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Abstract
Data-inefficiency greatly hinders sketch-related applica-

tions and studies. Transferring knowledge from the real-
image domain to the sketch domain may eliminate this ob-
stacle. However, a huge domain gap exists between images
and sketches. To reduce the domain shift between the im-
age and the sketch, we propose an attribute-assisted do-
main transfer method. By separating the shared geomet-
ric features from the private semantic features of the real
images, the proposed attribute-assisted networks (ASN) can
learn more effective domain-invariant features for unsuper-
vised domain adaptation. Extensive results on the Image-
to-Sketch task demonstrate the effectiveness of the proposed
method.

1. Introduction

With the popularity of tablets, e.g. iPad and Microsoft
Surface, sketch-related applications become unprecedented
popular nowadays. Many sketch-related tasks, such as
sketch retrieval [5], sketch detection [29] and sketch recog-
nition [2], are also extensively studied. However, a key
weakness of these approaches is their data-inefficiency.
Collecting, annotating, and crating such datasets is an ex-
tremely expensive and time-consuming process. While only
a few datasets and approaches have been proposed for the
sketch recognition or retrieval, there are many large scale
labeled datasets of real images, such as ImageNet [7], Tiny-
Images [31] and SUN [35]. To eliminate obstacles bring
by data-inefficiency, it is not uncommon to rely on transfer-
ring knowledge from the real life images(source domain) to
sketches (target domain).

To transfer knowledge from the real life images, the prin-
ciple problem is to reduce the domain gap exists between
the sketch and the real image. The previous work attempts
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Figure 1. We propose an attribute-assisted
domain adaptation method that utilizes the
attribute to separate private features which
sketches do not have.

to either find a feature mapping from the source domain
to the target [30], or find representations that are shared
between the two domains [13, 32, 20]. However, in the
image-to-sketch transfer, it is extremely difficult to obtain
the mapping or shared representations. Because the domain
shift between sketches and images is much larger than the
domain difference in conventional domain adaptation task,
such as the popularly used Office dataset [27] which con-
tains images from Amazon.com and images from a web-
cam. The sketches are essentially different with the real life
images in many aspects. For example, the information of
sketches is mostly represented by geometric variations, in
contrast, however, the things in real images are very likely
to be with rich feature.

In this paper, we propose a novel architecture, which we
call Attribute-assisted Networks (ASN), to learn domain-
invariant representations. Our model learns a private sub-
space for the real image assisted by the attribute constraint,
which captures domain specific properties, such as “color”
and “fur” of animals. A shared subspace is also learned
through the use of domain constraint to capture representa-
tions shared by the images and sketches, such as edge and



Figure 2. Architecture of the proposed Attribute-assisted Networks.

low level geometric. By separating the shared features from
the private features of the real images, our model is able to
separate the information that is unique to real images, and
produce representations that are easier for transferring to the
sketch domain. Figure 1 shows the key idea of the proposed
attribute-assisted domain adaptation.

The main contributions of this paper are highlighted as
follows. (1) We propose an attribute-assisted domain adap-
tation framework for the image-to-sketch transformation
task. (2) We propose attribute-assisted networks (ASN) to
reduce the huge domain shift between images and sketches
by separating the shared features from the private features
of the real image. (3) Extensive experiments demonstrate
the effectiveness of the proposed ASN.

2 Related Work

In this section, we briefly review the existing work most
related to our work, including domain adaptation and at-
tributes.

2.1 Domain Adaptation

Domain adaptation is an open theoretical and practical
problem which aims to transfer the knowledge acquired
from labeled datasets to unlabeled datasets. Solutions to
domain adaptation problems can be mainly categorized into
three types. (1) Instance-based methods reweight or sub-
sample the source samples to match the distribution of
the target domain, thus training on the reweighted source
samples guarantees classifiers with transferability [16, 6].
(2) Parameter-based methods transfer knowledge through

shared or regularized parameters of source and target do-
main learners, or by combining multiple reweighted source
learners to form an improved target learner [9, 25]. (3) As
deep neural networks become the state of the art on a variety
of visual tasks. The last but the most popular and effective
methods are feature-based methods which attempt to either
find a mapping from representations of the source domain
to those of the target, or find representations that are shared
between the two domains.

