine learning, there have been
many research efforts in human-like learning via studying
the cognitive processes of human beings [1, 2]. Humans
usually learn much better when the examples are organized
in a meaningful order. Curriculum learning [3–6], which
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iteratively selects the simplest examples in each step, is
proposed based on such training strategies. The cognitive
process of human beings is usually increasing gradually:
while sensing the environment, pay attention to the objects
in the sensed data, find new concepts (classes) or update
the representation of memorized concepts continuously.
Inspired by this, many incremental learning algorithms [7–
10], which are relevant to human-like learning in the sense
that the classification model is self-adaptive continuously
based on data sequence, have been researched extensively.

In this paper, we combine incremental learning with a
practical pattern classification task and introduce an incre-
mental character recognition [11, 12] method, taking into
account the sequential nature of character samples appear-
ance and the periodical consistency of font or writing style
(characters in a period are usually in the same style). The
main difficulties of this task are twofold. The first is to
model the style mathematically to enable continuous adap-
tation, and the second is to build an on-the-fly classifier
which balances between plasticity and stability [13].

Character patterns are presented as groups frequently.
The patterns from the same group (e.g., characters in a para-
graph or a text line are usually printed in the same font
or written by the same person) usually have the consistent
style. In the long period, the style changes from time to time
when moving from group to group. Classification model is
supposed to adapt to this kind of style variation simultane-
ously. Inspired by the method [14] in writer adaptation, we
learn a kind of linear projection (style transfer matrix) to
formulate style model. Meanwhile, we bring in the forget
mechanism in which old styles are discarded or weakened.
In this way, the style model is always calculated in a win-
dow and the window size depends on the speed of the decay
factor. Thus, the style model is always estimated from the
latest several patterns without assuming known style transi-
tion point, and so, it is highly adaptive to style change and
local style consistency.

“Stability-plasticity dilemma” is a fundamental problem
in incremental learning. Plasticity refers to the ability of
incorporating new acquired knowledge into model, while
stability considers the capability of preserving the learned
knowledge. For the practical application of incremental
character recognition, we hope that the incremental learn-
ing can not only achieve a good instant performance by
means of incorporating new knowledge from sequence of
patterns, but also memorize all the styles in the previously
learned patterns to enhance the generalization performance.
To cope with the situation stated above, we proposed con-
tinuous incremental adaptive learning vector quantization
(CIALVQ). Learning vector quantization (LVQ) [15–17] is
a kind of prototype-based classifier, which is akin to human
learning in that prototypes (templates) are memorized in the
brain to recognize new patterns. CIALVQ simultaneously

learns two kinds of prototypes: one is style-free prototypes,
which are independent of specific style and good for plastic-
ity; the other is style-conscious prototypes, which memorize
all the learned styles and benefit the stability.

Humans perceive, cognize, and comprehend the world on
the fly, then respond to the surrounding environment in real
time. Thus, learning occasionally interacts with a teacher
(e.g., inquires a teacher for labels when facing unknown
characters). Inspired by this, we also introduce the active
mode of CIALVQ. In this case, we attach labels to the
training samples only when the confidence assigned by
the classifier is low. Our experimental results show that in
the case of active incremental learning, utilizing local style
consistency is also beneficial to classification.

The method proposed in this paper is capable of main-
taining style consistency in a short period and adapting to
the continuous style variation during a long period as well.
The major contributions of this paper are threefold:

1. We propose a continuous self-adaptive character
recognition method which does not require prior tagging of
style-transitions in the data stream.

2. The intra-class distance constraint is explicitly adopted
in CIALVQ to learn a more compact representation in style-
free space.

3. An active learning mode is explored in our paper.
CIALVQ is an extended version of the IALVQ in our

previous conference paper [18]. Similar to the IALVQ,
CIALVQ models style with linear transformation based on
local style consistency. The framework of our incremen-
tal learning algorithm is illustrated in Fig. 1. In addition
to considering local style consistency, CIALVQ also min-
imizes intra-class distance in style-free space so that the
style-free patterns from the same class are closer. The
distinction between IALVQ and CIALVQ is illustrated in
Fig. 2, where CIALVQ is shown to learn more compact
intra-class prototypes in the style-free space.

The rest of the paper is organized as follows. We
review the related work in “Related Work” section. The
detailed CIALVQ method for both supervised and active
mode is present in “Proposed Methods” section. Experi-
mental results are reported and discussed in “Experiments
and Results” section, and we finally conclude the paper in
“Discussion” section.

