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Video prediction plays a fundamental role in video analysis and pattern recognition. However, the gen- 

erated future frames are often blurred, which are not sufficient for further research. To overcome this 

obstacle, this paper proposes a new deep generative video prediction network under the framework of 

generative adversarial nets. The network consists of three components: a motion encoder, a frame gen- 

erator and a frame discriminator. The motion encoder receives multiple frame differences (also known 

as Eulerian motion ) as input and outputs a global video motion representation. The frame generator is a 

pseudo-reverse two-stream network to generate the future frame. The frame discriminator is a discrim- 

inative 3D convolution network to determine whether the given frame is derived from the true future 

frame distribution or not. The frame generator and frame discriminator train jointly in an adversarial 

manner until a Nash equilibrium. Motivated by theories on color filter array, this paper also designs a 

novel cross channel color gradient (3CG) loss as a guidance of deblurring. Experiments on two state-of- 

the-art data sets demonstrate that the proposed network is promising. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Understanding videos is a core problem of pattern recognition

and artificial intelligence [35] . It has many applications such as

video classification [10] , video segmentation [2] , video retrieval

[6] , action recognition [31] , crowd analysis [24] , event detection

[36] and video prediction [18] . Among these applications, video

prediction has received growing interests in computer vision and

is of great significance for video surveillance [3] , video forecasting

[32] and autonomous vehicles [13] . 

As a promising avenue for video understanding, video (or Pixel-

level) prediction is of great challenge. This paper addresses the is-

sue of future frame prediction [5,17,20,27,30,33] . Existing methods

mainly focus on exploiting the neighbor frame correlation via cross

channel or cross frame convolution. For a given video, in order

to estimate the discrete joint distribution of the raw pixel values,

Video Pixel Network (VPN) [9] constructs a probabilistic model.

The model captures the four-dimensional video structure in the

temporal dimension of the sequence, in the two spatial dimensions

of each frame and in the color channels of a pixel. [20] propose

a new spatial-temporal video autoencoder. It consists of a classic

spatial image autoencoder and a novel nested temporal autoen-
∗ Corresponding author. 
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oder. At each time step, the network receives a video frame, pre-

icts the optical flow and generates the next frame. Another possi-

le solution for video prediction is generative adversarial networks

GAN) [7] , e.g. [33] utilize GAN to generate videos from scratch in-

tead of conditioned on the past. Besides, inspired by the concept

f predictive coding in neuroscience, [15] propose Predictive Net-

ork (PredNet) to predict future frames in a video sequence. Each

ayer of the network only makes local predictions to subsequent

etwork layers. 

This paper proposes a new deep generative architecture for fu-

ure frame prediction. This work is mainly inspired by Motion and

ontent Network (MC-net) [32] and Multi Scale Deep Generative

etwork (MSDG) [17] . This paper differs from them in three as-

ects: 

1) Different from MC-net, which is a totally hierarchical network,

this paper adopts an adversarial training strategy. This enables

the network to automatically generate frames from the original

future frame distribution. 

2) Different from MSDG, which needs multi-scale RGB informa-

tion, this paper utilizes single scale frame difference. Using

frame difference helps to characterize the motion information

more concretely. 

3) Different from these two works, this paper employs a new cross

channel color gradient loss. This loss function forces the cross

https://doi.org/10.1016/j.patrec.2018.03.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.03.027&domain=pdf
mailto:tingzhao.yu@nlpr.ia.ac.cn
https://doi.org/10.1016/j.patrec.2018.03.027


T. Yu et al. / Pattern Recognition Letters 110 (2018) 58–65 59 

 

 

t  

f  

w  

i  

L  

s  

f  

A  

d  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

p  

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

m  

t  

v

 

[  

l  

n  

a  

t  

i  

t  

v  

c  

p  

b  

t  

t  

p  

m  

m  

M  

s  

t

 

l  

t  

a  

[  

r  

d  

m  

w  

h  

d  

s  

m  

g

 

S  

v  

a  

W  

t  

f  

m  

t  

f  

g  

s  

o  

s  

t  

L  

n

3

 

p

r  

c  

n  

p  

i  

d  

t

 

fi  

s  
channel color difference to be consistent, thus it can reduce the

blur effect. 

In fact, the essence of future frame prediction is to minimize

he reconstruction error ‖ ̂ x t+1 − x t+1 ‖ αα between the true (t + 1) th

uture frame x t+1 and the predicted (t + 1) th future frame ˆ x t+1 ,

here α is an integer greater or equal to 1. To some extent,

t can be dealt with an autoencoder. Srivastavaet al. [30] use a

STM autoencoder to minimize the reverse video sequence recon-

truction error and at the same time present the predict future

rame. Walker et al. [34] propose to use Conditional Variational

utoEncoder to depict the uncertain future via optimizing a KL -

ivergence term KL [ p( ̂ x t+1 | x 1: t ) ‖ q ( ̂ x t+1 | x 1: t )] , where p represents

he predicted distribution and q describes a random distribution. 

The contributions of this paper are summarized as follows: 

1) A new deep generative network is proposed for video predic-

tion. Within this framework, a generative model generates the

future frame of a given video utilizing frame differences. And a

discriminative model estimates the probability of a given image

being the true future frame. Benefiting from the net architec-

ture, this network can be trained end-to-end via back propaga-

tion. 

