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Abstract

We propose a novel deep learning-based method, called mesh superresolution,
to enrich low-resolution (LR) cloth meshes with wrinkles. A pair of low and
high-resolution (HR) meshes are simulated, with the simulation of the HR mesh
tracks with that of the LR mesh. The frame data are converted into geometry
images and used as a training data set. A residual network, called SR residual
network, is employed to train an image synthesizer that superresolves an LR
image into an HR one. Once the HR image is converted back to an HR mesh, it
is abundant in wrinkles compared with its coarse counterpart. The synthesizing
is very efficient and is 24× faster than a full HR simulation. We demonstrate the
performances of mesh superresolution with various simulation scenes.
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1 INTRODUCTION

Clothing plays an important role in animation, as it contributes to the style and personality of virtual characters with
realistic and complex detailed folding patterns. Although physical simulation systems can compute the deformation of
cloth at a remarkable level of realism and detail, they incur an extremely high computational cost. In computer graphics,
one common approach to accelerate the computations of high-resolution (HR) models is to find a suitable low-resolution
(LR) subspace that captures the large-scale behavior and to define a mapping from the LR subspace to the HR domain. It
usually relies on precomputed data and data-driven techniques to build the mapping. This approach has been followed
for cloth wrinkle animation too, and various algorithms have been put forward, including subspace simulation methods1

and pose space deformation methods.2
From another point of view, the detail enhancement for clothing is essentially a superresolution (SR) operation, turning

LR meshes into HR ones. SR is also a technique investigated by the computer vision community, for producing an HR
image from its LR counterpart. By using deep convolutional neural networks (CNN), this ill-posed problem has achieved
great breakthroughs in the recent years. CNN is by far the most powerful machine learning tool and is particularly useful
for data-driven applications involving images, speech, and natural language processing. Due to the irregular structure of
meshes, it is not straightforward to use CNN to process meshes. If a mesh can be represented as a regular 2D array like
an image, many successful image SR networks may be adapted to mesh SR. Fortunately, geometry image3 is a technique
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that bridges the gap between images and meshes. Meshes can be converted into or from images, and a CNN-based image
SR can be applied. To enhance an LR mesh with details, it is first converted into an LR image, then superresolved into an
HR image, and converted back into an HR mesh in the end.

A geometry image of a mesh captures geometry as a simple 2D array of quantized points, whose 3D coordinates are
stored as RGB values. Due to the connectivity of the mesh, the corresponding image is rather smooth, that is, lacking high
frequency information. This makes our data set largely different from other photorealistic image data sets. As a result,
some SR networks may not work well on our data set. In this paper, we explore two networks, namely SR residual networks
(SRResNet)4 and deeply recursive convolutional network (DRCN),5 for mesh SR. Experiments show that SRResNet is
more suitable for our goal. To the best of our knowledge, this is the first work that uses deep learning technique for cloth
wrinkle synthesis.

2 RELATED WORK

2.1 Data-driven cloth synthesis
Data-driven methods have drawn much attention as they offer faster cloth animation creation. These methods can be
roughly classified into two groups. One line of work combines simulation on a coarse base mesh with precomputed
data for adding geometric details. Feng et al.6 described an approach that decomposes an HR simulation into mid- and
fine-scale deformations. For the midscale deformations, the mesh is decomposed into a set of bone clusters for which
skinning weights are fit in a way similar to that in the work of James et al.,7 whereas fine-scale details are added based on a
principal component analysis of residual vectors. Both mid- and fine-scale details are then driven by a coarse-scale simu-
lation, which is fast enough to yield real-time rates. Focusing on fitted clothing, Wang et al.8 presented an example-based
approach that augments coarse simulations with pose-dependent detail meshes obtained from a wrinkle database. The
wrinkle database stores per-joint wrinkle meshes that are precomputed from HR simulations and merged together at
runtime. Targeting the more general case of free-flowing cloth, Kavan et al.9 described a method for learning linear
upsampling operators from HR simulations. With similar goals, Zurdo et al.2 combined multiresolution and pose space
deformation techniques in order to augment coarse simulations with example-based wrinkles. Hahn et al.1 presented a
subspace simulation method using low-dimensional linear subspace with temporally adaptive bases. It exploits full-space
simulation training data in order to construct a pool of low-dimensional bases distributed across pose space.