Related Work

Incremental Learning

Incremental learning is a well-studied branch of machine
learning. Many effective methods have been developed for
this. Unlike the process of off-line learning, which assumes
that training data are prepared in advance, incremental
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Fig. 1 The framework of our
algorithm

learning is to incrementally learn prediction model on a
stream of patterns. Thus, the essential problem in incre-
mental learning is how to update the model on the latest
data. Depending on the discrepancy among different update
modes, some representative works are summarized as fol-
lows.

One of the best known incremental learning approach
is the Perceptron algorithm [19] proposed in 1950s. Per-
ceptron updates the weights of single-layer neural network
when the incoming pattern is misclassified. Online ensem-
ble algorithms, including online bagging [20], online boost-
ing [21], and online random forest [22], selectively update
multiple classifiers in ensemble models on an incoming
pattern. In incremental prototype-based classifier [23, 24],
two nearest prototypes from the genuine class and the rival
class of input pattern are adjusted. Using covariance matrix
as confidence information of different dimensions, a few
second-order incremental algorithms [25, 26] have been

proposed. A self-adaptive clustering algorithm for incre-
mental unsupervised learning is formulated in [9]. Imitating
the topographic organization of the visual cortex, a biolog-
ically inspired neural architecture for incremental learning
is presented in [10]. In [27], three guildlines of incremental
learning for large-scale visual recognition are concluded. A
comprehensive survey about adaptation on data stream can
be found in [28].

Style Consistent Learning

Character recognition has been widely studied in visual
information processing and pattern classification research.
In the task, characters appearing together usually come from
the same source with consistent style. Such local style con-
sistency is common in document images where the charac-
ters in a paragraph or text line are printed in the same font or
written by the same person. Previous works have shown that

Fig. 2 The distinction between
IALVQ and CIALVQ
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exploiting style consistency effectively enhance the perfor-
mance of character recognition. Some related works are below.

Sarkar and Nagy model style shared within a group
by a class-style conditional mixture of Gaussians. In [12],
they propose a style constrained classifier which processes
entire fields of characters rendered in a consistent style.
Veeramachaneni and Nagy [29, 30] propose an adaptive
Gaussian quadratic discriminant field classifier which ini-
tializes model parameters from the training set and adapts
parameters on the test set. In [31], Huang et al. learn
a writer-specific (or style-specific) LDA transformation
matrix with the new labeled data in incremental hand-
writing recognition. By learning a style transfer mapping
matrix which projects patterns from writer-specific space
onto writer-independent space, a style adaptation method
is posed by Zhang and Liu [14], which can be applied to
various classifier models.

Relationship with Other Incremental Character
Recognition

To the best of our knowledge, the closest methods to our
current work are those in [31, 32]. However, there are three
main differences between other incremental handwriting
recognition methods and our method:

1. The data employed for capturing the style consistency.
Our method takes the style consistency both in training data
and test data, while the existing methods generally exploit
the consistency only in test data.

2. The pre-trained classifier. Existing incremental hand-
writing recognition methods commonly adapt a pre-trained
classifier with a large number of samples, while our method
initializes model with only a small number of samples, and
then updates model incrementally.

3. The evaluation protocol. While many previous meth-
ods adapt and evaluate on a batch of test data, our method
gives the instant performance of the model in interleaved
test-then-train classification, which reflects the continuous
self-adaptive capacity in recognition.

Proposed Methods

In this section, we first briefly introduce the LVQ/ILVQ
method, then present the CIALVQ method and extend to
the active mode. Last, two paradigms for evaluating the
proposed methods are outlined.

Brief Description of LVQ/ILVQ

For M-class classification, prototype learning is to design
a set of prototype vectors mij (i = 1, 2, ...,M, j =
1, ..., ni .ni is the number of prototypes in class i), usually

by minimizing the empirical loss on a training set. An
input pattern x ∈ R

d is classified to the class of the nearest
prototype:

k = arg
M

min
i=1

ni

min
j=1

‖x − mij‖2
2 = G(x, m), (1)

There are many variations of LVQ algorithm [15–17]. In
this paper, we use the one of LOG-likelihood of Margin
(LOGM) [17].

Specifically, given that m1 and m2 are two nearest proto-
types to pattern x from the positive class and the rival class
respectively, the posterior probability of x belonging to gen-
uine class i (i.e., the probability of correct classification) can
be approximated by the sigmoid function σ :

d(x) = ‖x − m2‖2 − ‖x − m1‖2,

P (Ci |x) = σ(ξd(x)),
(2)

where ξ (ξ > 0) is a constant for tuning the smoothness of
sigmoid function and the conditional log-likelihood loss of
pattern x is φ(x) = − log P(Ci |x).

