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Abstract—This paper is devoted to modeling and controlling a
new upper-limb rehabilitation robot which has a parallel struc-
ture. Genetic algorithm (GA) is successfully applied in parameter
identification based on dynamic analysis of the parallel robot.
For accurate identification, joint velocities and accelerations
are computed by the Kalman filter. By taking the non-linear
characteristics of frictions into account, the unknown friction
parameters differ depending on directions of motion. Compared
with the traditional least square estimation (LSE) based method,
the proposed identification method improves performance. Fur-
ther, a model-based PD computed-torque controller is designed,
and the feasibility of the estimated dynamic model and controller
is validated by passive training task along a circular trajectory.

I. INTRODUCTION

During the last decade, stroke has become the second lead-

ing cause of death over the world, according to statistics from

WHO (World Health Organization). Most stroke survivors

are left with severe disabilities, mainly motor impairments

on upper-limb movements, which affect their performances

in ADLs (activities of daily living) [1]. For these patients,

long-term and high-intensity rehabilitation can help to restore

the motor functionality as a consequence of inducing neural

plasticity. While intense repetitions of motor activities impose

a significant burden for therapists, robot-aided therapy is

believed to be a promising method for rehabilitation training.

On one hand, robots can guarantee training intensity, and can

interact with the patient to “coach” them in the home envi-

ronment. On the other hand, robot therapy can achieve more

therapy modes to increase the patient’s training motivation.

Different from versatile industrial robots, rehabilitation

robots focus on safety performance and compliant interaction

features rather than manipulation accuracy. In order to assist

patients in completing movements while remaining complaint,

rehabilitation robots typically adopt model-based and adaptive

control approach [2]. The performance of the advanced robot
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Fig. 1. The upper-limb rehabilitation robot.

controller, such as computed torque depends directly on the

model accuracy. However, the dynamic model of the robot

contains uncertainties in many parameters, and it reduces

interaction transparency between human and the robot.

Dynamic identification methods have gained importance

for developing model-based controllers. Because of the com-

plexity of rehabilitation robots, it is impractical to obtain

the robot models by direct measurement. Experimental robot

identification is the only efficient way to obtain accurate robot

models as well as indications on their accuracy, confidence and

validity [3]. Moreover, reliable robot identification requires

specially designed experiments.

This paper presents the dynamic analysis of a parallel upper

limb rehabilitation robot, which aims to identify the dynamic

parameters and implement the model-based control algorithms.

For identification purpose, smooth velocities and accelerations

are computed by the Kalman filter based on the measured joint

angles, and then we apply genetic algorithm (GA) to estimate

the base dynamic parameters. Compared with the least square

estimation (LSE) method, GA improves significantly accuracy

by considering nonlinear frictions in different directions of

motion, which is validated by experiments. For the model-

based control, we build a PD computed-torque controller for

passive training, and the experimental results validate the

controller design.

The remaining parts of this paper are organized as follows:

Section II presents dynamics modeling of the robot; Section

978-1-5090-6017-7/18/$31.00 ©2018 IEEE



III compares the LSE-based method and GA-based identifica-

tion, and verifies the presented approach through experiments.

Section IV discusses the model-based robot control of the

developed identification model. Some conclusion remarks are

finally included in Section V.

II. ROBOT INTRODUCTION AND DYNAMICS MODELING

A. Introduction of the Rehabilitation Robot

In this study, a novel upper limb rehabilitation robot is used,

which adopts a five-bar parallel structure as shown in Fig. 1,

and its technical specifications are shown in Table I.

TABLE I
TECHNICAL SPECIFICATIONS

Items Characteristics

DOF 2

Actuation 2 DC motors

Sensors 2 rotary encoders

Range of Joint Motion -20◦∼80◦, 80◦∼190◦

Workspace 600 mm * 450 mm

Motor Torque ∼ 844 mNm

Reduction Ratio 5:1

Force Capability >20 N

Parallel mechanism has many advantages over its serial

counterparts such as high stiffness, simple joint design, low

inertial etc [4]. Different from the symmetrical structure and

cable driven design of CASIA-ARM [5], this robot has a

parallelogram structure with a highly backdrivable belt trans-

mission, which is beneficial to reduce the size of movement

linkages and easy maintenance.