Another stream of work exploits precomputed data to avoid runtime simulations altogether. De Aguiar et al.10 presented
a technique for learning a linear conditional cloth model that can be trained with data from physics-based simulations.
The method achieves very fast computation, but it primarily targets at low-complexity cloth with little folding. The method
of Guan et al.11 factored clothing deformations into components due to body shapes and poses. A linear model is learned
in order to quickly dress different body shapes and poses without runtime simulations. A different way of exploiting
precomputed data is suggested by Kim et al.,12 who created an exhaustive set of secondary motion to accompany a given
primary motion graph. Kim et al.13 made use of precomputed data to drive the deformation of clothing using the animated
underlying model of the character wearing it.

2.2 CNN-based image SR
Single-image SR, without any prior information, is a hard and ill-conditioning problem. With enough training data,
CNN-based methods have achieved great progress recently. Wang et al.14 encoded a sparse representation prior to their
feed-forward network architecture based on the learned iterative shrinkage and thresholding algorithm. Dong et al.15 used
bicubic interpolation of LR images as input and applied a simple three-layer CNN to generate HR images. Kim et al.5 pro-
posed to use DRCN to improve the performance of CNN by using a network as deep as 20 layers and a recursive structure
to decrease the number of parameters. To accelerate the computation and add more layers, many works use LR images, as
opposed to bicubically interpolated HR images, as input. They upscale the feature maps into HR in the last few layers. For
example, fast SR CNN16 has a transposed convolutional layer (also named deconvolutional layer), and efficient subpixel
CNN17 has a subpixel convolutional layer to solve the upscale problem. The evaluation of the quality of an algorithm is
also an important problem. The optimization target is often the minimization of the mean squared error (MSE) between
the recovered HR image and the ground truth. Minimizing MSE also maximizes the peak signal-to-noise ratio (PSNR),
which is a common measure used to evaluate and compare SR algorithms. However, the ability of MSE and PSNR to
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capture perceptually relevant differences is very limited, as they are defined based on pixelwise image differences.18 As a
result, the highest PSNR does not necessarily reflect a perceptually good SR result. Ledig et al.4 tried to solve this problem
with generative adversarial network.

2.3 CNN for 3D
Compared with 2D images, 3D shapes are more difficult to be processed by CNNs, mainly due to their irregular connec-
tivity. Nevertheless, some effort was made in the recent years. For 3D object recognition, Su et al.19 represented 3D shapes
by using multiview projections or by converting them to panoramic views and utilizing 2D CNNs. Li et al.20 analyzed a
joint embedding space of 2D images and 3D shapes. For 3D shape synthesis, Wu et al.21 used deep belief networks to gen-
erate voxelized 3D shapes. Girdhar et al.22 combined an encoder for 2D images and a decoder for 3D models to reconstruct
3D shapes from 2D input. Yan et al.23 generated 3D models from 2D images by adding a projection layer from 3D to 2D.
Choy et al.24 proposed a novel recurrent network to map the images of the objects to 3D shapes. Wu et al.25 exploited the
power of the generative adversarial networks (GAN) with a voxel CNN. In addition to voxel representation, Sinha et al.26

proposed to combine SRResNet and geometry images to synthesis 3D models. Li et al.27 and Nash et al.28 proposed to
use neural networks for encoding and synthesizing 3D shapes based on presegmented data. Different parameterization
methods emerged, such as authalic parametrization to a spherical domain29 and global seamless parameterization to a
planar flat torus.30 For animation creation, Chu31 used CNN to synthesize HR smoke by encoding the similarity between
LR and HR fluid patches. Our work tries to enhance LR cloth meshes with HR details using CNN.

