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Abstract. Motivated by the fact that humans can grasp semantic-
invariant features shared by the same category while attention-based
models focus mainly on discriminative features of each object, we pro-
pose a scalable paired adversarial learning (PAL) method for image-to-
markup generation. PAL can incorporate the prior knowledge of standard
templates to guide the attention-based model for discovering semantic-
invariant features when the model pays attention to regions of interest.
Furthermore, we also extend the convolutional attention mechanism to
speed up the image-to-markup parsing process while achieving compet-
itive performance compared with recurrent attention models. We evalu-
ate the proposed method in the scenario of handwritten-image-to-LaTeX
generation, i.e., converting handwritten mathematical expressions to
LaTeX. Experimental results show that our method can significantly
improve the generalization performance over standard attention-based
encoder-decoder models.

Keywords: Paired adversarial learning · Semantic-invariant features
Convolutional attention · Handwritten-image-to-LaTeX generation

1 Introduction

The image-to-markup problem has attracted interest of researchers from 1960s
[2]. The main target of the research is recognition for the printed/handwritten
mathematical expressions (MEs). Different from typical sequence-to-sequence
tasks such as machine translation [4] and speech recognition [8], image-to-markup
generation converts the two-dimensional (2D) images into sequences of structural
presentational languages. More specifically, it has to scan the two dimensional
grids to generate markup of the symbols and the implicit spatial operators, such
as subscript and fractions. Image-to-markup generation is also different from
other image-to-sequence tasks such as image captioning [7,24] and text string
c© Springer Nature Switzerland AG 2019
M. Berlingerio et al. (Eds.): ECML PKDD 2018, LNAI 11051, pp. 1–17, 2019.
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2 J.-W. Wu et al.

Fig. 1. MEs written by different people (top) and their standard printed template
(center). These images have the same ground-truth markup (bottom). The red cells
indicate the attention at same symbol a. Same symbols might be written in very dif-
ferent styles while share invariant features that represent the same semantic meaning.
(Color figure online)

recognition in optical character recognition [30], in that input images in image-to-
markup problem contain much more structural information and spatial relations
than general images in computer vision.

Traditional approaches for the image-to-markup problem use handcrafted
grammars to handle symbol segmentation, symbol recognition and structural
analysis. Although grammar-driven approaches [1,3,23,26] can achieve high per-
formance in practice, they require a large amount of manual work to develop
grammatical rules. Furthermore, grammar-driven structural analysis is also
highly computationally demanding.

Recently, methods based on deep neural networks have been proposed for
image-to-markup generation and achieved great success [10,11,20,28,29]. For
example, the model WYGIWYS extended the attention-based encoder-decoder
architecture to image-to-markupproblem [11]. It encodes printedMEs imageswith
a multi-layer CNN and a bidirectional LSTM and employs a LSTM as the recurrent
attention based decoder to generate the target LaTeX format markup. To speedup
the method, authors of [10] improved the original WYGIWYS with coarse-to-
fine attention and performed experiments on synthetic handwritten MEs. These
studies show the data-driven attention-based models can be as effective as the
grammar-based approaches while exploiting no prior knowledge of the language.

For the image-to-markup problem, it is especially important to ensure the
translation of each local region of the input image. Motivated by this observa-
tion, the model WAP [29] records the history of attention at all local regions
for improving the coverage of translation. An improved version of WAP uses
deep gated recurrent unit (GRU) to encode the online trajectory information of
handwritten MEs [28], and has achieved the state-of-the-art performance using
an ensemble of five models.

Despite the progresses achieved so far, handwritten-image-to-markup genera-
tion is still a very challenging task due to the highly variable handwriting styles
compared with printed images, see Fig. 1. On the other hand, well-annotated
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Image-to-Markup Generation via Paired Adversarial Learning 3

handwritten MEs are rather scarce. For example, the currently largest public
database of handwritten mathematical expression recognition, the Competition
on Recognition of Online Handwritten Mathematical Expressions (CROHME)
database, contains only 8, 836 MEs. In order to alleviate the contradiction
between the limited training data and the great writing-style variation, it is
common to augment the training dataset by distorting the input images [20].