As shown in Fig. 1, five revolute joints connect the links of

the robot to form a closed chain mechanism, where only two

joints at the base are actuated by DC motors, and the others

are passive. The patient arm is coupled with the robot at the

end-effector and achieves 2-DOF movements in the horizontal

plane. With the ability of force feedback, the robot can provide

specially designed force fields for the patient in a virtual

reality environment. Its dynamics modeling is still needed for

advanced model-based control and high-transparency haptic

interaction.

B. Modeling of Robot Dynamics

Dynamic analysis of parallel robots is more complex than

serial robots for the kinematic constraints between joints [6].

The robot is simplified as a five-bar parallel mechanism as

shown in Fig. 2. Link 2 and link 4 are both parallel and equal

in length. In this way the closed path in the figure is in fact a

parallelogram, which greatly simplifies the computations. Even

though there are four articulated links connected through five

joints, only two are independent active joints identified as q1
and q2.

The Lagrange-based dynamics modeling procedure [7] are

as follows:

Fig. 2. Five-bar parallel mechanism, where the two joints at the base q1 and
q2 are coaxial in implementation.

Step 1: The coordinates of the mass center of four articu-

lated links are as below:[
xc1

yc1

]
=

[
lc1 cos q1
lc1 sin q1

]
[

xc2

yc2

]
=

[
lc2 cos q2
lc2 sin q2

]
[

xc3

yc3

]
=

[
l2 cos q2+lc3 cos q1
l2 sin q2 + lc3 sin q1

]
[

xc4

yc4

]
=

[
l1 cos q1+lc4 cos q2
l1 sin q1 + lc4 sin q2

]
,

(1)

and the linear velocities are:

vc1 =

[ −lc1 sin q1 0
lc1 cos q1 0

]
q̇

vc2 =

[
0 −lc2 sin q2
0 lc2 cos q2

]
q̇

vc3 =

[ −lc3 sin q1 −l2 sin q2
lc3 cos q1 l2 cos q2

]
q̇

vc4 =

[ −l1 sin q1 −lc4 sin q2
l1 cos q1 lc4 cos q2

]
q̇,

(2)

where q =
[
q1 q2

]
.

Then it is easy to obtain the velocity Jacobians as:

Jvc1 =

[ −lc1 sin q1 0
lc1 cos q1 0

]

Jvc2 =

[
0 −lc2 sin q2
0 lc2 cos q2

]

Jvc3 =

[ −lc3 sin q1 −l2 sin q2
lc3 cos q1 l2 cos q2

]

Jvc4 =

[ −l1 sin q1 −lc4 sin q2
l1 cos q1 lc4 cos q2

]
.

(3)
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Step 2: The angular velocities of the four links are given by

ω1 = ω3 = q̇1k

ω2 = ω4 = q̇2k,
(4)

where k is the direction vector of the angular velocities.

According to the Euler-Lagrange equation, the inertia matrix

is obtained:

D(q) =
4∑

i=1

miJ
T
vci

Jvci+

[
I1 + I3 0

0 I2 + I4

]
. (5)

Substituting (3) into (5), gives

d11(q) = m1l
2
c1 +m3l

2
c3 +m4l

2
1 + I1 + I3

d12(q) = d21(q) = (m3l2lc3 +m4l1lc4) cos(q2 − q1)

d22(q) = m2l
2
c2 +m3l

2
2 +m4l

2
c4 + I2 + I4,

(6)

hence the inertia matrix D is given simply by

D =

[
d11(q) d12(q)
d21(q) d22(q)

]
.

The Christoffel symbols are defined as:

cijk :=
1

2

{
∂dkj
∂qi

+
∂dki
∂qj

− ∂dij
∂qk

}
.

Substituting for the various quantities in this equation leads to

c111 = 1
2
∂d11

∂q1
= 0

c121 = c211 = 1
2
∂d11

∂q2
= 0

c122 = c212 = 1
2
∂d22

∂q1
= 0

c221 = ∂d12

∂q2
− 1

2
∂d22

∂q1
=

−(m3l2lc3 +m4l1lc4) sin(q2 − q1)

c112 = ∂d21

∂q1
− 1

2
∂d11

∂q2
=

−(m3l2lc3 +m4l1lc4) sin(q1 − q2)

c222 = 1
2
∂d22

∂q2
= 0.