3 THE METHOD

3.1 Dual-resolution cloth meshes
A piece of cloth is initially defined by a closed curve in 2D space and is triangulated into a mesh for physical simulation.
To generate training data, we triangulate a cloth patch into two meshes of different resolutions. They are simulated to
create two sequences of frame data. Thus, certain correspondence should be maintained between two meshes, so that in
the simulation, each pair of meshes has identical or similar large-scale folding behavior but differs only in the fine-level
wrinkles. To do so, the initial HR mesh is created by subdividing the LR mesh, with all the vertices of the LR mesh, retain-
ing their positions in the HR counterpart. These vertices will be called feature vertices. This subdivision is achieved by
the adaptive remeshing method in the work of Dunyach et al.32 To create animation sequences, the LR mesh is simulated
first. When simulating the HR mesh, the feature vertices are updated by assuming their positions from the LR mesh, and
they are constraints in updating other vertices according to the dynamics. The TRACKS algorithm33 gives more details on
how to achieve this. Although an elegant averaging scheme is given in that paper, we find that the interpolating scheme
is simple and good enough for our application.

The mesh pairs from the animation sequences are converted into LR/HR image pairs and are fed into the CNN for
training. At the synthesizing stage, an LR image, corresponding to an input LR mesh, is superresolved into an HR image,
which is then converted to an HR mesh. The pipeline of our approach, called mesh SR (MSR), is illustrated in Figure 1.

3.1.1 SR residual networks
With physical simulation, we get a set of LR meshes {M1

l ,M
2
l , … } and a set of HR meshes {M1

h,M
2
h, … }. They are con-

verted into LR images {I1
l , I

2
l , … } and HR images {I1

h, I
2
h, … }, respectively. Each image, before being fed into the training

network, is split into patches. An HR image is split into patches of 96 × 96 each with stride 48. An LR image is split into
patches of 24 × 24 each with stride 12. Given the training data, our goal is to find a mapping function f (x) that minimizes
the loss between the predicted values Is and the ground truth Ih. A common objective function is the MSE of the predicted
and the ground truth images: ls

MSE = ||Ih − Is||2 =
∑

i
∑

𝑗
(Ii,𝑗

h − Ii,𝑗
s )2, where i, j are the indexes of pixels.

The SRResNet has been reported to have excellent performance for image SR,4 and our network basically follows that
structure, as shown in Figure 2. The SRResNet consists of B residual blocks with identical layout. It uses two convolutional
layers with small 3 × 3 kernels and 64 feature maps followed by batch normalization layers and parametric rectified
linear unit (ReLU) as the activation function. The resolution of the input image is increased with two trained subpixel
convolution layers. The subpixel layer reduces computational complexity tremendously. In testing, it takes only 0.0039
s to superresolve an image. The memory efficiency and execution time of SRResNet are both satisfactory for our goal.
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FIGURE 1 Pipeline of our mesh superresolution system. Low-resolution (LR)/high-resolution (HR) mesh pairs are converted into image
pairs and fed into convolutional neural network (CNN) for training. At the synthesizing stage, a LR image, corresponding to an input LR
mesh, is superresolved into an HR image, which is then converted to an HR mesh

FIGURE 2 Architecture of SRResNet4

(a) (b) (c)

FIGURE 3 (a) The ground truth, and the results of SRResNet with (b) 16 residual blocks and (c) three residual blocks. HR = high resolution

More importantly, the quality of the output mesh is quite surprising. When using 16 residual blocks, SRResNet is able
to learn the features of small to midscale wrinkles. Reducing the number of residual blocks to three, the output quality
drops slightly but is still acceptable. The results are shown in Figure 3.