Among feature-based methods, minimizing the maxi-
mum mean discrepancy (MMD) [14] metric is effective to
minimize the divergence of two distributions. The MMD
metric is computed between features extracted from sets of
samples from each domain. The Deep Domain Confusion
Network [33] has an MMD loss at one layer in the CNN ar-
chitecture. Deep adaptation network (DAN) [20] was pro-
posed to enhance the feature transferability by minimizing
multi-kernel MMD in several task-specific layers. Another
class of feature-based methods uses an adversarial objec-
tive to reduce domain discrepancy. As suggest in [3, 4],
a good cross-domain representation contains no discrimi-
native information about the origin(i.e. domain) of the in-
put. Domain-Adversarial Neural Networks (DANN) [1, 13]
exhibit an architecture whose first few feature extraction
layers are shared by two classifiers trained simultaneously.
In order to back-propagate the gradients computed from
the domain classifier, DANN employs a gradient reversal
layer (GRL). In the proposed ASN, we adopt the MMD and
DANN as two alternatives of the domain constraint. Differ-
ent from the previous domain adaptation methods, we use
attributes to improve the domain-invariant feature learning.



2.2 Attributes

Attributes have been widely exploited for developing ef-
fective representations in a variety of computer vision ap-
plications. Attribute learning allows prediction of color or
texture types [11], and can also help obtain a mid-level
cue for object or face recognition [18, 34, 19]. Several
early approaches attempted to detect unseen object classes
by describing objects using their attributes in [10, 19].
Some other approaches discovered visual relationships be-
tween the object categories by using the learned visual at-
tributes [26]. Recently, semantically meaningful attributes
were selected in a recommender system for fine-grained
recognition [8]. Different from the previous methods, we
utilize task-specific attributes to separate shared features
from private features of the real images.

3 Methodology

In this section, we firstly introduce the overall formu-
lation of the proposed attribute-assisted domain adapta-
tion. Then, we illustrate the intra-domain constraint and
inter-domain constraint which are adopted to learn domain-
invariant features. Finally, we illustrate the learning details
of the proposed attribute-assisted networks.

3.1 Problem Formulation

Given a labeled source domain Ds = {(Xs
i , y

s
i , a

s
i )}

ns
i=1

and an unlabeled target domain Dt = {Xt
i}

nt
i=1, where Xs

i

and Xt
i represent the image and sketch data respectively, ysi

represents the class label, and asi represents the attribute la-
bel. The source domain and target domain are sampled from
different probability distributions P and Q respectively, and
P 6= Q. The challenge of unsupervised domain adaptation
arises in that the target domain has no labeled data, while
the source classifier trained on source domain Ds cannot be
directly applied to the target domain Dt due to the distribu-
tion discrepancy P(Xs, y) 6= Q(Xt, y) [22]. Our goal is to
find a deep network architecture that separate the private
features and find representations that are shared between
the two domains and enables the knowledge learned on the
source domain to be applied to the target domain classifica-
tion task.

Given an image Xs in the source domain, we assume
that the shared feature hsc and private feature hsp can be com-
puted by hsc = fc(X

s) and hsp = fp(X
s) respectively. For

a sketch Xt in the target domain, we assume that the shared
feature htc can also computed by htc = fc(X

t). The func-
tions fc and fp are implemented by two neural networks as
shown in Figure 2. We employ DenseNet121 [15] as our
backbone network. And the dense blocks are shown in Fig-
ure 3. We decide to adopt DenseNet in our network because
it outperforms ResNet on the ImageNet dataset and we be-
lieve this structure could capture more structural informa-

Figure 3. A simple demonstration of dense
blocks. Each Conv represents the sequence
of BatchNorm-ReLU-Conv.

tion than other existing network architectures. For the im-
age Xs, the class prediction ŷs and attribute prediction âs

are computed by ŷs = MLPy(h
s
c) and âs = MLPa(h

s
p)

respectively. Here, MLPy and MLPa are two multi-layer
perceptions.

The loss function of the proposed attribute-assisted do-
main adaptation is defined as:

L =

ns∑
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ns∑
i

Lattr(a
s
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c)

(1)

where Ltask and Lattr and Ldifference are three intra-
domain constraints which will illustrated in Section 3.2.
The Lsimilarity is an inter-domain constraint which will
be illustrated in Section 3.3. The Hs

c consists of shared
features of all source samples. The Hs

p consists of private
features of all source samples. The Ht

c consists of shared
features of all target samples. Specifically, each row of Hs

c

is the transpose of a feature vector hsc. The Hs
p and Ht

c are
created from hsp and htc in the same manner. The α, β, γ
are weights that control the balance of the loss terms. With
the defined loss L, the proposed attribute-assisted networks
can be trained to learn shared features of two domains. In
the test phase, we apply the trained function fc to extract
features of the target domain Dt and use MLPy for classi-
fication.