(7)

Step 3: Applying the Euler-Lagrange equations with respect

to all joints:∑
j

dkj(q)q̈j +
∑
i,j

cikj(q)q̇iq̇j + φk(q) = τk, k = 1, 2.

Since the robot moves in the horizontal plane, the potential

energy remains unchanged, hence φk = 0. The dynamic

equations can be obtained :

d11q̈1 + d12q̈2 + c221q̇
2
2
+ ϕ1 = τ1

d21q̈1 + d22q̈2 + c112q̇
2
1 + ϕ2 = τ2.

(8)

In this case the centripetal and Coriolis matrix is given as:

C =

[
0 hq̇2

−hq̇1 0

]
, (9)

where

h = −(m3l2lc3 +m4l1lc4) sin(q2 − q1).

Step 4: The dynamic equations of the robot can be expressed

in the following form:

D(q)q̈ + C(q, q̇)q̇ = τ. (10)

By considering the traditional joint friction model in [8],

the obtained dynamic model is given by

D(q)q̈ + C(q, q̇)q̇ + τf = τ, (11)

where

τf = Kv q̇ +Kcsgn(q̇)

with Kv and Kc the coefficient matrix representing the terms

of viscous friction and Coulomb friction, which are defined

respectively by:

Kv =

[
kv1 0
0 kv2

]
, Kc =

[
kc1 0
0 kc2

]
.

For ease of identification of the unknown dynamic parame-

ters, the robot dynamic model can be rearranged into a linear

form with respect to these parameters:

Y (q, q̇, q̈)Φ = τ, (12)

where Y (q, q̇, q̈) is a 2 × 7 observation matrix whose element

in the ith row and jth column is Yi,j , and Φ is a 7 × 1 vector

containing the unknown dynamic parameter φi.

The elements in Y (q, q̇, q̈) and Φ are given by (13) and (14).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1,1 = q̈1

Y1,2 = q̈2 cos(q2 − q1) + q̇2
2
sin(q1 − q2)

Y1,4 = q̇1

Y1,5 = sgn(q̇1)

Y2,2 = q̈1 cos(q2 − q1) + q̇2
1
sin(q2 − q1)

Y2,3 = q̈2

Y2,6 = q̇2

Y2,7 = sgn(q̇2)

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1 = m1l
2
c1 +m3l

2
c3 +m4l

2
1 + I1 + I3

φ2 = m3l2lc3 +m4l1lc4

φ3 = m2l
2
c2 +m3l

2
2 +m4l

2
c4 + I2 + I4

φ4 = kv1

φ5 = kc1

φ6 = kv2

φ7 = kc2

(14)

III. PARAMETER IDENTIFICATION AND EXPERIMENTS

A. Estimation of Joint Velocity and Acceleration

Calculation of the observation matrix in (13) requires es-

timations of the joint velocities and accelerations. Since the

robot is only equipped with position sensors, we can obtain the

joint velocities and accelerations by numerically differentiating

the joint position. However, the derivative, and especially the

second derivative, of a set of data are inherently noisy because

the differentiator essentially behaves like a high-pass filter

[9]. A solution to this problem is to filter the velocity and

acceleration signals using the Kalman filter.

In this study, the following linear discrete-time model is

used for each joint:

xk = Gxk−1 + ωk−1, ω ∼ N(0, Q)

yk = Cxk + vk, v ∼ N(0, R),
(15)
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where

xk=
[
qk q̇k q̈k

]T
,

G=

⎡
⎣ 1 Ts

1
2Ts

2

0 1 Ts

0 0 1

⎤
⎦ ,

C = [ 1 0 0 ] ,

and y is the actual position signal; ω and v are the systematic

noise and measurement noise, respectively.

Five formulas are utilized to implement Kalman filter:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̂(k|k − 1) = Gx̂(k − 1|k − 1)

P (k|k − 1) = GP (k − 1|k − 1)GT +Q

K = P (k|k−1)CT

CP (k|k−1)CT+R

x̂(k|k) = x̂(k|k − 1) +K(Z(k)− Cx̂(k|k − 1))

P (k|k) = (I −KC)P (k|k − 1).

(16)

Firstly, the current state is predicted according to the last

step. Next, the estimated covariance is calculated based on

the state and the systematic noise covariance Q, and the

Kalman gain K is caculated according to the covariance

matrix and the measurement noise covariance R. Finally, the

filtered velocities and accelerations are calculated in term of

the Kalman gain, the predicted state and the measurement, and

then the estimation error covariance matrix is calculated for

next step.