To overcome the scarcity of annotated training data in handwritten-image-to-
markup generation, we propose an attention-based model with paired adversarial
learning for learning semantic-invariant features. The main contributions of this
paper are as follows: (1) we present a scalable paired adversarial learning (PAL)
method incorporating the prior knowledge of standard templates to guide the
attention-based model to learn intrinsic semantic-invariant features; (2) we use
a fully convolutional attention based decoder to speed up the image-to-markup
decoding without losing accuracy; (3) we introduce a novel multi-directional
transition layer that can be easily extended to other deep convolutional networks
for accessing 2D contextual information.

2 Background

Before describing our proposed method, we briefly review the generative adver-
sarial network (GAN) [14] in Sect. 2.1 and the convolutional attention (Conv-
Attention) model [13] proposed for sequence-to-sequence learning in Sect. 2.2.

2.1 Generative Adversarial Network

GAN is a well-known adversarial learning method originally presented for gen-
erative learning by Goodfellow et al. [14]. It generally consists of a generator G
and a discriminator D, which are trained with conflicting objectives:

min
G

max
D

V (G,D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

where x denotes the target real sample, z is the input noise and D(x) is the
probability that the sample is real. G tries to forge real samples to confuse D
while D tries to distinguish fake samples from real ones. Adversarial learning
method does force both G and D to improve and has been proven effective in
producing highly realistic samples [6,12,25].

Recently, the idea of adversarial learning in GAN has been applied to
the image-to-image translation task and demonstrates very encouraging results
[18,31]. It is interesting to observe that D successfully guides G to learn the
style information from the two domains and realize style transfer from the source
domain to the target domain. Another work related to our proposal is the domain
adaptation with GAN [5], in which G is guided by D to find a domain-invariant
representation to represent two domains with different distributions. Inspired
by these works, we design an attention-based model to grasp semantic-invariant
features from symbols with different writing-styles under the adversarial learning
framework.
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4 J.-W. Wu et al.

2.2 Convolutional Attention

Though recurrent attention performs well in dealing with sequential problems,
it is still time consuming due to its sequential structure. In this section, we
briefly introduce the fully convolutional attention (Conv-Attention) [13], which
is proposed for machine translation and shows competitive performance while
being more efficient.

Suppose the input sequence is w = (w1, · · · , wN ). w is then embedded in
a distributional space as x = (x1, · · · , xN ), xj ∈ IRD and the absolute posi-
tion of input elements is embedded as p = (p1, · · · , pN ), pj ∈ IRD. The input
of the encoder is finally represented as e = (x1 + p1, · · · , xN + pN ) to guar-
antee the model’s sense of order and the output sequence of the encoder is
f = (f1, · · · , fN ), fj ∈ IRD. This process has been also applied to the output
elements already generated by the decoder.

The encoder and the Conv-Attention based decoder share a simple block
structure. Each block (or referred to layer) contains a one dimensional convo-
lution and a subsequent non-linearity, and computes the output states with a
fixed number of input elements. Each convolution kernel of the decoder blocks
is parameterized as W ∈ IR2D×kD with a base bw ∈ IR2D, where k is the kernel
width and D is the channel dimension of the input features. This convolution
kernel maps k concatenated input elements which are embedded in D dimen-
sions to a single output oj ∈ IR2D. The following non-linearity of one dimensional
convolution is chosen as gated linear units (GLU) [9] that implements a gating
mechanism over each output element oj = [oj1 oj2] ∈ IR2D:

GLU(oj) = oj1 � σ(oj2) (2)

where the � denotes the point-wise multiplication and gates σ(oj2) determine
which parts of oj1 are relevant. The output GLU(oj) ∈ IRD is half the channel
dimension of the input oj .

Conv-Attention uses a separate attention mechanism for each decoder
block. It first computes the state summary sl

i with previous target embed-
ding t = (t1, · · · , tT ), ti ∈ IRD and current hidden state of the l-th block
hl = (hl

1, · · · , hl
T ), hl

i ∈ IRD as:

sl
i = W l

sh
l
i + bl

s + ti (3)

Next, attention score αl
i,j of state i and source element j is calculated via a

dot-product between fj of the feature sequence f and state summary sl
i:

αl
i,j =

exp(sl
i · fj)

∑N
w=1 exp(sl

i · fw)
(4)

After the weights αl
i,j have been computed, the context vector is calculated as:

cl
i =

N∑

j=1

αl
i,j(fj + ej) (5)
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Then, the context vector is simply added to the corresponding hidden feature
hl

i. This operation can be considered as attention with multiple hops [27], which
improves the model’s ability to access more attention history. Furthermore, to
improve the information flow between blocks, residual connections are added
from input to output as ResNet in [16].

