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Bo Zhao* and Yuanchun Li

Abstract: In this paper, a model-free near-optimal decentralized tracking control (DTC) scheme is developed for
reconfigurable manipulators via adaptive dynamic programming algorithm. The proposed controller can be divided
into two parts, namely local desired controller and local tracking error controller. In order to remove the norm-
boundedness assumption of interconnections, desired states of coupled subsystems are employed to substitute their
actual states. Using the local input/output data, the unknown subsystem dynamics of reconfigurable manipulators
can be identified by constructing local neural network (NN) identifiers. With the help of the identified dynamics, the
local desired control can be derived directly with corresponding desired states. Then, for tracking error subsystems,
the local tracking error control is investigated by the approximate improved local cost function via local critic
NN and the identified input gain matrix. To overcome the overall error caused by the substitution, identification
and critic NN approximation, a robust compensation is added to construct the improved local cost function that
reflects the overall error, regulation and control simultaneously. Therefore, the closed-loop tracking system can be
guaranteed to be asymptotically stable via Lyapunov stability theorem. Two 2-degree of freedom reconfigurable
manipulators with different configurations are employed to demonstrate the effectiveness of the proposed model-
free near-optimal DTC scheme.

Keywords: Adaptive dynamic programming, decentralized tracking control, model-free, near-optimal, neural net-
works, reconfigurable manipulators.

1. INTRODUCTION

Reconfigurable manipulators [1], that consist of stan-
dard joint and link modules, are always considered as a set
of subsystems interconnected by coupling torques. They
can change their shapes to undertake different tasks by
adding or removing modules. Hence, they have wide po-
tential in industries, space explorations, smart manufactur-
ing, high risk operations, and so on. However, it implies
that modeling and controller design for each configuration
are unacceptable to human operators. Therefore, to find
a reasonable modeling and control strategy for reconfig-
urable manipulators become urgent problems.

In recent years, many efforts have been made to de-
sign controllers for reconfigurable manipulators. From the
literature, control methods can be categorized into three
strategies, namely centralized control [2–6], distributed
control [7–10] and decentralized control [11, 12]. Decen-
tralized control strategy can simplify the design complex-
ity by using the local information of corresponding sub-
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systems. Thus, the superiority leads it is well suited for
reconfigurable manipulators that are assembled in modu-
lar structures with different degree of freedom (DOF). The
main challenge in designing decentralized control lies in
that how to get rid of negative effects from interconnec-
tions on control performance. Ababsa et al. [13] presented
a decentralized control with two layers. In the first layer,
based on current information perceived from environment,
a genetic algorithm was used to generate well suited target
configurations. While, in the second layer, a PacMan-like
algorithm was used to plan the movement of modules to
the target pattern emerged in the first layer. Butler et al.
[14] presented generic locomotion algorithms inspired by
cellular automata and geometric rules. It can be instanti-
ated onto a variety of particular systems.

Inspired from that power efficiency reflects the opera-
tion health condition, Yuan et al. [15] developed a power
efficiency estimation-based decentralized health monitor-
ing and fault detection technique for modular and recon-
figurable robot (MRR) with a joint torque sensor. Zhu
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et al. [16] developed a decentralized control based on
virtue decomposition control with embedded field pro-
grammable gate array for MRR. This scheme led a pre-
cise control without joint torque sensing. Li et al. [17]
proposed a decentralized robust control algorithm for
MRRs based on backstepping techniques and a harmonic
drive transmission system. By using proportional deriva-
tive controller with a saturated robust control, the uncer-
tainties were compensated. We can see that the aforemen-
tioned methods all focused on controlling reconfigurable
manipulators with available dynamics. However, mod-
eling for changing configurations with different DOF is
unexpected to operators. Therefore, decentralized control
schemes without a prior knowledge of dynamics received
more attention. Zhu et al. [18] used Takagi-Sugeno fuzzy
logic systems to approximate the unknown dynamics of
subsystems. The interconnection and fuzzy approxima-
tion error were removed by an adaptive sliding mode con-
troller. Li et al. [19] identified the joint parameters of
a modular robot by a genetic algorithm with fuzzy logic
optimization. It can avoid converging to local optimal
solutions and release dynamic control. Zhao et al. [20]
proposed a neural network (NN) adaptive control scheme
based on local joint information for fault-free reconfig-
urable manipulators. Then, fault compensation was im-
plemented by employing a nonlinear velocity observer and
a fault identifier to obtain acceptable control performance
when it suffered from actuator faults. Despite of these
methods have achieved excellent control performance, it is
often desirable to design a controller which not only keeps
systems stable, but also guarantees an adequate level of
performance [21].

It is well known that the control objective can be
achieved by optimal control, which is solved via dy-
namic programming for nonlinear systems. However, it
is hardly to obtain the optimal feedback control since
time-varying Hamilton-Jacobi-Bellman (HJB) equations
are difficult to be solved. As an effective approximation
approach, the adaptive dynamic programming (ADP) [22]
which is aided by NNs [23] has consequently attracted
much attention. There are several synonyms used for
ADP, such as approximate dynamic programming [22],
adaptive critic designs [24], neural dynamic programming
[25], and reinforcement learning (RL) [26]. Werbos [22]
classified the ADP schemes into heuristic dynamic pro-
gramming (HDP), dual heuristic dynamic programming
(DHP), action dependent HDP (ADHDP), and action de-
pendent DHP (ADDHP). After that, other two approaches
as globalized DHP (GDHP) and ADGDHP were proposed
in [24]. In recent few years, ADP algorithms were de-
veloped further to solve control problems of continuous-
time systems [27, 28], discrete-time systems [29], exter-
nal disturbances and uncertainties [30], stochastic systems
[31], trajectory tracking [21, 32, 33], control input satu-
ration [34], fault tolerant [35–37], time-delay [38], zero-