3.1.2 Deeply recursive convolutional network
Before choosing SRResNet, we tried DRCN,5 a once state-of-the-art SR algorithm for photorealistic images. After test
driving, we find the result less satisfactory, and a comparison between SRResNet and DRCN is given in the next section.
DRCN uses bicubic interpolation to upscale LR images to the same size as the target and feed them to the network as input.
The highlight is the deep recursive layer in the inference network and the prevention scheme of exploding/vanishing
gradients. Each training image is split into 61 × 61 patches with stride 31, and 128 patches are used in each mini batch.
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We use 16 recursions, and the learning rate is initialized to be 10−4 and is halved if validation MSE does not decrease for
4 epochs. The training terminates when the learning rate is less than 10−7. The experimental results, however, show that
DRCN is not suitable for our application.

3.2 Mesh-image conversion
Now, we go back and discuss the conversion between meshes and images. It is realized by the technique of geometry
image.3 We let the resolution be 96 × 64 for LR images and 384 × 256 for HR images, as the upscaling factor is 4× for both
SR algorithms. The factor for a pair of meshes is made to be as close as 4×. For example, for the flag model, the LR mesh
has 58 vertices and the HR mesh has 930 vertices, the latter being roughly 16× as many as the former.

Mesh to image. For the initial flat mesh, we sample m × n points uniformly in 2D parameter space. Then, for each
sample point, we find the triangle where it is located and compute its barycentric coordinates. These coordinates are
unchanged even if the mesh deforms; thus, the 3D coordinates of a sample point can be recovered from the three triangle
vertices. The 3D coordinates of sample points, after being normalized to the range of [0,255], can be interpreted as RGB
values of a m × n image I. We find that using integer values for RGB causes precision loss in reconstruction, so floating
point numbers are used instead as input for the CNN. A geometry image, unlike a photorealistic image, is very smooth
and does not convey much high frequency information (see Figure 1).

Image to mesh. Converting a superresolved HR image to a mesh can be done in two different manners. The common
choice is to respect the original HR mesh topology and only restore vertex positions, by bilinearly interpolating the four
nearest sample points (pixels). Another choice is to take advantage of the property of the geometry images and reconstruct
a new connectivity. As the essence of geometry image is to sample surfaces on regular grid, it is straightforward to recon-
struct the surface to quadrilateral meshes of various resolutions. We could span each 2 × 2 quad of grid points (pixels)
using two triangles, by splitting along any of the two diagonals. We could also lower the resolution of the reconstructed
mesh, by spanning each t × t quad, with t > 2.

Nonrectangle shapes. When converting a mesh of nonrectangular shape, parameterization is needed to transform
the mesh to a rectangle before sampling. There are multiple parameterization approaches to choose from. We employed
the as-rigid-as-possible method.34

Image boundary. As each image is split into patches and as each pixel is covered by multiple patches, it is desired
that each pixel has equal significance in the training data. This requires each pixel to be covered by the same number of
patches. Therefore, pixels on or close to the boundary need special attention. We expand the image by padding extra rows
or columns beyond the four boundaries of the image. We find that padding zeros is not a good choice, as it introduces
noises to the image and the resulted mesh. We also tried to mirror the pixels inside the boundary outside, but it still does
not work well. Directly replicating boundary pixels multiple times actually gives the best result.

4 RESULTS

To evaluate the performance of our MSR method, we construct several data sets. We simulate a piece of cloth of rectangular
shape and generate two data sets. The first one is from the simulation of a fluttering flag on the wind. The second is
a collection of frame data from a simulation of multiple scenes. In addition to a mesh of rectangular shape, a mesh of
irregular shape is also used to create the third data set. Both LR and HR meshes are simulated with ARCSim,35 an open
source simulator.

The flag data set. The simulation of the flag mesh generates 1,000 frames of data. From the 1,000 pairs of LR/HR
meshes, we randomly select 800 pairs for training and leave the rest of 200 pairs for testing. As we mentioned before,
images are split into patches for training. In each mini batch, we randomly choose 16 patches. The learning rate is 10−4,
and the procedure is terminated by 300 epoches. We compare our SR results with three other settings: (a) an LR mesh, (b)
a mesh from bicubically interpolated LR image, and (c) a simulation of HR mesh that tracks the LR simulation (tracked;
see Figure 4). We provide quantitative evaluation in Table 1, including image PSNR and mesh vertexwise MSE (VMSE),
which is computed as per-vertex L2 error averaged over all vertices and frames.2 Although bicubic image interpolation has
higher PSNR and lower VMSE values than our MSR method, its visual appearance contradicts these values, due to sharp
folds and lack of wrinkles. This is because geometry images do not have much high frequency information so bicubic
interpolation can easily gain high score without learning the structural features of HR meshes. Data-driven MSR method
performs better in learning the features of HR meshes, so proper wrinkles can be superimposed.
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(a) (b)