2) A pseudo-reverse two-stream frame generator is proposed for

future frame generation. A dynamic stream is designed to en-

code the motion representation and predict the future motion

representation. A static stream is designed to preserve the static

content. The future frame is obtained by integrating the outputs

of these two streams. 

3) A new cross channel color gradient loss is designed to improve

the generated frame quality. The motivation is to preserve the

consistency among color channels. Theories on color filter array

demonstrate that color gradients are consistent for real world

images. This can help to highlight the edge areas and reduce

blur effect. 

Even though the ideas of utilizing difference images Xue et al.

37] and GAN Vondrick et al. [33] have been exploited, the pro-

osed framework is quite different from these works in four as-

ects. 

1) Given a sequence of static frames, Xue et al. [37] take difference

images as convolution kernels. However, we take difference im-

ages as the input data. Employing difference images as input is

essential, because it simplifies the issue of frame prediction to

motion representation. 

2) For getting better results, Xue et al. [37] need multi-scale

frames as input. On the contrary, we only require frames within

a single resolution. Thus the proposed network is more effi-

cient. 

3) Vondrick et al. [33] utilize GAN for video generation given a

random noise. However, we employ GAN for video prediction

given a series of known frames. Thus the two problems are

quite different from each other. 

4) Vondrick et al. [33] apply a two-stream network for both back-

ground and foreground generation. Nonetheless, we adopt a

pseudo two-stream network, in which only the foreground is

predicted and the background is given by the former frame.

This in turn makes our network more accurate and more ef-

ficient. 

. Related work 

The main consideration of future frame prediction is to mini-

ize the reconstruction error between the true future frame and

he generated future frame. The related works to this paper are

ideo prediction, video synopsis and two-stream networks. 
Video prediction . Given a short video clip, Ranzato et al.

22] propose a baseline of video prediction based on theories about

anguage model. They construct multiple quantized patch dictio-

aries and apply a recurrent neural network to classify whether

n image patch is the future frame. Yet, the future frame is inde-

erminate, Xue et al. [37] propose to characterize the future frame

n a probabilistic manner. This is implemented via cross convolu-

ional. They regard image and motion as feature maps and con-

olutional kernels, respectively. A Conditional Variational Autoen-

oder [12] form loss function, which makes synthesizing many

ossible future frames possible, is designed to model the proba-

ility of the future frame. Specifically, Oh et al. [19] firstly encode

he frame level information through CNN and then depict the mo-

ion information via LSTM. Deconvolution is applied to decode the

redicted frames from the transformed encoding. Nevertheless, the

ain drawback of these methods is the blur effect caused by the

inimization of reconstruction error. Mathieu et al. [17] propose a

SDG network to deal with the inherently blurry predictions. Be-

ides, they design a new image gradient loss function to address

he problem of lack of sharpness. 

Video synopsis . The aim of video synopsis [11,21,28] is to se-

ect a sparse subset of video frames that can optimally represent

he input video. On the contrary, in this paper, we aim to obtain

n optimal motion representation of the input video. Zhang et al.

39] use two LSTMs, one along the time sequence and the other in

everse from the video’s end, to select key video frames. To ensure

iversity of the selected frames, the network is trained via mini-

ize the cross-entropy loss on annotated ground-truth key frames

ith an additional loss based on determinantal point process. Ma-

asseni et al. [16] learn a deep synopsis network to minimize the

istance between the training videos and the distribution of their

ummarizations in an unsupervised way. They utilize a LSTM sum-

arizer to select video frames and a LSTM discriminator to distin-

uish their similarity. 

Two-stream network . Motivated by researches on physiology,

imonyan and Zisserman [26] first propose two-stream network for

ideo-based human action recognition. In this paper, we employ

 pseudo-reverse two-stream network for future frame generation.

ithin the framework of two-stream, a spatial network is designed

o detect the moving object, and a temporal network is employed

or motion recognition [4] . Saito and Matsumoto [23] first imple-

ent a two-stream adversarial network, named Temporal Genera-

ive Adversarial Network (TGAN), for generating future frames. Dif-

erent from MSDG, TGAN consists of two generators, a temporal

enerator and a frame generator. The temporal generator corre-

ponds to motion transformation and the frame generator handles

bject generation. Besides, Villegas et al. [32] also propose a two-

tream network, called MC-net, to decompose the motion and con-

ent in videos. The network is built both upon autoencoder and

STM. Thus it can capture the spatial layout of and temporal dy-

amics independently. 

. Architecture 

This section formulates the task of future frame prediction and

resents the details of the proposed network. Let x 1: t ∈ R 

t×w ×h ×c 

epresents the first t frames of a given video x , where t, w, h and

 denote the temporal length, spatial width, spatial height and chan-

el numbers , respectively. The aim of future frame prediction is to

redict the following future frame ˆ x t+1 conditioned on the given

nput video frames x 1: t . This equals to maximize the conditional

istribution p θ ( ̂ x t+1 | x 1: t ) [37] , where p θ describes the frame dis-

ribution. 