B. LSE Parameter Identification

By considering the linear relationship of robot dynamics

with respect to unknown parameters as in (12), LSE method

is tested firstly for parameter identification.

By making use of the inverse dynamic model, the following

overdetermined linear system of equations in Φ is obtained:

YsΦ = τs + ε, (17)

where Ys is a 2M × 7 observation matrix, τs is a 2M × 1

torque observation vector, ε is a residual error vector, M is

the number of the sampled points; and Ys and τs are defined

respectively by:

Ys = [Y T (q(1), q̇(1), q̈(1)) · · · Y T (q(M), q̇(M), q̈(M))]T

(18)

and

τs = [τT (1) · · · τT (M)]T , (19)

where τ(i) represents the ith measured torque; the elements

of Y (q(i), q̇(i), q̈(i)) are functions of the joint angles q(i),
angular velocities q̇(i) and accelerations q̈(i).

Since Ys and τs can be obtained by (18) and (19), the

undetermined parameters can be identified by LSE:

Φ̂ = (Ys
TYs)

−1Ys
T τs, (20)

where Φ̂ represents the estimated value of dynamic parameters.

C. Experiments

In this study, reaching movement trajectory is selected for

identifying the dynamic parameters, which is a most used

trajectory in rehabilitation training.

Through a large number of observations, the actual trajec-

tory generated by taking reaching actions between two points

satisfies the Minimum jerk condition:

x(t)−xi

xd−xi
= y(t)−yi

yd−yi
=

10( t
td
)3 − 15( t

td
)4 + 6( t

td
)5,

(21)

where (xi, yi) and (xd, yd) are respectively the coordinates of

starting point and ending point, td is the total movement time.

The trajectory of 5-order polynomial form corresponds to a

straight line connecting two points.

1

2

3

4

5

6

7

8

0

Cursor
Target

Fig. 3. Reaching movement task in the experiment.

Fig. 3 shows the actual trajectory in the workspace of the

robot. There are 8 target points on the circle edge, and target

0 is at the center of the circle.

Under the excitation of above trajectories based on simple

PID joint control, the robot achieves autonomous motions

between target 0 and 8 targets around the circle (the radius

is 0.2 m) [10]. The sampling frequency is 50Hz, and the

joint torques and angles are recorded at the same time. Two

experiments have been carried out: experiment for parameter

estimation and experiment for model validation.

1) Data Processing: Ten periods of data were recorded and

the first and last periods were neglected. Firstly, a zero phase

filter was utilized to preprocess the measured torques. Next,

in order to obtain exact calculation of the joint velocities and

accelerations, the angles of two joints were fed into Kalman

filter respectively. Since the joint angles were measured by

two encoders mounted on the motor shafts and the variations

were relatively small, the derived velocities and accelerations

can be considered accurate. Finally, the preprocessed dataset

was divided into two parts, the motion data containing target

1, 2, 3, 4 was used as the training set and the remaining data

used as the validation set.
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2) Parameter Estimation: The robot model contains three

barycentric parameters and four friction parameters (viscous

and Coulomb friction parameters for two joints), which are

defined by (14). Based on the joint torques, angles, velocities

and accelerations in training set, the observation matrix Ys and

torque observation vector τs were obtained. These model pa-

rameters defined by (12) can be estimated by the LSE method,

which identification procedure was discussed in Section III-B.

The results are given in Table II.

TABLE II
PARAMETERS ESTIMATED BY LSE METHOD

Parameter Value Parameter Value

φ̂1(kgm
2) 0.0593 φ̂5(Nm) 0.1209

φ̂2(kgm
2) 0.1609 φ̂6(kgm

2/s) 0.2637

φ̂3(kgm
2) 0.2380 φ̂7(Nm) 0.1704

φ̂4(kgm
2/s) 0.2028

3) Model Validation: The validation of the obtained pa-

rameter estimations is achieved by comparing the measured

torques and estimations of these torques based on the valida-

tion data of different trajectories.