As new pattern x is arriving, LVQ updates the two pro-
totypes m1 and m2 by stochastic gradient descent [33]:

m1 = m1 − η
∂φ(x)
∂m1

,

m2 = m2 − η
∂φ(x)
∂m2

.
(3)

where η is the learning rate.
ILVQ is the incremental one-pass version of LVQ, i.e.,

whenever an input pattern x arrives, the prototypes are
updated according to Eq. 3.

CIALVQ

In our proposed method, we learn two types of proto-
types for each class: one is style-conscious prototypes
mij (i = 1, ...,M, j = 1, 2, ..., L1) which are treated com-
pletely the same as conventional ILVQ; the other is style-
free prototypes m̂ij (i = 1, ...,M, j = 1, 2, ..., L2), which
are irrelevant to specific style. However, the two types of
prototypes are learned independently.

How to learn the style-free prototypes from the online
stream of data is the key difficulty in our method, which is
detailed in the following.

Assume that x and A are the observation and the style
transfer matrix at time t , respectively, we can obtain the
style-free pattern Ax after projecting the pattern onto style-
free space. Here, Ax is expected to be close to the nearest
style-free prototype m̂ with the same label as pattern x.
Simultaneously, it should be as close as possible to the style-
free patterns seen before. The former goal can easily be
realized by minimizing the difference between Ax and the
target prototype m̂. For the latter one, intuitively, all the
past style-free patterns should be saved and then compared
with the current observation. However, this is not feasible
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in incremental learning due to the cost of memory and com-
putation. Instead, we minimize the distance between the
observation and the calculated class mean from the past
style-free patterns, which is easily proved to be equal to
optimize the distance among the style-free patterns from
the same class. So, the cost function of learning the style
transfer matrix from the current observation x is given by:

�F(t) = ‖Ax − m̂‖2
2 + ‖Ax − μ̂‖2. (4)

where μ̂ is the accumulated mean of the style-free pattern
with the same class label as the observation x.

Obviously, estimating style transfer matrix only from the
current observation is unstable. Considering the existence
of the local style consistency in character recognition, we
estimate the style transfer matrix from the accumulated pat-
terns of the past. Meanwhile, in order to reduce the influence
caused by the past patterns and adapt to the current pattern,
we decay the influence at every moment. Thus, the style
transfer matrix is computed by minimizing the cost:

F(t) = DecayWeight ∗ F(t − 1) + �F(t), (5)

where F(0) = 0 and DecayWeight is the decay parameter.
The weights of samples received from the time stream for
calculating the style transfer matrix of the current observa-
tion are visualized in Fig. 3.

Furthermore, we also add a regularization term to avoid
overtransfer as in [14]. The final objective function is
defined as follows:

H(t) = F(t) + β‖A − I‖2
F , (6)

where the hyperparameter β controls the trade-off between
style transfer and nontransfer. I is the identity matrix.
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Fig. 3 Weights of patterns with DecayWeight = 0.98 for calculating
the style transfer matrix of the current observation

Let

S(t) = DecayWeight ∗ S(t − 1) + �S,

s.t.�S = 2 ∗ xxT , S(0) = 0,
(7)

T (t) = DecayWeight ∗ T (t − 1) + �T ,

s.t.�T = m̂xT + μ̂xT , T (0) = 0,
(8)

then the computation of A has a closed-form solution:

A = QP −1,

Q = T (t) + βI,

P = S(t) + βI.

(9)

Please refer to [14] for more details.
With the mapping matrix A, we can map pattern x onto a

style-free space by:

x̂ = Ax. (10)

And then, we update the style-free prototypes similar to
Eq. 3:

m̂1 = m̂1 − η
∂φ(x̂)

∂m̂1
,

m̂2 = m̂2 − η
∂φ(x̂)

∂m̂2
.

(11)

We summarize the process of learning style-free proto-
types in Algorithm 1.

Active CIALVQ

In character recognition, active incremental learning is very
helpful. By partial interaction between the learner and the
environment, we label for patterns that are assigned low
confidence by the classifier. Due to the important effect of
patterns that are assigned low confidence, active learning
can boost the performance of classifier by requiring labels
from a small number of patterns.

In active incremental learning, how to evaluate the con-
fidence for coming pattern is the key to the problem. We
use a simple but effective strategy that the confidence f

for pattern x is calculated by equation (2) (posterior proba-
bility). Because the genuine class is unknown, we compute
two nearest prototypes from the top two classes instead of
the positive class and the rival class. Actually, the closer the
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sample to the classification boundary, the lower confidence
is assigned in our method. This is similar to [34] which
selects a query on the borderline of the actual classification.
Only when the confidence f is smaller than a prede-
fined threshold p, the input pattern requests a label. The
larger the predefined threshold p is set, the more labels are
requested. The active incremental adaptive learning vector
quantization is summarized in Algorithm 2.