Nevertheless, a straightforward modeling of p θ ( ̂ x t+1 | x 1: t ) is dif-

cult due to the complex backgrounds in real world videos. Con-

idering the high correlation among neighbor frames, the frame
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Fig. 1. The semantic architecture of deep generative video prediction. The green dash box represents the Motion Encoder , the red dash box denotes the Frame Generator and 

the blue dash box indicates the Frame discriminator . The motion encoder first calculates the frame differences and then encode them as a motion representation. The frame 

generator simply sums the predicted motion representation and the last frame into a future frame. The frame discriminator determines whether the input frame is a real 

future frame or a fake future frame. Details of this architecture can be found in Section 3 . p( v 1: t−1 ) describes the frame difference distribution, p( ̂ v t ) depicts the predicted 

motion distribution and p( ̂ x t+1 | x 1: t ) characterizes the predicted future distribution conditioned on the given frames x 1: t . The solid curve portrays the true distribution while 

the dash curve describes the predicted distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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difference ˆ v t = ˆ x t+1 − x t is employed as a substitute based on the

frame difference set { v i : x i +1 − x i , i = 1 , . . . , t − 1 } . Using fr ame dif-

ferences makes the network more robust to noises, e.g. background

variations. This has also been exploited in [37] . Then the task of fu-

ture frame prediction can be reformulated as maximize a surrogate

distribution p θ ( ̂ v t | v 1: t−1 ) . And the future frame can be reasonably

defined as 

ˆ x t+1 = x t + ̂  v t . (1)

The proposed network comprises three components: a Motion

Encoder , a Frame Generator and a Frame Discriminator ( see

Fig. 1 . for detailed information). 

3.1. Motion encoder 

The motion encoder, denoted E , is designed to capture the tem-

poral dynamics v 1: t−1 of the given video frames and generate a fu-

ture motion representation ˆ v t . Thus the predicted motion repre-

sentation is defined by 

ˆ v t = f enc ( v 1: t−1 , c 1: t−1 ) , (2)

where c 1: t−1 records the hidden sequential states in temporal do-

main. In practice, Long Short Term Memory (LSTM) [8] and Con-

volution 3D (C3D) [31] can be implemented as the encoder f enc to

depict visual dynamics. Though being effective for sequential data,

traditional LSTM cannot take spatial correlation into consideration.

And C3D is limited to describe the temporal correlation via 3D

convolution among neighbor frames ( e.g. 16 frames). Then a four

layer ConvLSTM [25] is employed as the motion encoder. ConvL-

STM is an intimate integration of spatial convolution and tempo-

ral evolution for its high representation ability both in spatial and

temporal domain. 

3.2. Frame generator 

The frame generator, denoted G , takes the future motion repre-

sentation ˆ v t and the last video frame x t as input and generates a

future frame ˆ x t+1 . This can be formulated as 

ˆ x t+1 = f ̂  gen ( ̂ v t , x t ) . (3)
his formulation equals to Eq. (1) . In practice, the motion encoder

an be regarded as a part of the frame generator. And Eq. (3) can

e rewritten as 

ˆ  t+1 = f ̂  gen ( f enc ( v 1: t−1 , c 1: t−1 ) , x t ) = f gen ( v 1: t−1 , x t ) . (4)

he frame generator is a pseudo-reverse two-stream network.

wo-stream network has been exploited in video action recogni-

ion [26] . Here pseudo means that the network is not directly the

everse of the original two-stream network. And reverse means

he network takes video representation as input and outputs a

ideo frame, which is the reverse form of the original two-stream

etwork. In this network, the reverse dynamic stream takes the

otion representation as input. This stream corresponds to high-

requency dynamic estimation. The reverse static stream takes the

ast video frame as input. And this stream corresponds to low-

requency content maintenance. Multiple future frames can be re-

ursively generated via simply replacing the last frame x t by the

ewly generated frame ˆ x t+1 and replacing the motion representa-

ion ˆ v t by ˆ v t+1 . Or it can be generated with multiple output motion

epresentations ˆ v t : t + τ and a single last frame ˆ x t by repeat ˆ x t into

times, where τ is the predicted temporal duration. 

.3. Frame discriminator 

The frame discriminator, denoted D , is desired to estimate the

robability of a given image being the true future frame. This can

e formulated as 

p = f dis ( x t+1 , ̂  x t+1 ) . (5)

ypical 2D convolution network is capable of discriminating a

ideo frame from a noise input [7] . However, 2D convolution can-

ot distinguish multiple stacked images from a sequence of succes-

ive frames, thus a discriminative 3D convolution network is em-

loyed as the frame discriminator. 

. Training 

Training such a network needs careful consideration about the

raining loss. As is illustrated before, the basic formulation of fu-

ure frame prediction is to minimize a distance 

 

R ( ̂ x t+1 , x t+1 ) = ‖ ̂ x t+1 − x t+1 ‖ 

α
α, (6)
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etween the ground truth (t + 1) th future frame x t+1 and the pre-

icted (t + 1) th frame ˆ x t+1 . Here α ≥ 0 is used for controlling the

moothness of the reconstruction error L 

R ( ̂ x t+1 , x t+1 ) . 

.1. Reconstruction loss 

A simple reconstruction loss is l 2 loss, which is defined by

 ̂ x t+1 − x t+1 ‖ 2 2 . However, simply using l 2 loss leads to motion blur,

or that the l 2 loss is more likely to restrict the generated frame

o be the average of multiple predictions [17] . This network imple-

ents l 1 loss as the reconstruction loss 

 

R ( x t+1 , ̂  x t+1 ) = ‖ x t+1 − ˆ x t+1 ‖ 

1 
1 . (7)

.2. Adversarial loss 

Except for reconstruction loss, this network also adopts an

dversarial training strategy. The adversarial strategy has two

trengths: (1) restricts the predicted frame as real world images

nd (2) highlights the edge details. 