sum games [39, 40], etc. Meanwhile, ADP technique has
been implemented further to tackle decentralized control
problems. For linear interconnected systems, Jiang et al.
[30] and Bian et al. [41] proposed robust ADP and pol-
icy iteration (PI) technique based decentralized controls
for systems with dynamic uncertainties. Gao et al. [42]
developed a data-driven output-feedback control policy
based on PI and value iteration (VI) methods. Hioe et
al. [43] presented decentralized control for dissipativity
shaping problem via linear partial differential Hamilton-
Jacobi equation. For nonlinear interconnected systems
with available dynamics, Liu et al. [27] developed a de-
centralized control strategy with cost functions for subsys-
tems, which were constructed by assumed upper bounded
interconnections. Wang et al. [44] developed the de-
centralized guaranteed cost control by solving the mod-
ified HJB equation. The cost function was constructed
for the overall plant. For unknown nonlinear intercon-
nected systems, Liu et al. [45] proposed the decentralized
stabilization scheme via actor-critic based online model-
free integral PI algorithm. By assuming the input gain
matrix was known and the unknown interconnection was
weak, Mehraeen et al. [46] presented a decentralized near-
optimal tracking control by using online tuned action NN
and critic NN. In the previous ADP-based optimal track-
ing control methods, they were generally required to know
the dynamics of plants, and the optimal tracking control
can be designed directly. To the best of our knowledge,
the result on the ADP-based decentralized tracking con-
trol (DTC) is rare for interconnected systems with un-
known dynamics. Thus, it is a key problem to design
the decentralized tracking controller via ADP for practi-
cal large-scale systems with unknown or unavailable dy-
namics, such as reconfigurable manipulators with chang-
ing shapes. This motivates our research.

In this paper, a near-optimal DTC is proposed for re-
configurable manipulators with unknown dynamics. By
substituting the actual states of interconnections by their
desired states, the common assumption on boundedness of
interconnections can be removed. Then, the unknown sub-
systems of reconfigurable manipulators can be identified
by using NNs and local input/output data. Therefore, the
local desired control can be derived directly with the pre-
defined desired trajectories. By employing a proper local
cost function, the decentralized tracking control problem
can be transformed into a near-optimal control problem.
By using ADP technique, the approximate local track-
ing error control can be obtained by combining a critic
NN with the identified control input matrix. Consider the
substitution error, identification error and critic NN ap-
proximation error as the overall error, the local cost func-
tion is improved to reflect the overall error, regulation and
control simultaneously. Therefore, the near-optimal DTC,
which consists of the local desired control and local track-
ing error control, ensures the closed-loop reconfigurable
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manipulator system to be asymptotically stable. Simula-
tions of two 2-DOF reconfigurable manipulators demon-
strate the effectiveness of the developed model-free ADP
based near-optimal DTC scheme.

The main contribution of this work have the following
three aspects:
(i) The scheme extends the ADP technique to DTC prob-

lem for reconfigurable manipulators with unknown
dynamics. The local input/output data is employed to
identify the unknown subsystem model via local NN
identifier. The local tracking control can be obtained
by the identified dynamics. It implies that no mat-
ter how the configuration changes, system remodel-
ing and controller redesign are not required any more.
Thus, the proposed DTC strategy is more suitable for
practice.

(ii) Interconnections are commonly assumed to be norm-
bounded in existing methods. Different from them,
the actual states of coupled subsystems in the inter-
connection are substituted by their desired states. It
can remove the strict assumption, whose feasibility is
difficult to be proved or ensured.

(iii) The improved local cost function reflects the over-
all error, regulation and control simultaneously. The
overall error contains the substitution error, identi-
fication error and approximation error such that the
closed-loop reconfigurable manipulator system can
be guaranteed to be asymptotically stable by using
the proposed DTC scheme, rather than ultimately uni-
formly bounded (UUB).

The rest of this paper is organized as follows: In Sec-
tion 2, the problem statement is presented. In Section 3,
the unknown dynamics of reconfigurable manipulators are
identified by local NN identifiers, and the DTC is designed
in detail. Then, the convergence and stability are dis-
cussed. In Section 4, two different 2-DOF reconfigurable
manipulators are employed in simulation. In Section 5,
the conclusion is drawn.

2. PROBLEM STATEMENT

The dynamic model of reconfigurable manipulator sys-
tem with n-DOF can be formulated by Newton-Euler ap-
proach as

M(q)q̈+C(q, q̇)q̇+G(q) = u, (1)

where q ∈Rn is the vector of joint displacements, M(q) ∈
Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis
and centripetal force, G(q) ∈ Rn is the gravity term, and
u ∈ Rn is the applied joint torque.

