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Abstract— Calibration of a functional structural plant model
is a challenging task because of the complexity of model
structure. Parameter estimation through gradient-based opti-
mization technique was highly dependent on initial parameter
values. This motivated the use of global sensitivity analysis
technique to choose parameter subset in fitting the data
sequence. Global sensitivity indices were computed using the
source sink ratio as the output of interest, which regulates all
organ growth. By fitting on chrysanthemum data from nine
sampling dates, it is shown that sensitivity analysis method
helps to identify the influential parameters for a given sampling
date. As a result, fitting process is less dependent on the initial
parameter values. Current work provides a new method of
calibrating a plant growth model with multiple outputs.

I. INTRODUCTION

Mathematical model is a powerful tool which is used in
various domains, in order to simulate, explain and predict
the corresponding phenomena. In agriculture, dynamic plant
models have been developed with different levels of com-
plexity. Among them, Processed-Based Models (PBM) aim
at describing the yield formation by modeling the photosyn-
thesis process and biomass partitioning regulated by sink-
source balance [1]. Moreover recently, structural information
of plant are taken into classical PBM, leading to Functional-
Structural Plant Models [2], which bring visual plants with
complex behavior. Among them, GreenLab model has a
generic model frame and it has been used to retrieve the
traces of plant development and growth, for crops [3][4] and
trees [5].

Parameterizing dynamic plant growth model is a criti-
cal issue in model application. In general, there are three
approaches to decide the value of parameters [6]: finding
them from published literature, measuring every parameter
when the system is small, or using some parameter estimate
techniques to fit the model output to measurement. For
the last case, when there are lots of parameters to be
estimated, it is not a trivial work. There are risks of (1)
over-parameterization that can limit the model from being
generalized; (2) data redundancy which costs too much in
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data acquisition; (3) sensitivity to initial parameter values
when using gradient-based optimization techniques.

Sensitivity Analysis (SA) refers to techniques identifying
how the uncertainty of system output can be decomposed
into the different perturbation of the input in the model [7].
SA methods have been widely used in research of economy,
environment and ecology [8][9][10], which can help to get
in-depth understanding of the model structure, simplify and
calibrate the model [7]. The aim of current work is use
SA to aid parameterizing of dynamic plant growth model
with multiple outputs. GreenLab is chosen for case study,
because it is one of few FSPMs that has experienced some
fitting exercise. In this discrete system, part of parameter
values can be obtained directly by observation, while some
parameters controlling biomass production and allocation
need to estimated by model inversion.

Previous studies [3][11][12] have concentrated on fit-
ting the GreenLab model using Generalized Least Squares
Method (GLSM). The fitting targets are biomass of different
type of organs, at individual organ level and/or plant level
[4]. As measuring individual organ biomass is very tedious,
attempt has been made by testing fitting process using more
sparse data [12]. But, still, problems exist in two aspects:
(a) satisfactory solution is not guaranteed since the gradient
descent algorithm usually converges to a local minimum; (b)
updating all parameters during the fitting process often leads
to a fitting failure. On the other hand, the plant growth is
generally sequential in its life circle, e.g., from vegetative
to generative stage, thus not all parameters are involved
at a given plant age. Inspired by this observation, in this
paper, we use the Global Sensitivity Analysis method to
identify a subset of parameters for fitting. The paper is
organized as follows: Sec.II presents briefly the GreenLab
model and parameters to be estimated; Sec.III-A presents
the Global Sensibility Analysis method and how it is used in
current context; Sec.III-B describes the fitting process used in
experiment; Sec.IV shows the results, followed by discussion
and conclusion.

II. GREENLAB MODEL

GreenLab [13] is a generic plant model simulating two
basic process of plant: development (organogenesis) and
growth (organ expansion). The organogenesis is simulated
with a dual-scale automaton, which gives the number of
organs that participate biomass production and allocation. At
each time interval, called Growth Cycle (GC), plant structure
is updated according to the organogenesis model. Combined
with organ size computed from the functional model (see
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below) and geometrical parameters (e.g., branching angel),
three dimensional virtual plant can be simualted.

Biomass production of a plant is calculated using the
following equation [3]:

Q(i) =
E(i)SP

R · k

(
1− exp

(
− kS(i)

SP

))
, (1)

where E(i) is the photosynthetic production potential at
GC i, SP is the ground projection area of plant, R is the
photosynthesis coefficient, k is analogous to the extinction
coefficient of Beer-Lambert’s Law [14], S(i) is the total leaf
area at GC i. The initial biomass Q(0) is from the seed or
cutting.