Training discriminator D . Let { ( v n 
1: t−1 

, x n t ) , x 
n 
t+1 

} , n = 1 , · · · , N

e a set of N training tuples. The discriminator D is designed to

inimize the misjudgement error 

 

D { ( v 1: t−1 , x t ) , x t+1 } = L b ( D (( v 1: t−1 , x t ) , f 
gen ( v 1: t−1 , x t )) , 0) 

+ L b ( D (( v 1: t−1 , x t ) , x t+1 ) , 1) . 
(8) 

pecifically, D is desired to determine the generated frame 

f gen ( v 1: t−1 , x t ) to be 0 (the first term) and the true frame x t to be

 (the second term). L b represents the binary cross-entropy loss

efined by 

 b (Y, ̂  Y ) = −
∑ 

ˆ Y log (Y ) − (1 − ˆ Y ) log (1 − Y ) . (9) 

n experiments, D (X, Y ) ∈ [0 , 1] estimates the possibility of Y being

he true future frame as Eq. (5) . 

Training generator G . The generator G is designed to generate

uture frames that can mislead the discriminator D . As a result, the

enerative model G is formulated to maximize the possibility of

isjudgment. 

 

G { x t+1 , ̂  x t+1 } = L b ( D (( v 1: t−1 , x t ) , f 
gen ( v 1: t−1 , x t )) , 1) . (10)

n contrast to D , G is designed to mislead D to assign a label 1 to

he generated frame f gen ( v 1: t−1 , x t ) . 

However, minimizing Eq. (10) alone can lead to instability [17] .

ctually, G can always generate frames that confuses D while

ithout being close to x t+1 . In turn, D will learn to discrimi-

ate these samples, leading G to generate other confusing sam-

les [17] . A possible solution is to minimize the weighted loss

R L 

R ( x t+1 , ̂  x t+1 ) + λG L 

G ( x t+1 , ̂  x t+1 ) . λR and λG make a tradeoff be-

ween the two loss terms. 

.3. Cross channel color gradient loss 

In order to make the generated frame more sharpening, a novel

ross channel color gradient (3CG) loss is proposed. The motivation

ehind the design of 3CG loss is to achieve high consistence among

olor channels. 

In general, according to theories related to Color Filter Array,

or a given image, the color difference between two channels e.g. ,

etween red channel and green channel or between green chan-

el and blue channel, should be consistent within a small region

38] . Otherwise, the artifacts ( see Fig. 5 .(c)) will be introduced. The

olor difference is defined as the diversity of two channels within

 spatial position. 
The core of 3CG loss is to minimize the cross channel difference

etween two channels. Then the 3CG loss can be defined as 

 

C { x t+1 , ̂  x t+1 } = 

∑ 

i, j 

∥∥∥| x 

i, j,g 
t+1 

− x 

i, j,r 
t+1 

| − | ̂ x 

i, j,g 
t+1 − ˆ x 

i, j,r 
t+1 | 

∥∥∥α

+ 

∑ 

i, j 

∥∥∥| x 

i, j,g 
t+1 

− x 

i, j,b 
t+1 

| − | ̂ x 

i, j,g 
t+1 − ˆ x 

i, j,b 
t+1 | 

∥∥∥α

, 

(11) 

here the superscript i, j represent a spatial position and r, g, b

epresent the color channels. The proposed 3CG loss is quite dif-

erent from Gradient Difference Loss (GDL) [17] , which is defined

y 

 

L { x t+1 , ̂  x t+1 } = 

∑ 

i, j 

∥∥∥| x 

i, j 
t+1 

− x 

i −1 , j 
t+1 

| − | ̂ x 

i, j 
t+1 − ˆ x 

i −1 , j 
t+1 | 

∥∥∥α

+ 

∑ 

i, j 

∥∥∥| x 

i, j 
t+1 

− x 

i, j−1 
t+1 

| − | ̂ x 

i, j 
t+1 − ˆ x 

i, j−1 
t+1 | 

∥∥∥α

. 

(12) 

DL ensures the homogeneity among neighbor positions within a

ingle channel, while 3CG loss ensures the homogeneity among

hannels within a spatial position. Without the constraint of neigh-

or positions, using 3CG loss is more likely to generate a frame

ith distinct edges. In experiments, α is set to be 1. Nevertheless,

CG loss is also quite different from l1 loss, for that l1 loss also

inimize the summation of difference within a channel ( e.g. , red,

reen or blue), while 3CG loss minimizes the summation of dif-

erence between channels ( e.g. , between red and green or between

reen and blue). Section 5 demonstrates the effectiveness of the

roposed 3CG loss. 

.4. Combining losses 

In experiments, the training loss is the weighted combination

f the three loss terms. It can be formulated as 

{ x t+1 , ̂  x t+1 } 
= λR L 

R ( x t+1 , ̂  x t+1 ) + λG L 

G ( x t+1 , ̂  x t+1 ) + λC L 

C ( ̂ x t+1 , x t+1 ) , 
(13) 

here λR , λG , and λC are the corresponding weights of each loss

erm. λR , λG , and λC are experimentally set to be 1, 1 e 1 and 1 e −1 ,

ccording to their influence on the final results. The training pro-

ess is summarized in Algorithm 1 . 