In engineering practice, such as space manipulation and
disaster rescue, reconfigurable manipulators consist of un-
certain or large number of module joints. It brings com-
plex control structure and heavy computational burden in

traditional centralized control, which is difficult to be im-
plemented. In order to relax the limitation, each joint
is considered as a subsystem of the entire reconfigurable
manipulator system interconnected by coupling torque.
By separating terms only depending on local variables
(qi, q̇i, q̈i) from those terms of other joint variables, each
subsystem dynamical model can be formulated in joint
space as

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi)+Zi(q, q̇, q̈) = ui (2)

with

Zi(q, q̇, q̈)

=

{
n

∑
j=1, j ̸=i

Mi j(q)q̈ j +[Mii(q)−Mi(qi)]q̈i

}

+

{
n

∑
j=1, j ̸=i

Ci j(q, q̇)q̇ j +[Cii(q, q̇)−Ci(qi, q̇i)]q̇i

}
+
[
Ḡi(q)−Gi(qi)

]
,

where qi, q̇i, q̈i,Gi(q) and ūi are the ith element of the vec-
tors q, q̇, q̈,G(q) and u, Mi j(q) and Ci j(q, q̇) are the ijth
element of the matrices M(q) and C(q, q̇), respectively.
Zi(q, q̇, q̈) is the coupling torque.

Let xi = [xi1,xi2]
T = [qi, q̇i]

T, (2) can be expressed as
ẋi1 = xi2,

ẋi2 = fi(xi)+gi(xi)ui(xi)+hi(x),

yi = xi,

(3)

where xi is the state of the ith subsystem, and

fi(xi) = M−1
i (qi) [−Ci(qi, q̇i)q̇i −Gi(qi)] ,

gi(xi) = M−1
i (qi),

hi(x) =−M−1
i (qi)Zi(q, q̇, q̈),

where hi(x) is the interconnection term, x = [x1, . . . ,xn]
T is

the state vector of the entire reconfigurable manipulator.

Assumption 1: The nonlinear functions fi(xi), gi(xi)
and hi(x) are Lipschitz and continuous in their arguments
with fi(0) = 0, and the subsystem (3) is controllable.

Assumption 2: The desired trajectories qid are twice
differentiable and bounded as∥∥∥∥∥∥∥

qid

q̇id

q̈id

∥∥∥∥∥∥∥≤ qiA,

where qiA > 0 is a known constant.

In order to remove the norm-boundedness assumption
on interconnections, the desired states of coupled subsys-
tems are employed to substitute their actual ones. Thus,
the interconnection term can be expressed as

hi(x) = hi(xi,x jd)+∆hi(x,x jd),
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where x jd denotes the desired states of the coupled sub-
systems with j = 1, . . . , i−1, i+1, . . .N, and ∆hi(x,x jd) =
hi(x)−hi(xi,x jd) denotes the substitution error. Thus, (3)
becomes

ẋi1 = xi2,

ẋi2 = Fi(xi,x jd)+gi(xi)ui(xi)+∆hi(x,x jd),

yi = xi.

(4)

According to Assumption 1, Fi(xi,x jd) = fi(xi) +
hi(xi,x jd) is still Lipschitz continuous on a set Ωi ∈ R.
Since the interconnection satisfies the global Lipschitz
condition, it thus implies

∥∆hi(x,x jd)∥ ≤
n

∑
j=1, j ̸=i

di jE j, (5)

where E j = ∥x j − x jd∥, and di j ≥ 0 is an unknown global
Lipschitz constant.

The objective of this paper is to find a DTC policy
ui(xi) such that the actual state of subsystem follows its
desired trajectory. Furthermore, the set of DTC policies
u1(x1), . . . ,ui(xi), . . . ,un(xn) ensure the closed-loop sys-
tem of entire reconfigurable manipulator to be asymptoti-
cally stable in a near-optimal manner.

For ith subsystem, define the tracking error as

ei = xi − xid .

where ei = [ei1,ei2]
T. From the dynamics of subsystem

(4), the local tracking error dynamics can be expressed as

ėi = ẋi − ẋid . (6)

Therefore, associated with the local tracking error dynam-
ics (6), the local tracking error control policy should min-
imize the following cost function

Ji(ei(t)) =
∫ ∞

t

(
δ̂i ∥ei(τ)∥+Ui (ei(τ),uie(τ))

)
dτ,

(7)

where Ui(ei(t),uie(t)) = eTi (t)Qiei(t)+uT
ie(t)Riuie(t) is the

utility function, Ui(0,0) = 0, and Ui(ei,uie) ≥ 0 for all ei

and uie, in which Qi ∈R2×2 and Ri ∈R are positive definite
matrices, uie = ui(xi)− uid(xid) is the local control input
error, uid(xid) is the local desired control input, and δ̂i is
the estimation of upper bound of the later defined overall
error. It can be updated by

˙̂δi = Γiδ ∥ei∥ . (8)

From (7), we can see that it reflects the overall error, reg-
ulation and control simultaneously.

Remark 1: Actually, δ̂i∥ei∥ in the improved cost func-
tion (7) is a robust term, which is utilized to overcome the
affection of the overall error caused by the substitution,
identification and critic NN approximation. In this case,
the closed-loop system can be guaranteed to be asymptot-
ically stable, rather than UUB in many previous work.

Remark 2: Some existing works [27, 45] have con-
structed the cost function in similar form as (7), but they
were always required to assume the interconnection to be
upper bounded with a known scalar. However, the upper
bound is difficult to or cannot be known in practice. Dif-
ferent from them, in our scheme, on one hand, it is not re-
quired to assume the interconnection to be upper bounded
by substituting the actual states of coupling subsystems
with their desired ones. On the other hand, the improved
cost function (7) is updated adaptively to overcome the af-
fection of the overall error, which contains the substitution
error, identification error and critic NN approximation er-
ror.