Biomass are distributed among growing organs according
to their sink strength. For an organ o of age j, its sink strength
is defined by:

po(j) = Po · fo(j), (2)

where o represent the organ type (b: leaf blade, p: leaf petiole,
i: internode, f : female, m: male); fo(j) is the sink variation
function [13], Po is the relative sink strength of organ o,
with the sink strength of leaf blade set to 1 as a reference.
fo(j) is an empirical function describing change of organ
sink strength according to organ age.

Summing up the sink strength of all organ, we get the
total demand of plant at GC i:

D(i) =
∑
o

Po

( i∑
j=1

No(i, j) · fo(j)
)
, (3)

where No(i, j) is the number of organs, given by the
organogenesis model.

According to the sink strength, biomass acquired by organ
of age j at GC i is:

∆qo(i, j) =
Po · fo(j)
D(i)

·Q(i). (4)

In Eqn.4, the ratio Q(i)/D(i) represents the biomass
availability for each organ, called source sink ratio.

The biomass of an organ o is the accumulated biomass
since it appeared in plant:

qo(i, j) =

j∑
k=1

∆qo(i− j + k, k) (i ≥ j). (5)

Summing up the biomass of all individual organs of the
same property gives the total biomass of organs, which are
measured in reality.

Above is a brief description of GreenLab kernel equations
describing organ expansion. In case of Dicotyledons plants
with secondary growth, there are other parameters regarding
to the thickening process of stem. A parameter Sc is used in
quantifying the sink strength of secondary growth in stems
[5].

III. METHOD

A. Global Sensitivity Analysis

Approaches of SA can be divided into two classes: local
and global SA. In local methods, the sensitivity measure
of a single factor (parameter) is calculated around a fixed
point, while other parameters are set to constant; the result
is applicable only to linear models. Because of its simplicity,
this method is widely used. Global methods estimate the
effect on the output from a parameter using point sample
from the whole input space. The global methods is model
free and more accurate compared to the local one, but it
needs more model evaluations and thus is computational
costly.

For GreenLab model, as the linearity of GreenLab model
is unknown, a variance-based global sensitivity analysis
(Sobol’s method) is used to explore the model properties
through Monte Carlo simulations [15]. The method is pre-
sented briefly below, considering a model whose output Y
being a function of k parameters (X1, X2, . . . , Xk):

Y = f(X1, X2, . . . , Xk). (6)

The Sobol’s method expands the function f into terms of
increasing dimensions:

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + · · ·+ f12...k, (7)

in which each term relies only on the parameters in its index.
By using Monte Carlo simulations, we consider the variance
of each term V (fi1...is) as a measure of sensitivity. In partic-
ular, V (fi) is V [E(Y |Xi)]. Divide them by the unconditional
variance V (Y ), we get the first-order sensitivity index (SI)
[16]:

Si =
V [E(Y |Xi)]

V (Y )
. (8)

For additive models, which include linear models, the sum
of all first-order sensitivity indices equal to 1.

B. Fitting Process

Previous fitting exercise showed that when all parameters
are estimated simultaneously by fitting all the data, the risk
of fitting failure is high since the parameters seldom converge
to satisfactory result and rely on the initial value for iteration.
As plant growth process is sequential, it is possible to
choose a subset of parameters, while other parameters being
fixed, according to the sensitivity index of a given output
to parameters. There are five output sequence of interest.
Sensitivity can be computed for different parameters, but
global information is missing that can tell the sensitivity of
the model system to a certain parameter. For such case of
multiple correlated outputs, one solution is to decompose the
data upon a complete orthogonal basis and then to compute
sensitivity indices on each component of the decomposition
[18]. In another word, this can make sure that all outputs
are independent. However, it is worthy to notice that, in
GreenLab model, the different outputs are correlated, as they
are all dependent on the source sink ratio (Eqn.4, 5). This
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TABLE I
DESCRIPTION OF NOTATIONS

Notation Description
K number of parameters
N number of target files
pk the kth parameter
Sk the sensitivity index of Q/D respect to pk
η threshold of SI

TABLE II
FITTING PROCESS

for n = 1 to N
for k = 1 to K

estimate Sk

if Sk > η
select pk

fitting the selected parameters to the first n
target files using GLSM.

fitting all parameters to all target data.

led to the idea of using the source sink ratio, rather than the
organ biomass, to analysis and select the sensitive parameters
for fitting.

The policy of selecting subset of parameters is as follows:
(1) making global SA of the dynamic Q/D, to obtain the
sensitivity indices for all parameters; (2) reading a target
data file from the initial to final sampling dates; if the SI of
a parameter is above a threshold for a certain sampling date,
this parameter is included in fitting current data, otherwise
it remains fixed; (3) continuing step 2 until all data were fit;
fitting all parameters for all target data. For the sake of clarity
we introduce the notations in Table I. The fitting process is
presented in Table II.