Algorithm 1: Training of deep generative network. 

Input : Training videos x n 
1: t 

, ground-truth future frame x n 
t+1 

Output : Model Parameters W D , W G 

1 Initialization: Loss weight λR , λG , λC ; learning rate ρD , ρG ; 

2 while not converge do 

3 Update the discriminator D ; 

4 W D = W D − ρD 

∑ ∂L D 
∂W D 

; 

5 Update the generator G ; 

6 W G = W G − ρG 

∑ 

{ 

λR 
∂L R 
∂W D 

+ λG 
∂L G 
∂W D 

+ λC 
∂L C 
∂W D 

} 

; 

7 end 

. Evaluation 

As a sanity check, this section demonstrates the effectiveness

f the proposed network considering single frame prediction. Both

uantitative and qualitative results are provided. The code and

re-trained models are released at https://github.com/Tsingzao/

eepGenerativeVideoPrediction for reproduction. 

https://github.com/Tsingzao/DeepGenerativeVideoPrediction
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Table 1 

Network parameters. 

Motion encoder Frame discriminator 

Kernel number 32, 64, 128, c 64, 128, 256 

Kernel size 3 × 3 3 × 3 × 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The training loss curve of the proposed network on moving mnist. 

Fig. 3. The training loss curve of the proposed network on UCF-101. 

Table 2 

PSNR and SSEQ results for single frame prediction 

(UCF-101). PSNR depicts the ratio of signal to noise 

and SSEQ describes the spatial-spectral entropy. A 

larger PSNR and a smaller SSEQ guarantee a better 

frame quality. 

Method l 2 l 1 Adv+ l 1 3CG+Adv+ l 1 

PSNR 27.6 27.7 28.5 28.6 

SSEQ 53.6 53.4 42.6 39.2 

o  

p  

f

5

l  

t  

b  

t  

fi

P
 

S  
5.1. Datasets 

Except the Moving Mnist 1 dataset, other two representative

video prediction datasets, i.e., UCF-101 2 and Ms. Pac-Man , 3 are em-

ployed to demonstrate the effectiveness of the proposed method.

For moving mnist, each video clip consists of 20 frames. There

are two digits moving inside a 64 × 64 patch within each frame.

The main advantage of this dataset is that researchers can gener-

ate training data as much as possible using simulation techniques.

UCF-101 [29] consists of 101 action classes for video-based human

action recognition. However, it is a challenging task of predicting

videos with multiple actions. Actually, when it comes to multiple

action classes, researchers often train one network for one action

class. Ms. Pac-Man dataset contains 516 game videos for training

and 50 game videos for testing. Each video game is comprised of

at least 600 frames. 

Different from the works that only generates a small patch of

a frame, this paper devotes to predicting the entire frame of a

given video clip. For simplicity, UCF-101 frames are resized into

64 × 64 in order to fit the size of the network, and Ms. Pac-Man

are divided into 64 × 64 patches. Videos are split into multiple five-

frame video clips. Thus each video clip equals to a training tuple

of four-frame differences plus one last frame. 

5.2. Implementation details 

Table 1 presents the detailed network parameters. The mo-

tion encoder consists of four ConvLSTM layers. And the last kernel

number corresponds to the channel number of the video frame (i.e.

1 for moving mnist and 3 for both UCF-101 and Ms. Pac-Man). The

frame generator simply sums up the predicted motion represen-

tation and the last video frame. The frame discriminator contains

three 3D convolution layers and a fully connected layer. All of the

convolution kernels are of length 3 in each dimension. The net-

work is implemented using Keras [1] . RMSprop with learning rate

0.001, is used to train the network. 

5.3. Convergence analysis 

One main obstacle of adversarial training is it requires to find a

Nash equilibrium [7] . That is to say, this training strategy is unsta-

ble and sometimes even cannot converge. Thus the network con-

vergence is first analyzed via quantities of experiments. Figs. 2 . and

3 present the training loss curve both on moving mnist and UCF-

101. The two figures demonstrate that the generative loss (green

line) is unstable during each iteration, but the global loss curve

tends to converge after about 30 0 0 (for moving mnist) or 70 0 0 (for

UCF-101) iterations. For that the generative loss depicts the simi-

larity between the generated future frame and the ground-truth

future frame, the decline of the generative loss indicates that the

generated future frame becomes similar to the ground-truth. Note

that the loss curve of UCF-101 converges much slower than moving

mnist. This can be explained that UCF-101 is a dataset composed
1 http://www.cs.toronto.edu/ ∼nitish/unsupervised _ video . 
2 http://crcv.ucf.edu/data/UCF101.php . 
3 https://drive.google.com/open?id=0Byf787GZQ7KvV25xMWpWbV9LdUU . 

i  

r  

T  

f

l  
f real world videos. It has complex background variations and un-

redictable extra motions. This inevitably increases the difficulty of

rame prediction. 