3. MODEL-FREE ADP BASED
DECENTRALIZED TRACKING

CONTROLLER DESIGN

In this section, the detailed design procedure of model-
free ADP based DTC in a near-optimal manner for recon-
figurable manipulators is described.

3.1. Subsystem identification of reconfigurable ma-
nipulators

The system model cannot be available since the changing
shape and uncertain DOF. Thus, according to the modular-
ized property, the model-free strategy is an effective way
to be taken into account. In this subsection, input/output
data of the corresponding subsystems can be used to iden-
tify their dynamics.

Since the dynamics of subsystem (4) is unavailable, we
use radial basis function (RBF) NNs to approximate the
unknown terms as

Fi(xi,x jd) =WT
i f σi f (xi,x jd)+ εi f ,∥εi f ∥ ≤ εi1, (9)

gi(xi) =WT
ig σig(xi)+ εig,∥εig∥ ≤ εi2, (10)

where Wi f and Wig are ideal weight vectors from the hid-
den layer to the output layer, σi f (xi,x jd) and σig(xi) are
basis function vectors, εi f and εig are approximation er-
rors, and εi1 and εi2 are unknown positive constants.

Consider the ith subsystem of reconfigurable manipula-
tor system (4), by employing local input/output data, the
local NN identifier can be established as{

˙̂xi1 = x̂i2 + ki1x̃i1,

˙̂xi2 = F̂i(x̂i,x jd)+ ĝi(x̂i)ui(xi)+ ki2x̃i2,
(11)

where x̂i = [x̂i1, x̂i2]
T ∈ R2 is the state vector of the iden-

tifier, x̃i = xi − x̂i = [x̃i1, x̃i2]
T ∈ R2 is the local identifica-

tion error vector, F̂i(x̂i,x jd) and ĝi(x̂i) are the estimation of
nonlinear dynamics Fi(xi,x jd) and gi(xi), respectively; ki1

and ki2 are positive constants.
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Combining (4) with (11), the identification error dy-
namic can be described as

˙̃xi1 = x̃i2 − ki1x̃i1,

˙̃xi2 = Fi(xi,x jd)− F̂i(x̂i,x jd)+∆hi(x,x jd)− ki2x̃i2

+(gi(xi)− ĝi(x̂i))ui(xi).

Let Ŵi f and Ŵig be the estimations of Wi f and Wig, we have

F̂i(x̂i,x jd) = ŴT
i f σi f (x̂i,x jd), (12)

ĝi(x̂i) = ŴT
ig σig(x̂i), (13)

where Ŵi f and Ŵig can be updated by the following adap-
tive laws as

˙̂Wi f = Γi f x̃i2σi f (x̂i,x jd), (14)
˙̂Wig = Γigx̃i2σig(x̂i)ui, (15)

where Γi f and Γig are positive constants.
Thus, from (9), (10), (12) and (13), we have

Fi(xi,x jd)− F̂i(x̂i,x jd) =WT
i f σ̃i f (xi, x̂i,x jd)

+W̃T
i f σi f (x̂i,x jd)+ εi f ,

gi(xi)− ĝi(x̂i) =WT
ig σ̃ig(xi, x̂i)+W̃T

ig σig(x̂i)+ εig,

where W̃i f = Wi f − Ŵi f and W̃ig = Wig − Ŵig are the
weight estimation errors, σ̃i f (xi, x̂i,x jd) = σi f (xi,x jd)−
σ̂i f (x̂i,x jd) and σ̃ig(xi, x̂i) = σig(xi)−σig(x̂i) are the esti-
mation errors of activation functions, respectively.

Theorem 1: For ith subsystem of the reconfigurable
manipulator (4), by using the local input/output data, the
developed local identifier (11) can guarantee the identifi-
cation error x̃i to be UUB with the help of the updated laws
(14)-(15). In other words, the dynamic model of reconfig-
urable manipulator can be identified in a local manner.

Proof: Select a Lyapunov function candidate as

Li1 =
1
2

x̃2
i1 +

1
2

x̃2
i2 +

1
2

W̃T
i f Γ−1

i f W̃i f +
1
2

W̃T
ig Γ−1

ig W̃ig.

(16)

The time derivative of (16) is

L̇i1 = x̃i1 ˙̃xi1 + x̃i2 ˙̃xi2 −W̃T
i f Γ−1

i f
˙̂Wi f −W̃T

ig Γ−1
ig

˙̂Wig

=− ki1x̃2
i1 + x̃i1x̃i2 − ki2x̃2

i2

+ x̃i2
(
W̃T

i f σi f (x̂i,x jd)+W̃T
ig σig(x̂i)ui(xi)+wi1

)
−W̃T

i f Γ−1
i f

˙̂Wi f −W̃T
ig Γ−1

ig
˙̂Wig, (17)

where wi1 =WT
i f σ̃i f (xi, x̂i,x jd)+

(
WT

ig σ̃ig(xi, x̂i)+ εig
)

ui +
εi f +∆hi(x,x jd).

Assumption 3: The defined term wi1 is bounded, i.e.,
|wi1| ≤ δi1, where δi1 is an unknown positive constant.

Substituting (14) and (15) into (17), we have

L̇i1 =− ki1x̃2
i1 + x̃i1x̃i2 − ki2x̃2

i2 + x̃i2wi1

≤−
(

ki1 −
1
2

)
x̃2

i1 −
1
2
(x̃i1 − x̃i2)

2

+ |x̃i2|
((

ki2 −
1
2

)
|x̃i2|−δi1

)
.