The estimated torques of the validation samples are calcu-

lated by:

τest = Ys(q, q̇, q̈)Φ̂, (22)

where Ys(q, q̇, q̈) is the observation matrix, depending on

the recorded angles, as well as the angular velocities and

accelerations derived from Kalman filter.
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Fig. 4. Model validation results of LSE-based parameter identification

Fig. 4 shows the results of the measured torques, estimated

torques and the corresponding estimation errors. The results

of the errors and the measured torques denote that the model

we obtained is capable of estimating thel torque. However,

the estimation error for low joint angular velocity is relatively

big, which indicates that the assumed friction model in (11), is

too simple to capture the complex dynamic friction behavior.

Besides, LSE method is unable to achieve consistent and

unbiased estimation when there is colored noise in the system,

and GA are used in the study to solve these problems.

D. GA-based Parameter Identification

GA is a parallel and global search optimization technique

based on natural selection mechanism [11]-[12]. It is not

limited by assumptions about the search space, and can be

applied to various problems. A simple genetic algorithm uses

three basic genetic operators: reproduction, crossover and

mutation. In order to distinguish nonlinear frictions in different

directions of motion, friction parameters in (14) are redefined

respectively by:⎧⎪⎪⎨
⎪⎪⎩

φ4 = kv1 pos φ4
′ = kv1 neg

φ5 = kc1 pos φ5
′ = kc1 neg

φ6 = kv2 pos φ6
′ = kv2 neg

φ7 = kc2 pos φ7
′ = kc2 neg.

(23)

The proposed identification algorithm by GA is as follows.

1) Initialize h chromosomes as population by real-value

encoding, where h=30 is the size of population.

2) Calculate the fitness values for h chromosomes.

3) Based on the fitness of each individual, the best chromo-

some in this generation is selected through the selection

process.

4) Reproduction and formation of the new generation.

5) Crossover all chromosomes under the probability Pc,

and generate new h offsprings.

6) Calculate the fitness values for all 2h chromosomes and

preserve h chromosomes by elite strategy.

7) Mutate all chromosomes under the probability Pm, and

generate new h offsprings.

8) Calculate the fitness values for all 2h chromosomes and

preserve h chromosomes by elite strategy.

9) Go to 2) and 3).

10) If the generation number is enough or fitness satisfies

the criterion, end identification process. If not, repeat

from 4).

The objective function used in 2), 6) and 8) is expressed:

τest = Ys(q, q̇, q̈)Φ̂,

εRMS =

√
1
M

M∑
m=1

(τs(m)− τest(m))2.
(24)

By considering the convergence under the practical com-

putation load, the number of chromosomes in the population

is 30. The mutation rate Pm is chosen according to the

population size, and then the search is prevented to be a

random one. GA-based parameter identification experiments

has been performed in the same way as discussed above.

As the result of 100 generations of generic process, the

estimated parameters are listed in Table III, and Fig. 5 gives the

comparison between the measured torques and the estimated

torques for model validation.

As shown in Table III, φ̂4 and φ̂′4 are almost the same, so are

φ̂6 and φ̂′6. It can be deduced that the non-linear Coulomb term

is the main factor contributing to large estimation errors at low

velocities. For simplicity, the final dynamic model only has 9

parameters, where two viscous friction estimating parameters
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TABLE III
11 PARAMETERS ESTIMATED BY GA

Parameter Value Parameter Value

φ̂1(kgm
2) 0.0744 φ̂5(Nm) 0.0082

φ̂2(kgm
2) 0.1843 φ̂′5(Nm) 0.2580

φ̂3(kgm
2) 0.2390 φ̂6(kgm

2/s) 0.4776

φ̂4(kgm
2/s) 0.2202 φ̂′6(kgm

2/s) 0.5482

φ̂′4(kgm
2/s) 0.2644 φ̂7(Nm) 0.2446

φ̂′7(Nm) 0.0036
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Fig. 5. Model validation results of GA-based parameter identification

are left no matter the velocity directions. The results of 9

parameters GA-based identification are listed in Table IV.

TABLE IV
9 PARAMETERS ESTIMATED BY GA

Parameter Value Parameter Value

φ̂1(kgm
2) 0.0776 φ̂5(Nm) 0.0222

φ̂2(kgm
2) 0.1843 φ̂′5(Nm) 0.2807

φ̂3(kgm
2) 0.2297 φ̂6(kgm

2/s) 0.5518

φ̂4(kgm
2/s) 0.1880 φ̂7(Nm) 0.2073

φ̂′7(Nm) 0.0054

In order to compare the accuracy of identification results

in Table II, Table III and Table IV, the RMS error of the

estimated torques is defined as:

τrmse =

√√√√ 1

K

K∑
k=1

(τest,k − τs,k)2, (25)

where K is the size of validation set, τest,k and τs,k are

respectively the kth estimated and measured torques for each

joint. Table V shows the RMS of the estimation errors for

LSE-based, 9 parameters GA-based and 11 parameters GA-

based validation experiments. It can be seen that, the GA-

based method improves significantly accuracy for parameter

identification.