Evaluation

We evaluate our proposed algorithm in two scenarios: inter-
leaved test-then-train and style-specific classification.

Interleaved Test-Then-Train Each pattern is used to test
the classifier before it is used for training, so the classifier is
always being tested on patterns it has not seen before. This
evaluation method can make maximum use of the available
data.

Style-Specific Classification After training an incremen-
tal classifier, we test the generalization performance of the
classifier. During test time, a batch of b patterns with the
same style are given once. The process of testing is reported
in Algorithm 3. Note that we use style-conscious prototypes
for first-round classification to obtain the initial labels of
patterns. Then in style adaptive classification, style-free pro-
totypes are used because the patterns are mapped toward
style-free space.

Experiments and Results

We evaluate the performance of the proposed CIALVQ
method on NIST handwritten digit data. Two learning
modes are considered:

(i) supervised incremental learning;
(ii) active incremental learning.

Database

To test our proposed method on realistic data, we experi-
ment with the datasets SD3 and SD7, which are contained in
the NIST Special Database SD19 [35]. The datasets contain
patterns of handwritten numerals labeled by writer. From
SD3, we use samples of 400 writers for training and 399
writers for testing, and from SD7, samples of 100 writ-
ers for training and 100 writers for testing. The patterns of
each writer are assumed to have the same writing style. The
statistics of patterns for SD3 and SD7 are listed in Table 1.
The patterns from some writers are shown in Fig. 4.
Our choice of data is similar to that of [29] for adaptive
classification.

Table 1 Handwritten numeral datasets

Dataset Writers Number of samples

SD3-Train No.0-No.399 (400) 42,969

SD7-Train No.2100-No.2199 (100) 11,585

SD3-Test No.400-No.799 (399) 42,821

SD7-Test No.2200-No.2299 (100) 11,660



340 Cogn Comput (2018) 10:334–346

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Samples of handwritten digits from six different writers

Experimental Setting

All these patterns are arranged by writer order; however,
all writers and all patterns within one writer are permuted
randomly. In the experiments, we choose all patterns of
each writer or randomly choose a small portion of patterns
from each writer but the number of patterns (5 patterns, 10
patterns, 15 patterns, 20 patterns) for each writer is equal.
In order to yield stable average results, each experiment
runs multiple times. Experiments are repeated 10 times
when all patterns from each writer are used or otherwise 20
times. We extract 100 blurred directional (chain-code) fea-
tures from each pattern [36]. A small number of patterns
are used to construct the initial prototypes. After getting
initial classifier, new coming patterns are used for both pro-
totypes updating and estimating style transfer matrix. The

classification performance is evaluated using interleaved
test-then-train and style-specific classification.

For all the datasets, we use very small portion of patterns
(200 patterns) for initialization. The trade-off parameter β

in style adaptation is set as in [14]: β = β̂ 1
d
T r(

∑n
i=1 xix

T
i ),

where n is the total number of patterns that have been seen
in model and β̂ is set as 3 in our experiments. The smooth-
ing parameter ξ is initialized as 2/cov like [17], where cov

is the average covariance estimated from training data. The
initial rate of gradient descent is set as 1 and the learning
rate of the nth pattern is calculated by adagrad algorithm
[37]. The DecayWeight is set as 0.98.

Results

Interleaved Test-then-Train Classification

Interleaved test-then-train is the most frequently-used
method in the evaluation of incremental learning. In this
mode, the data used for training and testing are completely
the same. By testing pattern before being used for training,
we can make maximum use of patterns. The results assessed
by this method give some quantitative insight into the instant
performance of model.

Table 2 and Fig. 5 show the results of ILVQ, IALVQ, and
CIALVQ in supervised interleaved test-then-train classifica-
tion. Different number of patterns for each writer are used
to evaluate the influence of the length of the patterns. For
fair comparison, we use three prototypes for every class in
all three methods. Best performance of the compared meth-
ods are given in italics. We compare the models in respect
of test error rate (Table 2) and error reduction rate (Fig. 5)
(calculated as in [14]):

Error reduction rate = Errorinitial − Erroradapted

Errorinitial
. (12)

In this experiment, the error rate of the ILVQ method
is computed as Errorinitial and the error rate of the
IALVQ/CIALVQ method as Erroradapted. The higher error
reduction rate is better.