We can observe that L̇i1 ≤ 0 when x̃i2 lies outside of the
compact set

Ωx̃i2 =

{
x̃i2 : |x̃i2| ≤

δi1

ki2 − 1
2

}

as long as ki1 ≥
1
2

and ki2 ≥
1
2

. Therefore, according to
Lyapunov’s direct method, the identification error x̃i2 can
be guaranteed to be UUB. This completes the proof.

3.2. The decentralized tracking controller design
The optimal tracking control is generally composed of

the feedforward control and the feedback control [21].
Thus, the local desired control as feedforward control
should be designed as follows.

According to the local identifier (11), the identified dy-
namics of subsystem can be described as{

˙̂xi1 = x̂i2,

˙̂xi2 = F̂i(x̂i,x jd)+ ĝi(x̂i)ui(x̂i).

By using the desired states xid of the ith subsystem, the
local desired control can be obtained as

uid(xid) = ĝ−1
i (xid)

(
ẋi2d − F̂i(xd)

)
. (18)

Remark 3: Unlike it must be assumed to be inversible
[47–49], the assumption can be removed since ĝ−1

i (xid) in
(18) denotes the estimated inertia matrix of ith subsystem
of practical reconfigurable manipulator, which is a posi-
tive definite matrix.

In the following part, we turn to design the local track-
ing error control as a feedback control. To obtain a near-
optimal control performance, the designed local tracking
error control policy should be admissible. Therefore, be-
fore the algorithm is presented, the definition of admissi-
ble control is introduced [50].

Definition 1: For local tracking error dynamics (6), a
local tracking error control policy µie(ei) is defined to
be admissible if µie(ei) is continuous on a set Ωi with
µie(0) = 0, µie(ei) ensures the convergence of the ith sub-
system (4) on Ωi, and Ji(ei(t)) is finite for all ei ∈ Ωi.

For any admissible control policy µi(ei) ∈ ψi(Ωi) of
subsystem (4), where ψi(Ωi) is the set of admissible con-
trol, if the improved cost function

Vi(ei(t)) =
∫ ∞

t

(
δ̂i ∥ei(τ)∥+Ui (ei(τ),µie(τ))

)
dτ

(19)
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is continuously differentiable, then the infinitesimal ver-
sion of (19) is the so-called local Lyapunov equation

0 = δ̂i ∥ei(t)∥+Ui (ei,µie)+(∇Vi(ei))
T ėi (20)

with Vi(0) = 0, and the term ∇Vi(ei) denotes the partial
derivative of Vi(ei) with respect to the local tracking error
ei, i.e., ∇Vi(ei) = ∂Vi(ei)

/
∂ei.

Remark 4: Noticing that the right hand side of (19) is
positive when t > 0 , since δ̂i can be updated by (8). δ̂i

will be guaranteed to be positive all the time as long as
its initial value δ̂i0 ≥ 0 for updating. Thus, (19) can be
guaranteed to be a local Lyapunov equation with a proper
initial value.

The Hamiltonian of the optimal problem and the opti-
mal improved cost function can be formulated as

Hi

(
ei,µie,∇Vi(ei), δ̂i

)
= δ̂i ∥ei(t)∥+Ui (ei,µie)

+(∇Vi(ei))
T ėi,

and

Ji
∗(ei)

= min
µie∈ψi(ei)

∫ ∞

t

(
δ̂i ∥ei(τ)∥+Ui (ei(τ),µie(τ))

)
dτ.

Thus,

0 = min
µie∈ψi(ei)

Hi

(
ei,µie,∇J∗i (ei), δ̂i

)
,

where ∇J∗i (ei) = ∂J∗i (ei)
/

∂ei. If the solution J∗i (ei) exists
and is continuously differentiable, the ideal local optimal
tracking error control can be described as

u∗ie(ei) =−1
2

R−1
i ĝT

i (xi)∇J∗i (ei). (21)

Remark 5: We can see that the error dynamics (6) de-
pend on the desired trajectories xid , it turns to be a time-
varying system since the desired trajectories are time-
varying. Different from [51, 52] tackled tracking control
problems for finite horizon time-varying systems, the error
system (6) in this paper is actually infinite horizon time-
varying. Thus in this case, similar to and motivated by
[53–57], the local optimal tracking error control (21) can
be derived by solving the so-called local Lyapunov equa-
tion (20) which minimizes the improved local cost func-
tion (19).

In the process of ADP design, the cost function is often
built by NN, which is a powerful tool for approximating
nonlinear functions. Here, a local critic NN is employed
to approximate the improved cost function on the compact
set Ωi as

Vi(ei) =WT
ic σic(ei)+ εic(ei),

where Wic ∈ Rli is the ideal weight vector, σic(ei) ∈ Rli is
the activation function, li is the number of neurons in the
hidden layer, and εic(ei) is the approximation error. Then,
the gradient of Vi(ei) with respect to ei is

∇Vi(ei) = (∇σic(ei))
TWic +∇εic(ei), (22)

where ∇σic(ei) = ∂σic(ei)
/

∂ei ∈ Rli×2 and ∇εic(ei) are
the gradients of the activation function and the approxi-
mation error, respectively.

Thus, according to (21), the ideal local optimal tracking
error control can be derived as

µie(ei) =−1
2

R−1
i ĝTi (xi)

(
(∇σic(ei))

TWic +∇εic(ei)
)
.