.4. Quantitative evaluation 

To evaluate the effectiveness of the three loss terms, i.e. l 1 
oss, GAN loss and 3 CG loss, both the full-reference Peak Signal

o Noise Ratio (PSNR) and no-reference Spatial-Spectral Entropy-

ased Quality (SSEQ) index [14] are employed. Given the ground-

ruth future frame x t+1 and the predicted frame ˆ x t+1 , PSNR is de-

ned as 

 SNR ( x t+1 , ̂  x t+1 ) = 10 log 10 

max 2 ˆ x t+1 

1 
N 

∑ N 
i =0 ( x t+1 − ˆ x t+1 ) 2 

. (14)

SEQ is a SVM-based method that learns to predict image qual-

ty scores from local entropy feature vector. Table 2 presents the

esults of each loss term. The baseline is set to be the l 2 loss.

able 2 indicates that ( a ) Using l 1 loss as reconstruction error per-

orms slightly better than the baseline l 2 loss. This is because l 2 
oss is more sensitive to noises than l loss. In real world videos,
1 

http://www.cs.toronto.edu/~nitish/unsupervised_video
http://crcv.ucf.edu/data/UCF101.php
https://drive.google.com/open?id=0Byf787GZQ7KvV25xMWpWbV9LdUU
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Fig. 4. Examples of results on moving mnist dataset. The first row (a) presents the 

difference images, the second row (b) gives the ground-truth future frame, the third 

row (c) demonstrates the results of single-layer convlstm, the fourth row (d) shows 

the results of two-layer convlstm and the last row (e) is the result of the proposed 

architecture. 

Fig. 5. Examples of results on UCF-101 ( ApplyEyeMakeup ). The first row (a) is the 

difference image, the second row is the ground-truth future frame, the third row 

(c) is the results without cross channel loss, and the last row (d) presents the inte- 

grated results. 
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Table 3 

Parameter scale and frame per-pixel er- 

ror on moving mnist. 

Architecture # Para err 

[20] -v1 0.11M 0.095 

[20] -v2 33.62M 0.065 

[20] -v3 1.26M 0.064 

[20] -v4 1.04M 0.044 

[25] -ConvLSTM 0.04M 0.083 

[30] -AE-LSTM 0.12M 0.067 

Proposed 1.56M 0.041 
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4 https://github.com/emansim/unsupervised-videos . 
5 https://github.com/viorik/ConvLSTM . 
6 https://github.com/coupriec/VideoPredictionICLR2016 . 
7 https://github.com/coxlab/prednet . 
8 https://github.com/dyelax/Adversarial _ Video _ Generation . 
.g. UCF-101, there are complex backgrounds and irrelevant mo-

ions. ( b ) Integrating the adversarial loss with l 1 loss significantly

oosts the performance. The adversarial loss can be regarded as a

ompensation of the l 1 loss. l 1 loss generates motion blur while

he adversarial loss highlights the details. ( c ) A combination of the

 1 loss, adversarial loss and 3CG loss outperforms other single loss

erms. 3CG loss forces the generated frame performs as real im-

ges. 

.5. Qualitative evaluation 

Figs. 4 and 5 present several qualitative results. Benefiting from

he reverse static stream, the network can thoroughly depict the

asic frame content. Nevertheless, this mechanism sometimes pre-

ents the reverse dynamic stream to capture the motion properly

 see Fig. 4 column 2 and column 7). Nevertheless, it outperforms

ulti-layer AE-ConvLSTM ( Fig. 4 row (c) and row (d)), especially

n edge areas. 

Fig. 5 (c) and (d) also demonstrate the effectiveness of the pro-

osed 3CG loss. Without 3CG loss, the hard requirement of adver-

arial loss can introduce artifacts at the edge areas of the generated

rame. 3CG loss can help to eliminate these effects. A possible ex-

lanation is the 3CG loss ensures the color difference among RGB

hannels to be homogeneous. Yet the neighbor frames are some-

imes nearly the same and the network is more likely to generate

 future frame with high similarity to the last input frame. 
.6. Comparison with state-of-the-art algorithms 

For better comparison with other algorithms, this section

e-implements several state-of-the-art algorithms, including AE- 

 STM 

4 [30] , ConvL STM [25] , AE-ConvL STM 

5 [20] , MSDG 

6 [17] , and

redNet 7 [15] . 

Table 3 presents a comparison of the proposed network with

ther state-of-the-art networks considering the number of param-

ters (denoted as # Para) and pixel error (abbreviated as err ) on

oving mnist dataset. The methods in comparison includes AE-

 STM [25] , ConvL STM [30] , AE-ConvL STM (v1) [20] and its varia-

ions, e.g. , AE-fcLSTM (v2), AE-ConvLSTM (v3) and AE-ConvLSTM-

ow (v4). 

According to Table 3 using optical flow ( [20] -v4) reduces the

ixel error significantly. This is because optical flow can be re-

arded as a representation of motions, with an extra help of this

epresentation, the network can better illustrate the future motion.

he proposed method also preserve motion representation using

rame differences. Networks with fully connected layers (v2) re-

uire large amount of parameters (about 30 times of the proposed

etwork). The proposed network is a generative model which can

e divided into two parts, i.e., the generator G and the discrimi-

ator D . The parameters of G and D are 0.76M and 0.80M, respec-

ively. In fact, both G and D are employed for training, but during

esting, only the generator G is employed. That is to say, our net-

ork gets an error of 0.041 with 0.76M parameters, therefore, our

ethod outperforms others in testing error and at the same time

ith less parameters. 