(c) (d)

FIGURE 4 Enhancing the flag with wrinkles. (a) LR. (b) Bicubic. (c) SRResNet. (d) HR (ground truth)

TABLE 1 Peak signal-to-noise ratio (PSNR) and vertexwise mean squared error (VMSE) for 4× upscaling
factor for all experiments

data set scale bicubic SRResNet DRCN #frames
factor PSNR/VMSE PSNR/VMSE PSNR/VMSE for test

flag 4× 58.34/0.00058 57.77/0.00068 58.07/0.00058 200
multiscene Scene1 4× 58.31/0.00059 57.70/0.0068 – 200

Scene2 4× 60.72/0.00035 59.97/0.00038 – 200
Scene3 4× 59.69/0.00044 58.70/0.00061 – 200
Scene4 4× 59.59/0.00040 58.38/0.00070 – 1,000

nonrectangle 4× 41.62/0.01700 43.08/0.01700 – 200

Note. SRResNet = SR residual networks; DRCN = deeply recursive convolutional network.

(a) (b) (c) (d)

FIGURE 5 Four simulation scenes. The training data is from the first three scenes. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4

The data set of multiple scenes. To evaluate the generalization of our method, we augment the data set with simula-
tion data of multiple scenes. There are four scenes: the cloth fluttering as a flag (Scene1),the cloth swinging with the right
corner pinned (Scene2), the cloth interacting with a ball (Scene3), and the cloth swinging with the left corner pinned
(Scene4; see Figure 5). Each scene simulation produces 1,000 pairs of frames. For the training data, we randomly select
800 pairs from each of the first three scenes. The other 200 pairs of each scene, together with all pairs of Scene4, are used
as testing data. We initialize the training with the trained model from the flag data set and fine-tune it with a learning
rate set to 10−5. In Figures 6 and 7, we show two superresolved meshes; one is from Scene3 and the other from Scene4.

The data set of nonrectangular mesh. The ultimate goal of our MSR algorithm is to be applied to garment meshes,
which could be of any shape. An image, by nature, is a 2D array and is usually perceived as a rectangle. We would like to
test the effectiveness of our method for meshes of an irregular shape. We chop off two corners of the flag mesh, making it
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(a) (b)

(c) (d)

FIGURE 6 A frame from Scene3, which is one of the three scenes in the training data. (a) LR. (b) Bicubic. (c) SRResNet. (d) HR

(a) (b)

(c) (d)

FIGURE 7 A frame from Scene4, which is NOT one of the three scenes in the training data. (a) LR. (b) Bicubic. (c) SRResNet. (d) HR

a nonrectangle. The as-rigid-as-possible method34 is employed to parameterize the mesh onto a rectangle domain before
sampling. Vertices on the mesh boundary are mapped to the boundary of the rectangle, with the user designating four
vertices to be the corners of the rectangle. Again, we use 800 images for training and 200 images for testing. Parameteriza-
tion distorts triangles so that the sampling is not uniform. Figure 8 shows the results of SRResNet, along with LR and HR
simulation results. Our MSR approach superimposes folds and wrinkles onto the LR mesh and creates a natural-looking
result.