To evaluate the discriminative performance of our
method in active interleaved test-then-train classification,
we run experiments in sd3-train, sd3-test, sd7-train, sd7-
test. We vary the confidence threshold to acquire different
number of request labels. The experiment results are given
in Fig. 6. Each graph shows the error rate score (on the y-
axis) achieved over the entire online dataset by requesting a
given number of patterns (on the x-axis). We still experiment
on two cases, including that all patterns are used and only
small portion patterns for each writer are randomly chosen.
In graph (a) and graph (b), the results for all patterns from
sd7-train and sd7-test are given respectively. In graph (c)
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Table 2 Error rates on four datasets using different number of patterns for each writer in interleaved test-then-train

Dataset 5 patterns 10 patterns 15 patterns 20 patterns All patterns

SD3-Train

ILVQ 4.87% ILVQ 3.74% ILVQ 3.39% ILVQ 2.82% ILVQ 1.56%

IALVQ 4.80% IALVQ 3.63% IALVQ 3.26% IALVQ 2.78% IALVQ 1.34%

CIALVQ 4.61% CIALVQ 3.46% CIALVQ 3.07% CIALVQ 2.66% CIALVQ 1.29%

SD7-Train

ILVQ 11.93% ILVQ 9.42% ILVQ 8.22% ILVQ 7.17% ILVQ 3.97%

IALVQ 11.84% IALVQ 8.84% IALVQ 7.86% IALVQ 6.81% IALVQ 3.41%

CIALVQ 11.11% CIALVQ 9.00% CIALVQ 7.56% CIALVQ 6.63% CIALVQ 3.25%

SD3-Test

ILVQ 5.08% ILVQ 3.69% ILVQ 3.11% ILVQ 2.88% ILVQ 1.47%

IALVQ 4.97% IALVQ 3.56% IALVQ 3.03% IALVQ 2.84% IALVQ 1.29%

CIALVQ 4.74% CIALVQ 3.40% CIALVQ 2.86% CIALVQ 2.57% CIALVQ 1.23%

SD7-Test

ILVQ 11.13% ILVQ 9.32% ILVQ 7.63% ILVQ 6.83% ILVQ 3.63%

IALVQ 11.03% IALVQ 8.93% IALVQ 7.29% IALVQ 6.55% IALVQ 3.20%

CIALVQ 10.93% CIALVQ 8.46% CIALVQ 7.14% CIALVQ 6.26% CIALVQ 3.09%

and graph (d), we randomly choose five samples of each
writer from sd3-train and sd3-test.

Style-Specific Classification

Different from the interleaved test-then-train classification,
style-specific classification exploits the additional datasets
for testing. In our experiments, A/B represents that A is
adopted in training stage and B is adopted in testing stage. In
testing stage, NP refers to nearest prototype classifier with-
out considering style consistency, while STM utilizes style
consistency of writer-specific data in [14]. For fair compari-
son, we use the best prototypes parameters respectively, that
is, five prototypes are used in ILVQ and five style-conscious
prototypes and two style-free prototypes are used in IALVQ
and CIALVQ.

In the supervised incremental learning setting, we imple-
ment our method with CIALVQ for training and STM
strategy for testing. We compare seven different methods
when all patterns of each writer are utilized. The detailed
information of compared methods are indicated in Table 3.
Table 4 gives the corresponding misclassification rates. On
the other hand, if the patterns from each writer are only a
few, the style evaluated from the few patterns is extremely
inaccurate. Hence, we evaluate our method by another mode
in this case. Specifically, we continue to learn the style
transfer matrix based on the result of training stage. After
projecting patterns from style-conscious space onto style-
free space with the style transfer matrix, labels are predicted
in style-free space for patterns. Accordingly, the compared
methods includes LVQ(1)/NP, LVQ(30)/NP, ILVQ/NP, and
IALVQ/STM. Table 5 gives the corresponding results. Best

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

number of patterns for each writer

er
ro

r 
re

du
ct

io
n 

ra
te

IALVQ sd7−train
CIALVQ sd7−train
IALVQ sd7−test
CIALVQ sd7−test

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

number of patterns for each writer

er
ro

r 
re

du
ct

io
n 

ra
te

IALVQ sd3−train
CIALVQ sd3−train
IALVQ sd3−test
CIALVQ sd3−test

(a) (b)

Fig. 5 The error reduction rate for interleaved test-then-train classification in different datasets
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Fig. 6 Active interleaved test-then-train classification result in different dataset

performance in offline mode and online mode are given in
italics respectively.