Due to the fact that frames from the Ms. Pac-Man dataset have

o motion in the majority of pixels, there is no significant differ-

nce among the methods in comparison considering PSNR 

8 . Fig. 6

resents the qualitative results and SSEQ on Ms. Pac-Man dataset.

or better demonstrating the effectiveness of describing motions,

n this section, the selected frame sequences are with an tempo-

al interval of three frames. The methods in comparison includ-

ng AE-ConvLSTM [20] , MSDG [17] and PredNet [15] . AE-ConvLSTM

s capable of basic content preserving, however, it cannot depict

he motions well. Thus the generated frames of AE-ConvLSTM are

early static backgrounds. MSDG and PredNet can better deal with

otion prediction, while the only disadvantage is that they may be

lurred due to the effect of l 2 loss. The proposed method outper-

orms other methods both qualitatively and quantitatively. 

https://github.com/emansim/unsupervised-videos
https://github.com/viorik/ConvLSTM
https://github.com/coupriec/VideoPredictionICLR2016
https://github.com/coxlab/prednet
https://github.com/dyelax/Adversarial_Video_Generation
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Fig. 6. A qualitative comparison with state-of-the-art methods, i.e. , AE-ConvLSTM 

[20] , MSDG [17] , PredNet [15] and the proposed method (column 3 to column 6). 

The first column is the input frame and the second column is the groundtrue future 

frame. The last row is the average SSEQ index. 
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6. Conclusion 

This letter proposes a new deep generative video prediction

network for future frame prediction. Within this model, a new

pseudo-reverse two-stream network is designed as the frame gen-

erator and a shallow 3D convolution network is designed as the

frame discriminator. Besides, a novel cross channel color gradient

loss is proposed to improve the frame quality. Both quantitative

and quantitative experiments on two state-of-the-art datasets il-

lustrate the effectiveness of the new network. 

In future work, a more effective motion encoder will be ex-

ploited to demonstrate multiple frames prediction. Besides, con-

sidering long temporal range, a probabilistic motion generator is

under consideration. 

Acknowledgments 

This work is supported by the National Natural Science Founda-

tion of China (Grant Number 61403376 , 61573352 , 91646207 and

91438105 ); the Beijing Natural Science Foundation (Grant Num-

ber 4162064 ); and the Open Research Fund of Hunan Provincial

Key Laboratory of Network Investigational Technology (Grant No.

2015HNWLFZ055). 
eferences 

[1] F. Chollet, Keras, 2015, ( https://github.com/fchollet/keras ). 

[2] K. Desouza , A. Albuquerquearaújo , Z. Patrocínio , S. Guimarães , Graph-based hi-

erarchical video segmentation based on a simple dissimilarity measure, Pattern
Recognit. Lett. 47 (2014) 85–92 . 

[3] I. Elafi, M. Jedra , N. Zahid , Unsupervised detection and tracking of moving
objects for video surveillance applications, Pattern Recognit. Lett. 84 (2016)

70–77 . 
[4] C. Feichtenhofer , A . Pinz , A . Zisserman , Convolutional two-stream network fu-

sion for video action recognition, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 1933–1941 . 
[5] C. Finn , I. Goodfellow , S. Levine , Unsupervised learning for physical interaction

through video prediction, in: Advances in Neural Information Processing Sys-
tems, 2016, pp. 64–72 . 

[6] X. Gao , X. Li , J. Feng , D. Tao , Shot-based video retrieval with optical flow tensor
and hmms, Pattern Recognit. Lett. 30 (2) (2009) 140–147 . 

[7] I. Goodfellow , J. Pougetabadie , M. Mirza , B. Xu , D. Wardefarley , S. Ozair ,
A. Courville , Y. Bengio , Generative adversarial nets, in: Advances in Neural In-

formation Processing Systems, 2014, pp. 2672–2680 . 

[8] S. Hochreiter , J. Schmidhuber , Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780 . 

[9] N. Kalchbrenner, A. Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves, K.
Kavukcuoglu, Video pixel networks, arXiv: 1610.00527 (2016). 

[10] A. Karpathy , G. Toderici , S. Shetty , T. Leung , R. Sukthankar , L. FeiFei , Large-s-
cale video classification with convolutional neural networks, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2014,

pp. 1725–1732 . 
[11] A. Khosla , R. Hamid , C. Lin , N. Sundaresan , Large-scale video summarization

using web-image priors, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 2698–2705 . 

[12] D. Kingma, M. Welling, Auto-encoding variational bayes, arXiv: 1312.6114
(2013). 

[13] T. Litman , Autonomous vehicle implementation predictions, Victoria Transp.

Policy Instit. 28 (2014) . 
[14] L. Liu , B. Liu , H. Huang , A.C. Bovik , No-reference image quality assessment

based on spatial and spectral entropies, Signal Process. Image Commun. 29 (8)
(2014) 856–863 . 

[15] W. Lotter , G. Kreiman , D. Cox , Deep predictive coding networks for video pre-
diction and unsupervised learning, arXiv preprint arXiv:1605.08104 (2016) . 

[16] B. Mahasseni , M. Lam , S. Todorovic , Unsupervised video summarization with

adversarial lstm networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017 . 

[17] M. Mathieu, C. Couprie, Y. LeCun, Deep multi-scale video prediction beyond
mean square error, arXiv: 1511.05440 (2016). 

