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Abstract—Accurate prediction of crop development stages 
(phenolgoy) plays an important role in crop production 
management. Many biochemical actions of plants change with 
their development stage, therefore, fertilizing the plants at plants' 
need can increase the fertilizer use efficiency and decrease the 
waste. For this purpose, this paper presents  a prediction model 
of crop phenology, describing development stages of crops as a 
function of the most important environmental factors, 
temperature and photoperiod. Machine learning is used to 
calibrate the crop phenology according to the predicted 
temperature one month later. The results indicated that our 
method can improve the prediction precision. The resulting 
model will be incorporated in a crop production management 
system platform developed for agriculture. 

Keywords—Crop phenology model; Prediction; Machine 
learning; Agriculture production management; PDT 

I.  INTRODUCTION 
Agriculture covers a wide range of regions, involving a 

wide range of fields and influencing factors, complex data 
collection and difficult decision-making management. 
Therefore, precision agricultural production management is a 
challenging and long-term task. Precision agriculture 
comprises a set of technologies that combines sensors, 
information systems, enhanced machinery, and informed 
management to optimize production by accounting for 
variability and uncertainties within agricultural systems [1]. 

Precision management [2] has been proposed for 
agriculture in order to achieve benefits in profitability, 
productivity, sustainability, crop quality, food safety, 
environmental protection, on-farm quality of life, and rural 
economic development. The management of complex 
agricultural production system needs to integrate multi-domain 
knowledge, including eco-physiology, soil science, climatology, 
computer science, automation, etc.  

In recent years, unreasonable fertilizer application leads to 
low nutrient utilization, waste of resources, increased costs of 
agricultural inputs and quality reduction in agricultural product, 

also cause the deterioration of soil properties, eco-
environmental pollution and other issues [3, 4]. 

Timing of many management practices like weed and 
insect control, applications of fertilizer are usually determined 
by crop development stages (crop phenology). The stages and 
the duration of the stages of crops are determined by genetic 
factors, soil fertility and cultural practices [5]. In addition, it is 
also influenced by the environmental conditions of cultivation 
area (such as temperature and photoperiod). As autumn and 
winter crops grow slowly with a long growth period due to low 
temperature in winter; spring and summer sowing crops grow 
fast with a short growth period due to high temperatures. 
Moreover, the same species planted in different latitudes has 
different growth periods due to the differences of temperature 
and light. Phonological development of crops is an important 
aspect of yield formation process [6]. Hence, its better 
understanding requires quantitative insights in the phonological 
development of crop in relation to environmental factors. 
Furthermore, the understanding of crop phenology and its 
influencing factors will be helpful for cultivation managements 
(fertilization and irrigation) and cultivar selection.  

Several numbering systems or scales have been developed 
for naming and describing crop stages [7, 8]. As these scales 
became more widely used and degree day-based growth stage 
(phenology) models were developed, it was apparent that 
combining crop staging information could forecast 
management practices [9]. Plant development depends on 
temperature. Plants require a specific amount of heat to 
develop from one point in their lifecycle to another. People 
often use a calendar to predict plant development for 
management decisions [10, 11]. However, calendar days can be 
misleading, especially for early crop growth stages. Research 
has shown that measuring the heat accumulated over time 
provides a more accurate physiological estimate than counting 
calendar days [9]. Each developmental stage of an organism 
has its own total heat requirement. Development can be 
estimated by accumulating degree days between the high and 
low temperature thresholds throughout the season [9]. The 
mothods mentioned above can well compute the developmental 
stages for some crops under some circumstances, but they are 



based on the history environmental data, which will be not 
accurate to be used to other sites and future situation. As the 
developmental stages vary with the temperature and 
photoperiod, the key issue of prediction for phenology is how 
to compute the phenological development according to the 
real-time environmental data. In recent years, many studies 
have been done to predict the indoor temperature using 
statistical analysis [12, 13],  CFD model [14] or neural network 
[15, 16]. 

The objective of this study described in this paper was to 
develop a prediction model of crop phenology based on the 
prediction of greenhouse temperature with neural network, 
describing development stages of crops as a function of the 
most important environmental factors including temperature 
and photoperiod. The development stages and the three critical 
temperatures of tomato are used as an example. The resulting 
model will be incorporated in a crop production management 
system platform developed for agriculture. 