Figure 7 shows the curve of the active classification
generalization error rates as different number of labeled
samples are requested. Similarly, graph (a) and graph (b)
show the results for all patterns from sd7-train as training
set and all patterns from sd7-test or from sd3-test as test
set, respectively. In graph (c) and graph (d), we randomly
choose five samples of each writer from sd3-train as training

set and randomly choose five patterns from sd7-test or from
sd3-test as test set.

Discussion

CIALVQ is an incremental character recognition method
which takes advantage of the local style consistency and
meanwhile continuously adapts to the style variation. For

Table 3 The detail information of the compared methods

Methods Training method Testing method Iteration time

LVQ(1)/NP Offline LVQ Nearest prototypes 1

LVQ(30)/NP Offline LVQ Nearest prototypes 30

LVQ(1)/STM Offline LVQ Style transfer mapping 1

LVQ(30)/STM Offline LVQ Style transfer mapping 30

ILVQ/NP Incremental LVQ Nearest prototypes 1

ILVQ/STM Incremental LVQ Style transfer mapping 1

IALVQ/STM Incremental adaptive LVQ Style transfer mapping 1
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Table 4 Error rates in style-specific classification

Dataset LVQ(1)/NP LVQ(30)/NP LVQ(1)/STM LVQ(30)/STM ILVQ/NN ILVQ/STM IALVQ/STM CIALVQ/STM

SD3-Train
1.21% 0.82% 1.09% 0.77% 1.47% 1.12% 1.01% 1.01%

SD3-Test

SD3-Train
5.23% 3.92% 4.84% 3.36% 5.52% 4.42% 4.33% 4.26%

SD7-Test

SD7-Train
2.36% 1.86% 1.75% 1.33% 3.31% 2.45% 2.05% 2.05%

SD3-Test

SD7-Train
3.05% 2.40% 2.58% 2.01% 3.73% 2.90% 2.54% 2.51%

SD7-Test

each coming pattern, a style transfer matrix is learned from
the latest few patterns. By considering the local style con-
sistency, the style transfer matrix is expected to be nearly
invariant within patterns from the same writer. At the same
time, the style transfer matrix between the current writer and
the former writer are different through forgetting the style
knowledge learned from the patterns in a longer past. In
this study, we evaluate our method by interleaved test-then-
train, which tests for the ability of the style adaptation, and
style-specific classification, which tests for the ability of the
generalization performance.

From the results in Table 2, we can see that CIALVQ has
the best performance for style adaptation in the interleaved
test-then-train scenario. Compared with ILVQ, IALVQ and
CIALVQ can effectively reduce the error rate by means of

utilizing the local style consistency. Furthermore, CIALVQ
further lowers the error rate by minimizing the inner-class
distance in style-free space explicitly when estimating the
style transfer matrix. As shown in Fig. 5, the error reduction
rate gradually increases as the number of writer-specific pat-
terns increases. This is consistent with the intuition that the
local style consistency performs better when there are more
same-style samples.

The results in Fig. 6 show the advantage of active
CIALVQ over active ILVQ and active IALVQ. Better clas-
sification performance can be obtained when more labels
are requested. However, after requesting a few important
patterns, which have a lower confidence and around the
classification boundary, the classification performance will
tend to be stable. With the reduction of the needed tagged

Table 5 Error rates on four datasets using different number of patterns for each writer in style-specific classification