[18] N. Neverova, P. Luc, C. Couprie, J. Verbeek, Y. LeCun, Predicting deeper into the
future of semantic segmentation, arXiv: 1703.07684 (2017). 

[19] J. Oh , X. Guo , H. Lee , R. Lewis , S. Singh , Action-conditional video prediction

using deep networks in atari games, in: Advances in Neural Information Pro-
cessing Systems, 2015, pp. 2863–2871 . 

[20] V. Patraucean, A. Handa, R. Cipolla, Spatio-temporal video autoencoder with
differentiable memory, arXiv: 1511.06309 (2016). 

[21] Y. Pritch , A. Ravacha , S. Peleg , Nonchronological video synopsis and indexing,
IEEE Trans. Pattern Anal. Mach. Intell. 30 (11) (2008) 1971–1984 . 

22] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, S. Chopra, Video

(language) modeling: a baseline for generative models of natural videos,
arXiv: 1412.6604 (2014). 

23] M. Saito, E. Matsumoto, Temporal generative adversarial nets, arXiv: 1611.06624
(2016). 

[24] J. Shao , C. Loy , K. Kang , X. Wang , Slicing convolutional neural network for
crowd video understanding, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2016, pp. 5620–5628 . 
25] X. Shi , Z. Chen , H. Wang , D. Yeung , W. Wong , W. Woo , Convolutional lstm net-

work: a machine learning approach for precipitation nowcasting, in: Advances

in Neural Information Processing Systems, 2015, pp. 802–810 . 
[26] K. Simonyan , A. Zisserman , Two-stream convolutional networks for action

recognition in videos, in: Advances in Neural Information Processing Systems,
2014, pp. 568–576 . 

[27] W. Softky , Unsupervised pixel-prediction, in: Advances in Neural Information
Processing Systems, 1996, pp. 809–815 . 

28] Y. Song , J. Vallmitjana , A. Stent , A. Jaimes , Tvsum: Summarizing web videos

using titles, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 5179–5187 . 

29] K. Soomro, A. Zamir, M. Shah, Ucf101: a dataset of 101 human actions classes
from videos in the wild, arXiv: 1212.0402 (2012). 

[30] N. Srivastava , E. Mansimov , R. Salakhutdinov , Unsupervised learning of video
representations using lstms., in: Proceedings of the International Conference

on Machine Learning, 2015, pp. 843–852 . 

[31] D. Tran , L. Bourdev , R. Fergus , L. Torresani , M. Paluri , Learning spatiotemporal
features with 3d convolutional networks, in: Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2015, pp. 4 489–4 497 . 
[32] R. Villegas, J. Yang, S. Hong, X. Lin, H. Lee, Decomposing motion and content

for natural video sequence prediction, arXiv: 1706.08033 (2017). 
[33] C. Vondrick , H. Pirsiavash , A. Torralba , Generating videos with scene dynamics,

in: Advances In Neural Information Processing Systems, 2016, pp. 613–621 . 

[34] J. Walker , C. Doersch , A. Gupta , M. Hebert , An uncertain future: forecasting

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100005089
https://github.com/fchollet/keras
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0007
http://arxiv.org/abs/1610.00527
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0009
http://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0013
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1703.07684
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0014
http://arxiv.org/abs/1511.06309
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0015
http://arxiv.org/abs/1412.6604
http://arxiv.org/abs/1611.06624
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0020
http://arxiv.org/abs/1212.0402
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0022
http://arxiv.org/abs/1706.08033
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0024


T. Yu et al. / Pattern Recognition Letters 110 (2018) 58–65 65 

 

[  

[  

 

 

 

[  

[  
from static images using variational autoencoders, in: European Conference on
Computer Vision, 2016, pp. 835–851 . 

35] X. Wang , Intelligent multi-camera video surveillance: a review, Pattern Recog-
nit. Lett. 34 (1) (2013) 3–19 . 

36] Z. Xu , Y. Yang , A. Hauptmann , A discriminative cnn video representation for
event detection, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015, pp. 1798–1807 . 
[37] T. Xue , J. Wu , K. Bouman , B. Freeman , Visual dynamics: Probabilistic future
frame synthesis via cross convolutional networks, in: Advances in Neural In-

formation Processing Systems, 2016, pp. 91–99 . 
38] T. Yu , W. Hu , W. Xue , W. Zhang , Colour image demosaicking via joint intra and

inter channel information, Electron Lett. 52 (8) (2016) 605–606 . 
39] K. Zhang , W. Chao , F. Sha , Video summarization with long short-term memory,

in: European Conference on Computer Vision, 2016, pp. 766–782 . 

http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0025
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0025
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0026
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0026
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0026
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0026
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0029
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0029
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0029
http://refhub.elsevier.com/S0167-8655(18)30106-5/sbref0029

	Deep generative video prediction
	1 Introduction
	2 Related work
	3 Architecture
	3.1 Motion encoder
	3.2 Frame generator
	3.3 Frame discriminator

	4 Training
	4.1 Reconstruction loss
	4.2 Adversarial loss
	4.3 Cross channel color gradient loss
	4.4 Combining losses

	5 Evaluation
	5.1 Datasets
	5.2 Implementation details
	5.3 Convergence analysis
	5.4 Quantitative evaluation
	5.5 Qualitative evaluation
	5.6 Comparison with state-of-the-art algorithms

	6 Conclusion
	 Acknowledgments
	 References