3.2 Intra-domain Constraint

The task loss Ltask constraints the model to predict cor-
rect class labels. Because the target domain is unlabeled,
the loss is applied only to the source domain. This loss
is adopted to minimize the negative log-likelihood of the
ground truth class for each source domain sample:

Ltask(y
s
i , ŷ

s
i ) = −ysi log ŷsi (2)

where ysi is the one-hot vector of the groundtruth class label
and ŷsi is the prediction.

The attribute loss Lattr constraints the model to predict
correct attribute labels. We use a sigmoid binomial cross-
entropy:

Lattr(a
s
i , â

s
i ) = −{asi log âsi + (1− asi ) log(1− âsi )} (3)



Figure 4. Examples from the Image-to-Sketch
dataset.

where asi is the groundtruth attribute label and âsi is the
prediction. This loss allows the model to learn the private
feature hsp, which is highly related to the attributes.

The difference loss Ldifference is also applied to the
source domain. It encourages the shared feature hsc and pri-
vate hsp of the source samples to be different. Let Hs

c and
Hs

p be the matrices whose row are hsc and hsp. The dif-
ference loss constraints orthogonality between the private
features and shared features:

Ldifference = ‖Hs
c
>Hs

p‖
2

F
(4)

where‖ · ‖2F is the squared Frobenius norm.

3.3 Inter-domain Constraint

The Lsimilarity is deployed to encourages the shared
features hsc and htc from different domains to be as similar
as possible. We consider two alternatives Lsimilarity1 and
Lsimilarity2 which are designed based on maximum mean
discrepancy (MMD) and domain adversarial similarity re-
spectively.

(1) MMD loss. This is a kernel-based distance function
between pairs of samples [14]. The Lsimilarity1 is defined
as:
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where hsci and htci represents the shared features of the ith

source sample and ith target sample respectively. The k
represents a kernel function. In our work, we use the stan-
dard Gaussian kernel function.

(2) Domain adversarial loss. This loss is used to train a
model to produce representations such that a classifier can-
not reliably predict the domain. Maximizing such “confu-
sion” is achieved via a gradient reversal layer (GRL) and
a domain classifier trained to predict the domain [12, 13].

The GRL has the same output as the identity function, but
reverses the gradient direction. Formally, for some func-
tion f(u), the GRL is defined as Q(f(u)) = f(u) with a
gradient ∂

∂uQ(f(u)) = − ∂
∂uf(u).

In our work, we define domain classifier as Z(Q(hc))→
d̂ which maps the shared feature hc of a input sample in
two domains to a prediction of the domain label d̂ ∈ {0, 1}.
The hc denotes either hsc or htc. Learning with a GRL is ad-
versarial in that Z is optimized to discriminate hidden rep-
resentations from the source or target domains, while the
reversal of the gradient results in the model fc learning rep-
resentation hc from which domain classification accuracy
is reduced. Essentially, we maximize the binomial cross-
entropy for the domain prediction task with respect to Z,
while minimizing it with respect to fc:

Lsimilarity2(H
s
c,H

t
c) =

−
ns+nt∑

i

{di log d̂i + (1− di) log(1− d̂i)}
(6)

where di ∈ {0, 1} is the ground truth domain label for
sample i.

4 Experiments

In this section, we firstly introduce the dataset and im-
plementation details. Then we evaluate the performance of
the proposed method through quantitative results and qual-
itative analyses.

4.1 Datasets
To demonstrate the effectiveness of the proposed model,

we extend the Sketchy [28] dataset with attributes. Sketchy
dataset consists of 12,500 images and 75,471 sketches
(roughly 5 sketches per photo), spanning 125 categories
of common objects like horse, apple, axe, guitar etc. And
the attributes were collected from several existing attribute
based datasets including the database of animals with at-
tributes (AWA [19]), attribute databases for scene under-
standing (OSR [23], SUN [24]). The Sketchy and those at-
tribute datasets shares 21 common categories and we build
the transfer task: Image-to-Sketch with these 21 common
categories. The held out test part consists of 1,100 images
and 5,500 sketches, still spanning the same 21 categories.
Figure 4 shows examples of some classes with the values of
exemplary attributes assigned to these classes.