3 Paired Adversarial Learning

The motivation of our work is to make the model learn semantic-invariant fea-
tures of patterns to conquer the difficulties caused by the writing-style variation
and the small sample size. Roughly speaking, for each handwritten image in
the training set, we first generate its printed image template by compiling the
LaTeX format label with a general LaTeX editor. Then, we force the attention-
based encode-decoder model to extract similar features for both the handwritten
image and its printed image template, which is implemented under the adver-
sarial learning framework.

Fig. 2. Architecture of the paired adversarial learning (PAL). When training, each
handwritten image is input with its paired printed template (bottom left). The encoder-
decoder model and the discriminator are trained alternatively. We use Conv-Attention
based decoder here to speed up the image-to-markup decoding. Theoretically, the atten-
tion model can also be substituted with any standard recurrent attention.

The proposed model consists of three parts (see Fig. 2): an encoder that
extracts features from images, a decoder that parses the sequence of features out-
putted by the encoder and generates the markup, and a discriminator trained
against the encoder-decoder model to force it to learn the semantic-invariant
feature of each pattern. In the following subsections, we will sequentially intro-
duce the encoder, the decoder, the learning objective of the proposed paired
adversarial learning method, and the training algorithm.

A
u

th
o

r 
P

ro
o

f



6 J.-W. Wu et al.

3.1 Multi-directional Encoder

The basic architecture of the encoder in this work is adapted from the fully
convolutional network (FCN) model in [29]. The difference is that we introduce
a novel layer, named MD-transition layer, equipped after each convolutional
block of the deep FCN model. We utilize the multi-dimensional long short-term
memory (MDLSTM) [15] to improve FCN’s ability to access the 2D contextual
information and apply a pooling layer [21] before the MDLSTM layer to improve
computation efficiency. We refer to this architecture as MD-transition layer.

MDLSTM employs LSTM layers in up, down, left and right directions. Differ-
ent LSTM layers are executed in parallel to improve the computation efficiency.
After the LSTM layers, we collapse the feature maps of different directions by
simply summing them up. The LSTM layers in the horizontal and vertical direc-
tions are calculated as:

(yi,j , ci,j) = LSTM(xi,j , yi±1,j , yi,j±1, ci±1,j , ci,j±1) (6)

where y and c denote the output feature vector and inner state of the cell,
respectively, and xi,j denotes the input vector of the feature map at position
(i, j). The LSTM denotes the mapping function of general LSTM networks
which process the input sequence over space or time. With this set up, the
subsequent FCN block is enabled to access more past and future contextual
information in both horizontal and vertical directions.

3.2 Decoder with Convolutional Attention

We extend the decoder with Conv-Attention [13] to generate markup for the
images and speed up the decoding. Different from machine translation, image-
to-markup generation is a 2D-to-sequence problem. Since the outputs of the
encoder are in the form of 2D feature maps rather than feature sequences, we
have to propose a conversion method that preserves feature information as much
as possible.

Suppose the output feature map of the multi-directional feature extractor
sizes H ×W × D. We split the feature map by columns and then concatenate
them to get the feature sequence f = (f1, · · · , fN ), fj ∈ IRD, N = H × W .
Then, in order to guarantee the position information during conversion, we add
f with the embedding of the absolute position and get embedded feature sequence
e = (e1, · · · , eN ), ej ∈ IRD. Here, e is not the input of the encoder as the original
work. After getting f and e, we compute the context vectors as Sect. 2.2. With
rearrangement of the feature map and position embedding, Conv-Attention can
be successfully applied to image-to-markup generation. In this study, blocks
number l of the Conv-Attention is set to 3. Via the multi-step attention, the
model is enabled to access more attention history, thereby improving the ability
of consistent tracking with its attention.
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Image-to-Markup Generation via Paired Adversarial Learning 7

3.3 Paired Adversarial Learning

Adversarial learning for image-to-markup task are more complex than image
generation, since mismatch between two sequences of feature vectors can easily
cause the discriminator converging to irrelevant features, and thus lose the ability
of guiding the encoder-decoder model to learn the semantic-invariant features.
To settle this problem, first, we pair each handwritten image with its same-size
printed template to ensure that the length of the two feature sequences are same.
Second, since the labels of the paired images are same, the feature vectors at
the same position of these two feature sequences are forced to be extracted from
related regions with the attention mechanism.