(23)

According to the framework of ADP-based approximate
optimal control design, an approximate critic NN is estab-
lished to estimate the infinite horizon cost function as

V̂i(ei) = ŴT
ic σic(ei), (24)

where Ŵic ∈ Rli is the weight estimation. Similarly, the
gradient of (24) with respect to ei is

∇V̂i(ei) = (∇σic(ei))
TŴic. (25)

Thus, using (23) and (25), the local optimal tracking error
control can be obtained as

µ̂ie(ei) =−1
2

R−1
i ĝTi (xi)(∇σic(ei))

TŴic. (26)

Considering (20) and (22), one can obtain

0 =δ̂i ∥ei∥+Ui (ei,µie)

+
(
(∇σic(ei))

TWic +∇εic(ei)
)

ėi.

Therefore, the Hamiltonian can be expressed as

Hi(ei,µie,Wic, δ̂i)

= δ̂i ∥ei∥+Ui (ei,µie)+WT
ic ∇σi(ei)ėi

=−∇εic(xi)ėi = eicH , (27)

where eicH is the residual error caused by NN approxima-
tion.

In the same manner, the approximate Hamiltonian can
be formulated by

Ĥi(ei, µie,Ŵic, δ̂i)

= δ̂i ∥ei∥+Ui (ei,µie)+ŴT
ic ∇σi(ei)ėi = eic. (28)

Let θi = ∇σi(ei)ėi. From (27) and (28), we have

eic = eicH −W̃T
ic θi,

where W̃ic =Wic −Ŵic, and it can be updated as

˙̃Wic =− ˙̂Wic = ηi1(eicH −W̃T
icHθi)θi, (29)
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where ηi1 > 0 is the learning rate of the critic NN.
To obtain the update rule of the critic NN weight vector

Ŵic, the objective function Eic =
1
2 eTiceic should be mini-

mized with the steepest decent algorithm as

˙̂Wic =− ˙̃Wic =−ηi1eicθi. (30)

Theorem 2: For ith subsystem of reconfigurable ma-
nipulator, the local critic NN weight approximation error
W̃ic can be guaranteed to be UUB as long as the weights
of the local critic NN are updated by (30).

Proof: Select the Lyapunov function candidate as

Li2 =
1

2ηi1
W̃T

ic W̃ic. (31)

With the solution of (29), the time derivative of (31) is

L̇i2 =
1

ηi1
W̃T

ic
˙̃Wic

= W̃T
ic eicHθi −

∥∥W̃icθi
∥∥2

≤ 1
2

e2
icH − 1

2

∥∥W̃icθi
∥∥2

.

Assume ∥θi∥ ≤ θiM , hence L̇i2 < 0 whenever the approx-
imation error of the local critic NN W̃ic lies outside of the
compact set

ΩW̃ic
=

{
W̃ic :

∥∥W̃ic
∥∥≤ ∥∥∥∥eicH

θiM

∥∥∥∥} .

According to Lyapunov stability theorem, the weight ap-
proximate error of local critic NN is UUB. This completes
the proof.

Now, we derive the near-optimal DTC by combining the
local desired control (18) and local tracking error control
(26) as

ui = uid + µ̂ie. (32)

3.3. Stability analysis
Theorem 3: Consider the n-DOF reconfigurable ma-

nipulator (1) and the improved local cost function (7). The
proposed near-optimal DTC scheme (32) can guarantee
the closed-loop system of reconfigurable manipulator to
be asymptotically stable.

Proof: Select the Lyapunov function candidate as

Li3 =
1
2

eTi ei +Vi(ei)+Γ−1
iδ δ̃ 2

i , (33)

where δ̃i = δi − δ̂i denotes the estimation error of δi.
According to (6), by adding and subtracting Fi(xd) and

ĝi(xid), the time derivative of (33) is

L̇i3 = eTi ėi +∇VT
i (ei)ėi −Γ−1

iδ δ̃i
˙̂δi

= eTi (Θ1 +Θ2 +Θ3)− δ̂i ∥ei∥

−Ui(ei,µie)−Γ−1
iδ δ̃i

˙̂δi, (34)

where Θ1 = [ei1,Fi(xi,x jd)−Fi(xd)]
T, Θ2 = [0, ĝi(xid)]

T,
Θ3 = [0,wi2]

T, wi2 = F̃i(xd) + g̃i(xid)ui(xi) − µ̃ie with
g̃i(xi,xid) = gi(xi)− ĝi(xid). And Θ3 can be assumed to
be boundedness, i.e., ∥Θ3∥ ≤ δi2.

As Fi(·) is locally Lipschitz, Θ1 is locally Lipschitz,
there exists a positive constant ηi f such that ∥Θ1∥ ≤
ηi f ∥ei∥. Assuming that ∥Θ2∥ ≤ ηig, and introducing (32),
(34) becomes

L̇i3 ≤ ηi f ∥ei∥2 + eTi Θ3 + eTi ∆hi(x,x jd)

+ηig ∥ei∥∥µie∥− δ̂i ∥ei∥−Ui(ei,µie)−Γ−1
iδ δ̃i

˙̂δi

≤ ηi f ∥ei∥2 + eTi wi2 + eTi ∆hi(x,x jd)+
1
2
∥ei∥2

− δ̂i ∥ei∥−λmin(Qi)∥ei∥2 −Γ−1
iδ δ̃i

˙̂δi

−
(
λmin(Ri)−η2

ig

)
∥µie∥2 .