Training set Test set 5 patterns 10 patterns 15 patterns 20 patterns

SD3-Train SD3-Test

LVQ (1)/NP 3.36% LVQ (1)/NP 2.72% LVQ (1)/NP 2.47% LVQ (1)/NP 2.26%

LVQ (30)/NP 2.31% LVQ (30)/NP 1.86% LVQ (30)/NP 1.59% LVQ (30)/NP 1.47%

ILVQ/NP 3.76% ILVQ/NP 3.03% ILVQ/NP 2.54% ILVQ/NP 2.35%

IALVQ/STM 3.26% IALVQ/STM 2.60% IALVQ/STM 2.19% IALVQ/STM 2.05%

CIALVQ/STM 3.20% CIALVQ/STM 2.63% CIALVQ/STM 2.18% CIALVQ/STM 2.03%

SD3-Train SD7-Test

LVQ (1)/NP 8.17% LVQ (1)/NP 8.10% LVQ (1)/NP 7.85% LVQ (1)/NP 7.47%

LVQ (30)/NP 7.10% LVQ (30)/NP 6.53% LVQ (30)/NP 6.00% LVQ (30)/NP 5.74%

ILVQ/NP 9.26% ILVQ/NP 8.67% ILVQ/NP 7.85% ILVQ/NP 7.26%

IALVQ/STM 8.58% IALVQ/STM 7.71% IALVQ/STM 7.19% IALVQ/STM 6.72%

CIALVQ/STM 8.47% CIALVQ/STM 7.78% CIALVQ/STM 7.19% CIALVQ/STM 6.76%

SD7-Train SD3-Test

LVQ (1)/NP 8.00% LVQ (1)/NP 6.20% LVQ (1)/NP 5.00% LVQ (1)/NP 4.53%

LVQ (30)/NP 5.71% LVQ (30)/NP 4.57% LVQ (30)/NP 3.72% LVQ (30)/NP 3.57%

ILVQ/NP 10.77% ILVQ/NP 8.34% ILVQ/NP 6.51% ILVQ/NP 6.39%

IALVQ/STM 8.68% IALVQ/STM 6.88% IALVQ/STM 5.26% IALVQ/STM 5.20%

CIALVQ/STM 8.38% CIALVQ/STM 6.88% CIALVQ/STM 5.44% CIALVQ/STM 5.06%

SD7-Train SD7-Test

LVQ (1)/NP 7.48% LVQ (1)/NP 6.35% LVQ (1)/NP 5.29% LVQ (1)/NP 5.08%

LVQ (30)/NP 6.20% LVQ (30)/NP 4.74% LVQ (30)/NP 3.88% LVQ (30)/NP 3.72%

ILVQ/NP 9.31% ILVQ/NP 7.66% ILVQ/NP 6.32% ILVQ/NP 6.04%

IALVQ/STM 7.89% IALVQ/STM 6.66% IALVQ/STM 5.27% IALVQ/STM 4.98%

CIALVQ/STM 7.85% CIALVQ/STM 6.51% CIALVQ/STM 5.22% CIALVQ/STM 4.97%
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Fig. 7 Active style-specific classification result in different dataset

samples in active learning, the labor of labeling samples
are saved significantly. So, finding a good balance between
the number of the requested labels and classification perfor-
mance are very important in active learning.

In the supervised style-specific classification mode, the
results from Tables 4 and 5 show that when evaluating gen-
eralized classification performance using nearest prototype
(NP) rule, the incremental LVQ results in higher error rate
than supervised LVQ which treats all training samples itera-
tively. When all patterns from the writers are utilized, STM
reduces the error rate of both LVQ and ILVQ considerably.
This observation conforms with previous results in [14].
Due to the utilization of local style consistency we can see
that IALVQ/STM, CIALVQ/STM can further reduce the
error rate of ILVQ/STM. It is noted that ILVQ/STM projects
the patterns from style-specific space onto style-conscious
space while IALVQ/STM and CIALVQ/STM project the

patterns from style-specific space onto style-free space.
With only a small proportion of patterns from the writers,
learning an accurate style transfer matrix is impossible due
to the underfitting. So, we just finetune the style transfer
matrix based on a small quantity of the patterns from the
specific writer and the linear projection learned in train-
ing stage. Again IALVQ, CIALVQ reduce the error rate of
ILVQ when local style consistency is considered in training
stage. Figure 7 leads to a similar conclusion for the active
style-specific classification.

Conclusion

In this paper, we have proposed a continuous adaptive
prototype-based model for incremental character recogni-
tion. The proposed method models the writing styles with
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a linear transformation matrix which projects patterns from
style-conscious space onto style-free space incrementally.
Two kinds of prototypes (i.e., style-conscious prototypes
and style-free prototypes) are learned simultaneously. The
style-conscious prototypes are updated by the original pat-
terns while the style-free prototypes are updated by the
projected patterns. Finally, the interleaved test-then-train
performance is tested on style-free prototypes. Union of
style-conscious prototypes and style-free prototypes are
used for the style-specific classification.

Experimental results have shown that the proposed
method is effective in both supervised incremental learn-
ing and active incremental learning. It is important to note
that our method also has the advantage even when the pat-
terns from the same style are only a few, which is a very
common setting in practical applications (such as in sig-
nature and email address). Active incremental learning is
akin to human learning which occasionally interacts with
a teacher for inquiring labels of unknown patterns. In our
experiments, however, the proportion of inquired samples is
considerable and implies high cost of interactive learning.
As part of future work, we will consider efficient unsuper-
vised incremental learning or interactive learning with very
small number of samples inquired.

Compliance with Ethical Standards

Funding This work has been supported in part by the Strategic
Priority Research Program of the CAS Grant XDB02060009 and
the National Natural Science Foundation of China (NSFC) Grant
61411136002.

Conflict of Interests The authors declare that they have no conflict
of interest.