Specifically, let a(x, φE) = (a1, · · · , aT ), ai ∈ IRD denote the feature sequence
at the last feature extraction layer of the decoder. Here, x is the input handwrit-
ten image xh or its paired printed template xp and φE denotes the parameters
of the encoder-decoder model. Our model learns the semantic-invariant features
with the guide of a discriminator D which judges whether a feature vector comes
from the handwritten images or the printed templates. Let D(ai(x, φE), φD) rep-
resent the probability that feature vector ai comes from a printed image and φD

denotes the parameters of D. The objective function is defined as:

LD = E(xh,xp)∼X [Eai(xp,φE)∼a[log D(ai(xp, φE), φD)] +
Eai(xh,φE)∼a[log(1−D(ai(xh, φE), φD)]] (7)

where X = {(xh, xp)} is the set of paired training images. D is optimized to
maximize the probability of assigning correct labels to the extracted featu res
by maximizing LD. On the contrary, the encoder-decoder model is trained to
learn semantic-invariant features to confuse D by minimizing LD.

Moreover, the primary goal of the encoder-decoder model is to extract dis-
criminative features and generate the correct markup. Thus, the decoder has to
convert the feature sequence to the markup by a classification layer as:

p(yai
= yi|x;φE) =

exp(C(yai
= yi|a(x, φE))

∑L
l=1 exp(C(yai

= l|a(x, φE))
(8)

Here, yi ∈ Y = {1, . . . , L}, L denotes the total class number of the label set, yai

is the prediction of feature vector ai in the feature sequence a(x, φE).
Ideally, features extracted from both the printed and handwritten images

should be classified correctly with high probabilities. The cross-entropy objective
function for classifying the features learned from printed images is defined as:

LCp
= −Exp∼Xp

[
∑T

i=1
log p(yai

= yi|xp;φE)] (9)
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8 J.-W. Wu et al.

where Xp = {xp} is the set of printed image templates. Similarly, the loss func-
tion for classifying the features learned from handwritten images is defined as:

LCh
= −Exh∼Xh

[
∑T

i=1
log p(yai

= yi|xh;φE)] (10)

where Xh = {xh} is the set of handwritten images.
In summary, we train the attention-based encoder-decoder model by mini-

mizing the loss function of:

LE = LCp
+ LCh

+ λLD (11)

λ is a hyper-parameter that controls the tradeoff between the discriminative
features and the semantic-invariant features. When λ = 0, the method is a
general attention-based encoder-decoder model trained on the paired samples.
When λ increases, the method will focus more on learning the semantic-invariant
features and extract less discriminative features for the classification layer to
generate the predictions.

3.4 Training Procedure

The encoder-decoder model and discriminator D are trained jointly with the
paired adversarial learning algorithm. D is optimized with the objective of distin-
guishing the sequences of feature vectors extracted from the handwritten images
and the printed templates. Contrarily, the encoder-decoder model is optimized to
extract more sophisticated semantic-invariant features to fool D. Meanwhile, the
encoder-decoder model is trained to maximize the probability of ground-truth
markup symbols of the input images. The importance of these two objective
function is balanced via the hyper-parameter λ.