SRResNet versus DRCN. We also have tried DRCN on the flag data set and done a comparison against SRResNet.
We find that the superresolved meshes from DRCN are not as good as that of SRResNet. Existing works that use DRCN
for photorealistic images usually evaluate their performances in terms of quantitative measures, such as MSE or PSNR.
Although DRCN has good MSE and PSNR scores, it does not necessarily produce high-quality images. In addition to using
the bicubic interpolation as Kim et al. did,5 we further try two other upscale filters. The first is dense sampling of an LR
mesh, so that the sampled image has the same resolution as the HR image. The second is sampling of a much smoother
mesh, resulted from the loop subdivision36 of the LR mesh. This is to make the input very smooth so that there is enough
space for accepting wrinkles. However, we are a bit disappointed that in both cases, the SR mesh is almost identical to
the input, and few details have been learned and superimposed. The reason, we believe, is that the upscaling for DRCN is
outside the network. Once the upscaled input leads to a small initial value of loss function, the training terminates very
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(a) (b)

(c) (d)

FIGURE 8 Super-resolving a mesh of irregular shape. (a) LR (rest state). (b) LR. (c) SRResNet. (d) HR

(a) (b)

(c) (d)

FIGURE 9 Flags with increased mesh resolutions: 200 vertices for the LR mesh and 3,215 vertices for the HR and SR meshes. (a) LR. (b)
Bicubic. (c) SRResNet. (d) HR

quickly, and no much wrinkle information is learned. The SRResNet, however, does the upscaling inside the network,
and the wrinkle information is being employed.

Running time. Increasing the resolutions of LR and HR flag meshes to 200 and 3,215 vertices, respectively, we create a
new set of data through simulation. The resolutions of the LR and HR geometry images remain unchanged. We fine-tune
the previously trained flag model with the new data to get a new synthesizer. The superresolved results are shown in
Figure 9. The training and image synthesizing of all examples run on a NVIDIA Tesla P4 GPU with Pytorch 0.2.0. The
running time for coarse simulation, tracked simulation, and mesh-image conversion are collected on a 2.50GHz Core 4
Intel processor. The timing for two sets of flag examples is shown in Table 2. Using SRResNet, our algorithm is 24× faster
than tracked simulation. In the testing, superresolving an image using SRResNet takes 0.0039 s/frame, which is 38 times
faster than using DRCN (0.145 s/frame).
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TABLE 2 Statistics and timing (seconds per frame) of two sets of flag examples

data set #verts #verts tracked coarse mesh↔image synthesizing (GPU)
LR HR sim. sim. conversion SRResNet DRCN

flag 58 930 0.48 0.0152 0.00127 0.0039 0.145
flag2 200 3,215 1.2 0.0616 0.00118 0.0040 –

Note. LR = low resolution; HR = high resolution; SRResNet = SR residual network; DRCN = deeply recursive convolutional
network.

5 LIMITATIONS AND FUTURE WORK

So far, our research has not reached the state-of-the-art simulation approaches such as that in the work of Wang.37 There
are a number of issues to be explored in the future. First, for a garment model, which is an assembly of multiple pieces, it is
tricky how to parameterize and sample patches into geometry images that guarantee continuity at the seam line. Second,
the scale factor of the state-of-the-art image SR is only 4×. Although this does not directly translate to the scale factor for
meshes, networks that have a higher scale factor are definitely welcome. Third, when building a training data set, the full
simulation at HR needs to track the LR simulation. This has a side effect that the large-scale behavior of the HR mesh is
prescribed by the LR mesh. A new tracking mechanism that gives more degrees of freedom is to be discovered. Fourth,
collisions could happen to superresolved meshes and should be properly solved. This is an important issue but has not
been addressed in this article. Fifth, a geometry image is just a sampling of a polygonal surface, and certain information
is missing during the sampling, so additional information including normal and curvature may be considered. Moreover,
other approaches for transforming a polygonal mesh into a regular representation (e.g., Laplacian matrix) are worth trying.

6 CONCLUSION

We have presented a CNN-based MSR method for generating HR cloth meshes. Experiments demonstrate the potential of
our method. Our approach uses CNN to synthesize HR triangle meshes with a large upscaling factor (4×). Once trained,
the speed of the synthesizing meets the demand of real-time animation for moderate mesh resolutions.
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