II. MATERIALS AND METHODS 

A. Existed crop phenology models 
Accurate simulation of plant development is an important 

component in crop simulation model since many biochemical 
actions change with plant development stage [17]. Generally, 
crop phenology can be computed based on three methods: 
growing degree-day (GDD), physiological development time 
(PDT) and exponential sine equation. The GDD is the most 
traditional method to compute the development stages of crops, 
whose advantage is simple equation with the temperature as the 
variable of model input. Mohammad et al. used the GDD 
method to compute the planting dates for vegetables [18]. Perry 
et al. predicted the harvest date of cucumber using a heat unit 
model [19]. However, the GDD method does not consider the 
effect of day length on development rate. Besides, the GDD 
method assumes that the development rate and temperature 
follow the same linear relationship between the upper and 
lower temperature, ignoring the effect of high temperature for 
the development. Thus, the prediction error is big when the 
model is used to the other field and cultivars [7]. The 
physiological development time (PDT) is the duration time 
needed for a certain developmental stage under the optimal 
temperature and light conditions. For one genotype, the PDT 
keeps constant for some specific developmental stage [20]. 
Therefore, the PDT was used to simulate growth and 
development processes of crops and it unified the physiological 
time scale for different genotype, such as the simulations of 
development stages in tomato development [21] and cucumber 
[7]. Exponential sine equation is used to compute the flowering 
period and the effect of climate change on the flowering period 
[22]. Li et al. simulated the phenology of cucumber [23].  

B. Model Description 
1) Development stages of crops 

The development of tomato can be divided into five stages: 
germination, seedling, flowering, fruit setting and harvest 
stages (Table 1). During the experiment, the development 
situation will be observed and the beginning date of each 
development stage will be recorded. 

 

TABLE I.  THE MORPHOLOGIC STANDARD OF TOMATO AT DIFFERENT 
DEVELOPMENT STAGES 

Development stages The standard of tomato shape 
Germination From fifty percent seed germination to first leaf 

appearance 
Seedling stage From first leaf appearance to first flower 

flowering 
Flowering stage From first flowering to first fruit setting 
Fruit setting stage From first fruit setting to first fruit harvest 
Harvest stage From first fruit harvest to ending date 

 
2) Modelling of crop phenolgoy (PDT) 
Crop development is influenced by the genetic factors and 

the environmental conditions (temperature and photoperiod). 
For the specific species, the temperature and photoperiod are 
the main influencing factors. The PDT is the needed time of 
crop growth under the optimal temperature and photoperiod 
transmitted from that under the real conditions.  The ratio of 
one-day growth between the optimal and real light condition is 
defined as the relative photoperiod effectiveness (RPE). The 
ratio of one-day growth between the suitable and real 
temperature and light condition is defined as the relative 
physiological development effectiveness (RPDE). The PDT 
can be computed as the sum of RPDE for certain 
developmental stage. The PDT per day can be computed 
according to three critical points of temperature for crop 
development, critical photoperiod and optimum photoperiod. 
The ratio of one-day growth between the optimum and real 
temperature condition is defined as the relative thermal 
effectiveness (RTE), which is described in (1):  

RTE =
۔ۖۖەۖۖ
ۓ 0 (T ≤ Tୠ)T − TୠT୭ୠ − Tୠ (Tୠ < ܶ < T୭ୠ)1T୫ − TT୫ − T୭୳0

(T୭ୠ ≤ T ≤ T୭୳)(T୭୳ ≤ T ≤ T୫)T > T୫
 (1) 

Where Tob is the lower optimum temperature; Tou is the 
upper optimum temperature limit; Tb is the minimum 
temperature; Tm is the maximum temperature; T is the daily 
temperature defined as the average day temperature of 24 
hours.  

The three critical points of temperature for tomato are given 
in table 2 referred to [21]. The RPE can be calculated 
according to the day length, the critical and optimum day 
lengths. The RPE can be described using (2).  

RPE = ൞ 0 DL ≥ DLcDLc − DLDLc − DLo DLo < ܮܦ < 1ܿܮܦ DL ≤ DLo  (2) 

Where DLc and DLo are the critical and optimum day 
length of development. Generally, the values of DLo and DLc 
can be obtained by experience [24].  
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