See details in Algorithm 1. We sample minibatch of the paired samples to
train the encoder-decoder model and D for every training cycle. The encoder-
decoder model is trained one time first, and D is trained k times then. The
parameters of these models are updated by adaptive moment estimation (Adam).
Specifically, we update the parameters for the encode-decoder model as:

φE ← φE −Adam(
∂(LCp

+ LCh
+ λLD)

∂φE
, ηE) (12)

And for the discriminator by:

φD ← φD + Adam(
∂LD

∂φD
, ηD) (13)

Here, the Adam is the function to compute the updated value of the adaptive
moment estimation with the gradient and learning rate, ηE denotes the learning
rate for the encoder-decoder model and ηD denotes the learning rate of the
discriminator. See more details in Algorithm 1.
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Image-to-Markup Generation via Paired Adversarial Learning 9

Algorithm 1. The Paired Adversarial Learning Algorithm
1 Paired xh with its printed template xp by compiling its label y to get the

training set ((xh, xp), y) ∈ (X, Y );
2 Initialize the encoder-decoder model and the discriminator randomly with

parameters φE and φD;
3 repeat
4 //Update the encoder-decoder model

5 Sample minibatch of m pairs of samples {(xh, xp)(1), . . . , (xh, xp)(m)} from
the training set;

6 Update the encode-decoder model by:

φE ← φE −Adam(
∂(LCh

+LCp+λLD)

∂φE
, ηE);

7 //Update the discriminator for k steps
8 for k steps do

9 Sample minibatch of m pairs of samples {(xh, xp)(1), . . . , (xh, xp)(m)}
from the training set;

10 Update the discriminator by: φD ← φD + Adam( ∂LD
∂φD

, ηD);

11 end

12 until LCh converged ;
13 //Get the final model for the handwritten-image-to-markup generation
14 Parameterize the encoder-decoder model by: φE ;
15 return The encoder-decoder model ;

4 Experiments

4.1 Datasets

We validate our proposal on handwritten-image-to-LaTeX generation with
the large public dataset available from the Competition on Recognition of
Online Handwritten Mathematical Expressions (CROHME) [22]. CROHME
2013 dataset consists of 8,836 training samples and 671 test samples. The train-
ing set of CROHME 2014 is same as CROHME 2013, but the 986 handwritten
samples of the test set are newly collected and labeled. We use the CROHME
2013 test set as the validation set to estimate our model during training pro-
cess and test the final model on the CROHME 2014 test set. The number of
symbol classes for both the CROHME 2013 and CROHME 2014 are 101. Each
mathematical expression in the dataset is stored in InkML format, which con-
tains the trajectory coordinates of the handwritten strokes and the LaTeX and
MathML format markup ground truth. Models for handwritten-image-to-LaTeX
generation are evaluated at expression level by the expression recognition rate
(ExpRate), which is the index that ranks the participate systems in all the
CROHME competitions. A markup generation of the input image is right if the
markup for all the symbols and spatial operators are generated correctly with
the right order. This expression level metric is useful to evaluate all the symbols
and their structures are translated rightly.
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10 J.-W. Wu et al.

In this study, we have not used the online trajectory information of the
strokes, we just connect adjacent coordinate points in the same strokes to get
the offline images of the handwritten MEs. Each printed image template of
training data is simply gotten by compiling the LaTeX format label with a
general LaTeX editor. Then, all the images are normalized to the height of 128
pixels. And images in each minibatch are all padded to the same width as the
largest one with background pixels. We use the preprocessing to ensure that the
features extracted from different images are the same size.

Table 1. Configurations of the PAL model

4.2 Model Configurations

In this section, we briefly summarize the configurations of our proposed PAL
model. See details in Table 1. The encoder model is adapted from the deep
FCN of WAP [29], but equipped with a MD-transition layer after each CNN
block. Each CNN block of the encoder contains four convolutional layers, and
each convolutional layer is equipped with a batch normalization layer [17] and
a rectified linear unit (ReLU) [19]. The filter size of the convolutional layers is
3 × 3 and convolution stride size is 1 × 1. When a feature map is input to the
hidden convolutional layer, it is zero-padded by one pixel to keep the size fixed.
In addition to the size, channels of the feature maps are also fixed within the
CNN blocks. Every pooling layer in the MD-transition layer is set as max-pooling
with 2× 2 kernel and 2× 2 stride to reduce the size of the feature map.