Ethical Approval This article does not contain any studies with
human participants or animals performed by any of the authors.

References

1. Bransford JD, Brown AL, Cocking RR. How people learn: brain,
mind, experience, and school. National Academy Press. 2000.

2. Gros C. Cognitive computation with autonomously active neural
networks: an emerging field[J]. Cogn Comput. 2009;1(1):77–90.

3. Gong C, Tao D, Liu W, Liu L, Yang J. Label propagation
via teaching-to-learn and learning-to-teach[J]. IEEE Trans Neural
Netw Learn Syst. 2017;28(6):1452–65.

4. Gong C, Tao D, Maybank SJ, Liu W, Kang G, Yang
J. Multi-modal curriculum learning for semi-supervised image
classification[J]. IEEE Trans Image Process. 2016;25(7):3249–60.

5. Gong C, Tao D, Yang J, Liu W. Teaching-to-learnand learning-
to-teach for multi-label propagation[C]. AAAI. 2016. p. 1610–16.

6. Gong C. Exploring commonality and individuality for multi-
modal curriculum learning[C]. AAAI. 2017. p. 1926–33.

7. Syed N, Liu H, Sung K. Incremental learning with support
vector machines[C]. In: International joint conference on artifi-
cial intelligence. Sweden: Morgan Kaufmann Publishers. 1999. p.
352–6.

8. Hoi SCH, Wang J, Zhao P. Libol: A library for online learning
algorithms[J]. J Mach Learn Res. 2014;15(1):495–9.

9. Ding S, Zhang J, Jia H, et al. An adaptive density data stream
clustering algorithm[J]. Cogn Comput. 2016;8(1):30–38.

10. Gepperth A, Karaoguz C. A bio-inspired incremental learning
architecture for applied perceptual problems[J]. Cogn Comput.
2016;8(5):924–34.

11. Trier ∅D, Jain AK, Taxt T. Feature extraction methods for char-
acter recognition-a survey[J]. Pattern Recogn. 1996;29(4):641–62.

12. Sarkar P, Nagy G. Style consistent classification of isogenous
patterns[J]. IEEE Trans Pattern Anal Mach Intell. 2005;27(1):88–98.

13. Abraham WC, Robins A. Memory retention the synaptic stability
versus plasticity dilemma. Trends Neurosci. 2005;28(2):73–8.

14. Zhang XY, Liu CL. Writer adaptation with style transfer map-
ping[J]. IEEE Trans Pattern Anal Mach Intell. 2013;35(7):1773–
87.

15. Kohonen T. Improved versionsof learning vector quantization[C].
In: International joint conference on neural networks. 1990. p.
545–550.

16. Kohonen T. The self-organizing map[J]. Proc IEEE.
1990;78(9):1464–80.

17. Jin XB, Liu CL, Hou X. Regularized margin-based conditional
log-likelihood loss for prototype learning[J]. Pattern Recogn.
2010;43(7):2428–38.

18. Shen YY, Liu CL. Incremental learning vector quantization for
character recognition with local style consistency[C]. In: Proceed-
ing of the 8th international conference in brain inspired cognitive
systems. 2016. p. 228–39.

19. Rosenblatt F. The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychol Rev.
1958;65(6):386–408.

20. Oza NC. Online bagging and boosting[C]. IEEE International
Conference on Systems, Man and Cybernetics:2340–45. 2005.

21. Liu X, Yu T. Gradient featureselection for online boosting[C].
ICCV. 2007. p. 18.

22. Saffari A, Leistner C, Santner J, et al. On-line random forests[C]
In: Computer vision workshops (ICCV Workshops). 2009.
p. 1393–400.

23. Kirstein S, Wersing H, Körner E. A biologically motivated visual
memory architecture for online learning of objects[J]. Neural
Netw. 2008;21(1):65–77.

24. Xu Y, Shen F, Zhao J. An incremental learning vector quantiza-
tion algorithm for pattern classification[J]. Neural Comput Appl.
2012;21(6):1205–15.

25. Cesa-Bianchi N, Conconi A, Gentile C. A second-order percep-
tron algorithm[J]. SIAM J Comput. 2005;34(3):640–68.

26. Crammer K, Dredze M, Kulesza A. Multi-class confidence
weighted algorithms[C]. In: Proceedings of the conference on
empirical methods in natural language processing. 2009. p. 496–
504.

27. Ushiku Y, Hidaka M, Harada T. Three guidelines of online
learning for large-scale visual recognition[C]. In: Proceedings of
the IEEE conference on computer vision and pattern recognition.
2014. p. 3574–81.
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