Thus, according to (5), we have

L̇3 =
n

∑
i=1

L̇i3

≤
n

∑
i=1

(
ηi f ∥ei∥2 + eTi δi2 +∥ei∥

n

∑
j=1, j ̸=i

di jE j

+
1
2
∥ei∥2 − δ̂i ∥ei∥−λmin(Qi)∥ei∥2

−
(
λmin(Ri)−η2

ig

)
∥µie∥2 −Γ−1

iδ δ̃i
˙̂δi

)
≤

n

∑
i=1

(
ηi f ∥ei∥2 + eTi δi2 +

1
2
∥ei∥2 − δ̂i ∥ei∥

−λmin(Qi)∥ei∥2 −
(
λmin(Ri)−η2

ig

)
∥µie∥2

−Γ−1
iδ δ̃i

˙̂δi

)
+

n

∑
i=1

∥ei∥
n

∑
j=1

di jE j

≤
n

∑
i=1

(
ηi f ∥ei∥2 + eTi δi2 +

1
2
∥ei∥2 − δ̂i ∥ei∥

−λmin(Qi)∥ei∥2 −
(
λmin(Ri)−η2

ig

)
∥µie∥2

−Γ−1
iδ δ̃i

˙̂δi

)
+max

i j
{di j}

n

∑
i=1

∥ei∥
n

∑
j=1

E j. (35)

Noticing that ∥ei∥ ≤ ∥e j∥ ⇔ Ei ≤ E j. Using Chebyshev
inequality, we have

n

∑
i=1

∥ei∥
n

∑
j=1

E j ≤ n
n

∑
i=1

∥ei∥E j. (36)

Combining (35) and (36), we have

L̇3 ≤
n

∑
i=1

(
ηi f ∥ei∥2 +∥ei∥δi2 +

1
2
∥ei∥2 − δ̂i ∥ei∥

−λmin(Qi)∥ei∥2 −
(
λmin(Ri)−η2

ig

)
∥µie∥2

−Γ−1
iδ δ̃i

˙̂δi

)
+nmax

i j
{di j}

n

∑
i=1

∥ei∥Ei. (37)
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Defining δi = δi2 +nmax
i j

{di j}, and we have

L̇3 ≤
n

∑
i=1

(
−
(

λmin(Qi)−ηi f −
1
2

)
∥ei∥2 +∥ei∥ δ̃i

−
(
λmin(Ri)−η2

ig

)
∥µie∥2 −Γ−1

iδ δ̃i
˙̂δi

)
. (38)

Substituting (8) into (38), we have

L̇3 ≤
n

∑
i=1

(
−
(

λmin(Qi)−ηi f −
1
2

)
∥ei∥2

−
(
λmin(Ri)−η2

ig

)
∥µie∥2

)
.

We can observe that L̇i3 ≤ 0 whenever the following con-
ditions hold{

λmin(Qi)≥ ηi f +
1
2 ,

λmin(Ri)≥ η2
ig.

(39)

It implies that the developed model-free ADP based near-
optimal DTC (32) ensures the closed-loop system of
reconfigurable manipulator to be asymptotically stable
based on Lyapunov stability theorem. This completes the
proof.

Remark 6: We obviously know that the closed-loop
system of reconfigurable manipulator is guaranteed to be
asymptotically stable when conditions in (39) hold. How-
ever, it is difficult to choose appropriate weight matrices
Qi and Ri since the dynamics related parameters ηi f and
ηig are unknown. Thus, these parameters are decided in
simulations, which can provide suggestions before imple-
menting the algorithm to reconfigurable manipulators.

Remark 7: Unlike [34] and [58], the improved local
cost function is constructed by only tracking error and
tracking error control in a local manner, rather than in an
overall manner. Therefore, µ∗

ie(ei) and J∗i (ei) denote the
near-optimal values for the overall reconfigurable manip-
ulator. It means that the proposed scheme can only guar-
antee the local subsystem of reconfigurable manipulators
to be optimal. That is to say, the proposed DTC can ensure
tracking control performance of the overall reconfigurable
manipulator in a near-optimal manner.

4. SIMULATION STUDIES

To show the effectiveness of the developed model-free
ADP based near-optimal DTC scheme, simulations of two
2-DOF reconfigurable manipulators with different config-
urations [18] are given in this section.

Configuration A

The dynamic model of Configuration A is given as

M(q) =

[
0.36cos(q2)+0.6066 0.18cos(q2)+0.1233
0.18cos(q2)+0.1233 0.1233

]
,

C(q, q̇) =[
−0.36sin(q2)q̇2 −0.18sin(q2)q̇2

0.18sin(q2)(q̇1 − q̇2) 0.18sin(q2)q̇1

]
,

G(q) =
[

−5.88sin(q1 +q2)−17.64sin(q1)
−5.88sin(q1 +q2)

]
.

The desired trajectories of two subsystems are

qd =

[
q1d

q2d

]
=

[
0.2sin(3t)+0.1cos(4t)
0.3sin(2t)+0.2cos(t)

]
.