TABLE V
RMS OF THE ESTIMATION ERROR

LSE method GA 9para GA 11para

joint1 0.1163 N-m 0.0358 N-m 0.0346 N-m

joint2 0.2006 N-m 0.1017 N-m 0.1019 N-m

When the system is contaminated by colored noise, the

LSE method fails to give the unbiased estimation, and GA

yields better identification result. Through parameterizing the

the nonlinearity of friction, GA is utilized to optimize the

combination of 9 parameters. Each individual in the popu-

lation is feasible solution for parameter identification, and

the elite preservation policy is applied to ensure algorithm

evolve towards the optimal direction. Despite modeling errors

(mechanical losses in the actuators and the efficiency of the

transmissions), the estimated models are accurate but biased.

Extending the robot model to include more advanced friction

models is expected to improve the prediction accuracy.

IV. MODEL-BASED ROBOT CONTROL

For the purpose of validation, PD computed-torque control

experiment is conducted, which is the basis for passive train-

ing. The objective of this experiment is to force joint variables

q =
[
q1 q2

]T
to track circular passive training trajectories,

and the the desired trajectories of the robot are:

xd(t) = R cos( 2πTd
t)

yd(t) = 0.4 +R sin( 2πTd
t).

(26)

where R = 0.2 m is the radius, and Td = 7.2 s is the period.

Computed Torque Control (CTC) is a special application of

feedback linearization of nonlinear systems. Briefly speaking,

by modeling the robot inertia (as well as centripetal and

Coriolis forces) characteristics, CTC can be used to linearize

robotic dynamics and achieve the compensation for the chang-

ing robotic dynamics. A block diagram of the PD computed-

torque controller appears in Fig. 6.

Fig. 6. Block diagram of the PD computed-torque controller
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It is supposed that the desired trajectory qd(t) has been

selected for the robot motion. The dynamic equations of the

robot can be expressed as

D(q)q̈ + C(q, q̇)q̇ + τd = τ, (27)

where q =
[
q1 q2

]T
, τ =

[
τ1 τ2

]T
is the arm control

torque, τd is the disturbance torque, e = qd − q is defined as

trajectory tracking error vectors.

Defining the control input function as proportional-plus

derivative (PD) feedback:

u = −Kv ė−Kpe, (28)

and substituting (28) into the computed-torque control law [13]

yields

τ = D(q)(q̈d +Kv ė+Kpe) + C(q, q̇)q̇, (29)

where Kp and Kv are proportional and derivative constant

matrices, respectively. Substituting (29) into (27), we have

ë = −Kv ė−Kpe+D−1(q)τd. (30)

Therefore, the tracking error will asymptotically converge to

zero for any desired trajectory in absence of disturbances τd.

The designed parameters in PD computed-torque controller

are selected as:

Kp =

[
100 0
0 100

]
, Kv =

[
5 0
0 5

]
.

The tracking results in X and Y directions are shown in

Fig. 7, where the actual trajectories and desired trajectories

almost overlap each other, and smaller tracking errors can be

acquired by adjusting Kp and Kv . Thus, it is safely said that

PD computed-torque controller exhibits good tracking perfor-

mances based on the dynamic model obtained in Section III-D.
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Fig. 7. Desired and actual trajectories, and tracking errors in X,Y directions

V. CONCLUSION

This paper presents the dynamics modeling and control

method of a novel upper limb rehabilitation robot, which are

validated by experiments. For the purpose of dynamic param-

eter identification, smooth joint velocities and accelerations

are computed by Kalman filter, and then GA is utilized to

estimate the dynamic parameters. Compared with the LSE-

based parameter identification, GA yields precise identification

results by considering nonlinear frictions in different direction

of velocity. Further, a PD computed-torque controller is de-

signed and an experiment of circular path passive training task

is conducted to validate the effectiveness of this method.
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