The decoder model consists of 3 Conv-Attention blocks and a subsequent
multi-layer perception (MLP). CNN block in the Conv-Attention model contains
a one-dimensional convolutional layer with kernel width 3 and stride size 1.
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Image-to-Markup Generation via Paired Adversarial Learning 11

And the one-dimensional convolutional layer is equipped with a GLU nonlinear
activation function introduced in the Sect. 2.2. The discriminator D is a MLP
with two fully connected layers. We employ dropout for our proposal to prevent
the over-fitting. L in the table denotes the total class number of the symbols in
the markup ground truth. All models are implemented in Torch and trained on
4 Nvidia TITAN X GPUs.

Table 2. ExpRate (%) of different systems on CROHME 2014 test set

System ExpRate (%) ≤1 (%) ≤2 (%) ≤3 (%)

I 37.22 44.22 47.26 50.20

II 15.01 22.31 26.57 27.69

IV 18.97 28.19 32.35 33.37

V 18.97 26.37 30.83 32.96

VI 25.66 33.16 35.90 37.32

VII 26.06 33.87 38.54 39.96

WYGIWYS∗ 28.70 - - -

End-to-end 35.19(18.97) - - -

WAP∗ 44.42 58.40 62.20 63.10

PAL 39.66 56.80 65.11 70.49

PAL∗ 47.06 63.49 72.31 78.60

4.3 Validation on CROHME

We compare our proposal with the submitted systems from CROHME 2014
and some attention-based models presented recently for handwritten-image-to-
LaTeX generation. The results of these systems are listed in Table 2. Systems I
to VII are the participants in CROHME 2014 and the next three systems from
WYGIWYS∗ to WAP∗ are attention-based models presented recently. To make
fair comparison, system III are erased from Table 2 because it has used unofficial
extra training data and the attention models listed in Table 2 are all trained with
offline images. The ExpRate ≤ 1(%),≤ 2(%),≤ 3(%) denote the accuracy for
markup generation with one to three symbol-level error and showing the room
for the models to be further improved.

Our proposed PAL model outperforms system I, which wins the first place on
CROHME 2014 and named seehat, with more than 2% ExpRate. More impor-
tantly, it is interesting to observe that the one to three symbol-level error of our
proposal has been significantly reduced due to the grasp of semantic-invariant
features for each symbol. The sign ∗ in Table 2 denotes utilizing an ensemble of
5 differently initialized models to improve the performance [29]. WYGIWYS is
the first attention-based model proposed for image-to-markup generation [11].
WYGIWYS with ensemble methods finally achieves an ExpRate of 28.70%.
The End-to-end indicates encoder-decoder model in [20], which has a similar
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12 J.-W. Wu et al.

architecture to WYGIWYS. It achieves a ExpRate of 18.97%, and 35.19% then
by distorting the training images and bringing the number of training images
to 6 times. WAP∗ here indicates the state-of-the-art model WAP [29] trained
with ensemble methods and not uses the online trajectory information like other
attention-based model here. We use the same ensemble method to get PAL∗,
and the result shows our proposed PAL model outperforms WAP under the
same conditions. While the ensemble method can effectively improve perfor-
mance, it requires much more memory space to run as fast as a single model
through parallel computing.

Fig. 3. Examples of the handwritten images and generated markup of our proposal

In order to make the results more intuitive, in Fig. 3 we show some handwrit-
ten MEs of the CROHME 2014 test set as well as their markup generated by our
proposal. The red symbols of the gen indicate the incorrect markup generations,
and the blue symbols of the truth indicate the corresponding right markup in
the ground truth or the markup our proposal failed to generate. The results
show our proposal are effective in dealing with the complex 2D structures and
the symbols with various writing styles. It is worth noting that some symbols
are too similar or written too scribbled, even humans could be confused.

4.4 Comparison of Different λ

In this section, we further analyze how the hype-parameter λ in Eq. (11) affects
the performance of our proposed PAL model. By balancing the influence of the
loss for markup generation and features discrimination, λ controls the trade-
off between discriminative features and semantic-invariant features the encoder-
decoder model learned. When λ is small, discriminative features comprise the
majority loss of the encoder-decoder model and dominate the gradient back-
ward to it. With the increasing of λ, the encoder-decoder model masters more
semantic-invariant features of same symbols in the printed templates and the
handwritten images. However, when λ going too large, the model will focus
too much on semantic-invariant features and even try to generate same feature
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sequences for both printed and handwritten images to confuse the discriminator.
This will lead to less discriminative features for different categories and cause
the decreasing of markup generation accuracy. For an extreme case, the model
may only pays attention to regions of the background and even generates G(x)
that equals to a constant at each step to fool the discriminator D. Therefore, an
appropriate λ plays an important role in the PAL model. We explore different
λ for the model while keeping the other configurations of the model fixed the
and then evaluate these models with different λ on the CROHME dataset. The
results is shown in Fig. 4.