In local identifier (11), we define Xi = [xi,x jd ]
T as the

state vector of the RBFNN, whose basis functions are cho-
sen as Gaussian type as

σi f (Xi) = exp

(
−(Xi − ci f )

T(Xi − ci f )

b2
i f

)
,

σig(xi) = exp

(
−(xi − cig)

T(xi − cig)

b2
ig

)
,

where the centers of the basis functions are

ci f =


−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3

 ,
cig =

[
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3

]
,

the widths of the basis functions are bi f = big = 0.5.
Let the initial states of the subsystems be x10 = x20 =

[1,0]T, the initial states of the observers be x̂10 = [2,−1]T

and x̂20 = [1.5,−0.5]T, the identification gains be ki1 = 50
and ki2 = 250, the RBFNN weights learning rates of the
local identifier (11) be Γi f = 500 and Γig = 1, respectively.
The improved local cost function (7) is approximated by
a local critic NN, whose structure is chosen as 2-3-1 with
2 input neurons, 3 hidden neurons and 1 output neuron,
and the weight vector as Ŵic =

[
Ŵic1,Ŵic2,Ŵic3

]T with ini-
tial values Ŵ1c = [0.2,1.5,1.1]T and Ŵ2c = [1.2,0.8,0.9]T,
as well as the learning rate be ηi1 = 0.0001. The acti-
vation function of the critic NN is chosen as σic(ei) =[
e2

i1,ei1ei2,e2
i2

]
. Let the weight learning rates of the critic

NN be Γiδ = 7, Qi = 2I2, Ri = 0.0002I, where In denotes
the identity matrix with n dimensions, respectively.

The simulation results are shown as Figs. 1-4. The iden-
tification error curves in Fig. 1 show that subsystems of re-
configurable manipulator (2) can be identified to be UUB.
The trajectories tracking curves are displayed in Fig. 2,
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Fig. 1. The identification errors by using the local identi-
fier of Configuration A.

Fig. 2. The tracking errors of Configuration A.

from where we can see that the actual trajectories of sub-
systems can follow their desired ones after the reconfig-
urable manipulator is operated for a short time by using
the developed near-optimal DTC scheme (32). Then, the
tracking errors of subsystems illustrated as Fig. 3 show
the excellent tracking performance intuitively. Fig. 4 de-
scribed control input curves of the two subsystems. From
these figures, the closed-loop reconfigurable manipulator
system can be guaranteed to be asymptotically stable.

Configuration B

To further test the effectiveness of the proposed near-
optimal DTC scheme, Configuration B which is also 2-
DOF, but different shape from Configuration A, is em-
ployed in our simulation. The dynamic model of the Con-

Fig. 3. The trajectories tracking performance of Configu-
ration A.

Fig. 4. The control inputs of Configuration A.

figuration B is described by

M(q) =[
0.17−0.1166cos2(q2) −0.06cos(q2)

−0.06cos(q2) 0.1233

]
,
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Fig. 5. The identification errors by using the local identi-
fier of Configuration B.

Fig. 6. The tracking errors of Configuration B.

C(q, q̇) =[
0.1166sin(2q2)q̇2 0.06sin(q2)q̇2

0.06sin(q2)q̇2 −0.0583sin(q2)q̇1 −0.06sin(q2)q̇1

]
,

G(q) =
[

0
−5.88cos(q2)

]
.

The desired trajectories are given as

qd =

[
q1d

q2d

]
=

[
0.5cos(t)+0.2sin(3t)

0.3cos(3t)−0.5sin(2t)

]
.

Let the initial values of the subsystem trajectory states,
initial values, structures and weight learning rates of local
identifiers and local critic NNs to be the same as Config-
uration A. Let the identification gains be ki1 = 200 and
ki2 = 800, the learning rate of the improved cost function
be Γiδ = 60, Qi = I2, R1 = 0.002I and R2 = 0.0001I.

Fig. 7. The trajectories tracking performance of Configu-
ration B.

Fig. 8. The control inputs of Configuration B.

Figs. 5-8 display the simulation results. From Fig. 5, the
identification performance of subsystem dynamic models
can be shown by using the established local identifier (11).
The trajectory tracking and their tracking errors are illus-
trated respectively in Fig. 6 and Fig. 7. The control inputs
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shown as Fig. 8 by using the proposed model-free ADP
based near-optimal DTC ensure the trajectories of entire
reconfigurable manipulator asymptotically follow the de-
sired trajectories. Therefore, we can declare that the pro-
posed near-optimal DTC can be applied to reconfigurable
manipulators with different configurations successfully.

Remark 8: Many previous literature solved the con-
trol problems of reconfigurable manipulators. Different
from [8–10], on one hand, the proposed DTC is de-
signed model-free, rather than the available dynamics of
reconfigurable manipulators. It implies that the proposed
scheme can be utilized to reconfigurable manipulators
with uncertain configurations and different DOF without
changing control architecture. On the other hand, in con-
trast to our previous works [18, 20], the tracking delay is
longer by using the proposed DTC in this paper. Fortu-
nately, this DTC scheme presents a simple control struc-
ture in a near-optimal manner, which is different from the
previous ones. In the future, composite learning algorithm
[59,60] with wavelet NNs, neuro-fuzzy networks, etc. are
planed to be utilized to improve the tracking performance
and avoid local optimal.

5. CONCLUSION

This paper addresses the DTC problems with ADP al-
gorithm for reconfigurable manipulators in a near-optimal
manner. The common boundedness assumption on inter-
connections is removed by substituting the actual states of
the coupled subsystems with their desired states. Then,
the unknown subsystem dynamics of reconfigurable ma-
nipulator can be identified by establishing local identifiers.
With the help of identifiers, the local desired control can
be derived with the desired trajectories of corresponding
subsystems. By constructing improved local cost func-
tions which reflect the overall error, regulation and con-
trol simultaneously, the local tracking error control can
be obtained. Thus, the DTC can be constructed with the
combination of the local desired control and local track-
ing error control. Two 2-DOF reconfigurable manipula-
tors with different configurations are employed to demon-
strate the effectiveness of proposed model-free ADP based
near-optimal DTC scheme.
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