4.2 Implementation
We use the deep learning library Pytorch to implement

the proposed attribute-assisted networks. The network pa-
rameters are initialized according to the pre-trained model
on ImageNet. The optimizer is Adam [17] with an initial
learning rate of 4 × 10−3, weight decay of 1 × 10−4. As
learning rate annealing strategy could self adjust the learn-
ing during the optimization, which could help boost the



Method Repeat 1 Repeat 2 Repeat 3 Average
Source-only 0.1196 0.1090 0.1151 0.1146
DANN [13] 0.1568 0.1850 0.1523 0.1647
MMD [20] 0.1657 0.1329 0.1331 0.1439

ASN(MMD) 0.2100 0.1719 0.1950 0.1923
ASN(DANN) 0.2571 0.2055 0.2650 0.2425

Table 1. Accuracy results

performance of networks, we anneal the learning rate by
a factor of 0.8 every five epochs. In each batch, we ran-
domly select 64 samples from each domain. Input images
and sketches are mean-centered and re-scaled to [0, 1] and
resized to 227 × 227 uniformly with random-cropped. In
order to avoid distractions for the main classification task
during the early training procedure, we set α = 0.3, β = 0
and γ = 0.3 before 10, 000 steps of training. Then we acti-
vate additional domain adaptation losses by setting α = 0.3,
β = 0.3 and γ = 0.3. We train all models for 60,000 it-
erations. We have tried various number of iterations and
experimental results show that the accuracy always saturate
before 60,000 iterations.

4.3 Evaluation

We compare the proposed ASN model with several base-
lines. Two variants of our model are also compared to ex-
plore the impact of Lsimilarity1 and Lsimilarity2. Source-
only is trained on the source domain without any domain
adaptation, which we consider as an empirical lower bound.
For the DANN, we applied the Gradient Reversal Layer
(GRL) and then a domain classifier with one hidden layer
of 100 nodes. For the MMD, we follow the suggestions
in [20] and use multiple Gaussian kernels {ku}3u=1 by vary-
ing bandwidth γu between 2−8 and 28 with a multiplicative
step-size of 21/2. For our method ASN( MMD), The Ltask

andLattr, Ldifference andLsimilarity1 are used to train the
proposed attribute-assisted networks. The Lsimilarity1 is a
single MMD loss. And we found applying MMD loss on
more than one layers did not show any significant improve-
ment for our experiments and architectures. And for our
method ASN(DANN), The Ltask and Lattr, Ldifference

and Lsimilarity2 are used to train the proposed ASN.

4.3.1 Quantitative Result

The challenge of domain transfer from real-images to
sketches is that the sketches do not have any private features
of the real images. Table 1 shows the detailed comparison
results of all methods we experimented. As we can see, the
proposed ASN model with DANN outperforms all the other
methods. With the extra information attribute, our model
separates the private features of the images, and retains the
shared features of two domains. Compared with the con-
ventional DANN and MMD methods, the proposed ASN is
able to improve the performance with a large margin. We
find that the DANN [13] outperforms MMD. This is consis-

Method Classification Accuracy
All terms 0.2650

Without attribute 0.2280

Table 2. Effect of the attribute-related con-
straints

tent with our experiment where ASN (DANN) outperforms
ASN (MMD).

In order to examine the effect of attribute-related con-
straints Lattr and Ldifference, we remove these two con-
straints from our best model ASN (DANN) by setting α = 0
and γ = 0. As shown in Table 2, the accuracy of the pro-
posed ASN without attribute-related constraints decrease
about 4%.

4.3.2 Qualitative Analysis

A popular method to visualize high-dimensional data in
2D is t-SNE [21]. We are interested in the distribution of
embeddings for target domain, when the models are only
learned from source domain. Figure 5 shows such visual-
izations. In these figures, different color points represent
different categories, and same color points should cluster
well to present good performance.

As shown in Figure 5(a), the model trained only on
the source domain without any domain adaptation presents
worse performance, and we can see that the feature points
are really confused. All domain adaptation methods, MMD,
DANN and the proposed ASN(DANN) can learn discrimi-
native feature representations to some extend. We could
observe that DANN and our method have good ability to
discriminate the clusters. And our method has nicely clus-
tered features with learned shared representations.

(a) source-only (b) MMD

(c) DANN (d) ASN(DANN)

Figure 5. Feature visualization of three base-
lines and the proposed ASN (DANN)



5 Conclusions
In this paper, we proposed an attribute-assisted net-

work to learn domain-invariant representations for image-
to-sketch domain adaptation. By separating the private fea-
tures of the real images, the proposed ASN captured rep-
resentations shared by images and sketches. The proposed
ASN performed well on the Image-to-Sketch domain adap-
tation. In future work, we will explore more variants of the
network architecture and apply our method on other domain
adaptation tasks.
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