Fig. 4. Comparison of different λ on CROHME dataset

4.5 Analysis of Print Templates

It is worth noting that print templates for training are also crucial to the PAL
model. Firstly, just like we cannot use printed English books to teach humans
to recognize handwritten Chinese characters, the templates need to have related
semantic information with the target images. Thus, the attention-based encoder-
decoder model can learn semantic-invariant features for each specific symbol in
the paired images. Secondly, the distribution of standard templates needs to be
easier to learn. In this way, simple templates can guide the model in dealing with
complex samples through paired adversarial learning.

We first validate the ability of Conv-Attention based encoder-decoder model
without paired adversarial learning to generate markup for the print images.
Specifically, we compile the LaTeX format markup ground truth of CROHME
2013 test set to get the printed CROHME 2013 test set (CROHME 2013 P) and
train the model only on the standard printed templates, see Conv-Attention P in
Table 3. Then we get the same model but trained on only the handwritten images
(Conv-Attention H). Surprisingly, the accuracy of printed-image-to-markup gen-
eration is more than double of the handwritten-image-to-markup generation.
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Table 3. Analysis of the influence of printed templates

ExpRate (%) CROHME 2013 CHROHME 2014 CROHME 2013 P

Conv-Attention H 31.30 27.18 -

Conv-Attention P 0.15 - 76.15

Conv-Attention P&H 32.94 33.87 -

PAL 38.90 39.66 57.82

PAL GD 41.73 39.05 -

However, the model Conv-Attention P appears to have been over fitted in the
printed images when tested on the handwritten CROHME 2013 test set.

After that, we mix these two samples to conduct experiments (Conv-
Attention P&H). The experimental results show that the distributions of these
two kinds of samples is relatively close, and the adding of the printed templates
is helpful to the markup generation for the handwritten images. The model
increased about 1% ExpRate compared with Conv-Attention H when validated
on CROHME 2013 test set and the generalization is significantly enhanced when
test on CROHME 2014 test set. When we train the model with paired adver-
sarial learning (PAL) and set λ as 0.15, we find that this increase becomes even
more apparent, whether it is validation or test. We also tested the PAL model
on CROHME 2013 P, the result shows that the model does lose some knowledge
about the distribution of the print images compared with Conv-Attention P.

In addition, we have made some global distortions for the printed templates
to further explore the influence of the print templates’ distribution. We rote
the standard printed sample with 4 angles randomly choose from −2◦ to 2◦

with a interval of 0.5◦ but excluding 0◦ (the minus sign here represents coun-
terclockwise). Then we add them to the standard printed templates without
distortion and re-pair each of these printed templates with the handwritten one
that owned the same label. The new 8, 836 ∗ 5 image pairs are used to train the
model called PAL GD. Interestingly, we find that the accuracy of the validation
has been further improved, but the accuracy of the test has slightly decreased.
It is believed that if the distortions are done more elaborately, the test accu-
racy will also be improved, but this contradicts our original intention of training
the attention-based model through easy-to-get templates with paired adversarial
learning. Therefore, we haven’t conducted further experiments on the distortion.

5 Conclusion

In this paper, we introduce a novel paired adversarial learning to guide the
attention-based model to learn the semantic-invariant features as human when
focusing attention on specific objects. Our proposal incorporates the prior knowl-
edge of simple templates and improves the performance of an attention-based
model on more complex tasks. The proposal performs much better than other
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systems under the same training conditions on CROHME 2014. We also extend a
fully convolutional attention from machine translation to speed-up the decoding
of the image-to-markup generation.

In future work, we plan to explore the language model based attention to
make the neural network more like human when generating the markup for the
input images. We will also apply the paired adversarial learning in more fields
such as text string recognition in optical character recognition to improve the
models performance.
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