IV. RESULT

A. Sensitivity Analysis on Q/D

Sensitivity index of Q/D to different parameters were
estimated using Monte Carlo simulation. Fig.1 gives the
sensitivity indices of Q/D with respect to all parameters.
It can be seen that the SI of parameter R is always high
during plant growth, because it effects linearly on biomass
acquisition of plant; the SIs of parameter Q(0) decreases
with plant age, which means the effect of initial biomass
reserve becomes less important when plant grows up; the SI
of P 1

i disappeared around cycle 45, because of the start of
flowering; parameters Sc, P 2

i and Pf take the relay at later
stage. According to this figure, it is expected that Q(0) and
P 1
i are estimated and fixed early.

B. Fitting results

Data of chrysanthemum were collected at nine sample
dates, from initial planting to harvest time (opening of
flower) [17]. For each sampled plant, measured data includes
the total dry weight (DW) of leaves in main stem (Q1

b), main
stem (Q1

i ), leaves in branches (Q2
b), stem in branches (Q2

i ),
and flowers (Qf ). Parameters to estimate include the initial

Fig. 1. Sensitivity index of source sink ratio (Q/D)

TABLE III
MEASURED DATA

GC Q1
b Q1

i Q2
b Q2

i Qf

6 0.1555 0.0675 - - -
17 0.7810 0.3854 - - -
22 0.9688 0.6304 0.1762 0.0196 -
34 1.6564 1.3290 0.3246 0.0470 -
39 2.0766 2.1888 0.5090 0.2252 -
44 1.9492 2.6276 0.6176 0.3724 0.1368
49 2.2860 2.4868 0.5454 0.8656 0.4008
54 2.3440 2.5092 0.6136 1.0626 0.6058
66 2.2816 2.4762 0.7724 1.7546 1.8778

biomass from cutting (Q(0)), photosynthesis coefficient (R)
(Eqn.1), sink strength of main stem internode (P 1

i ), sink
strength of branch leaf (P 2

b ), sink strength of branch intern-
ode (P 2

i ), sink strength of flower (Pf , Eqn.2) (main stem
flower was picked off), and coefficient for secondary growth
of main stem (Sc). Measured data at 9 sampling dates are
showed in Table III.

The threshold of SI, η, is set to 0.1; the number of target
data files is 9 (N=9); the number of parameters is 7 (K=7).
Initial values of all parameters were set to 0.1. By applying
the fitting procedure as in Sec.III-B, the subset of parameters
chosen at each sampling date is as follows (see Table IV).

Fitting result converged although the final parameter val-
ues are far from their initial values, as shown in Table V.

The target data and fitting curves are shown in Fig.2.

TABLE IV
PARAMETERS CHOSEN AT EACH FITTING STEP

Step Parameters chosen
1 P 1

i , R, Q(0)
2 P 1

i , R
3 P 1

i , R
4 P 1

i , R
5 P 1

i , R, Sc

6 P 2
i , R, Sc

7 P 2
i , R, Sc

8 P 2
i , P 2

f , R, Sc

9 P 2
f , R

10 P 2
b , P 1

i , P 2
i , P 2

f , R, Sc, Q(0)
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TABLE V
FITTING RESULT WITH INITIAL VALUE BEING 0.1. DIRECT FITTING

MEANS ALL PARAMETERS ARE ESTIMATED SIMULTANEOUSLY BY

FITTING ALL OF TARGET DATA.

Parameter Initial value Final value Direct fitting
P 2
b 0.1 0.0395 0.0433
P 1
i 0.1 0.4672 0.1000
P 2
i 0.1 0.2596 0.3836
P 2
f 0.1 2.4028 3.6851
R 0.1 0.000081 0.000076
Sc 0.1 5.5331 10.7197
Q(0) 0.1 0.0726 0.1000
RMS 0.0284 0.0294

Fig. 2. Fitting results on chrysanthemum data from 9 sampling dates,
including the total dry weight of leaves in main stem, main stem, leaves in
branches, stem in branches, and flowers.

Different initial parameter values were tried for the fitting
iteration (see Table VI). The experiment showed that the
fitting converged regardless of the initial values when aided
by sensitivity analysis. Instead, if all parameters are fit
simultaneously, the fitting failed, as can be seen from the
parameter values and error with direct fitting.

V. CONCLUSIONS AND DISCUSSION

In this work, we have presented the application of a SA
method for improving the data fitting robustness, with a case
study on GreenLab model. Fitting on chrysanthemum data
demonstrates the value of sensitivity analysis for selecting

TABLE VI
FITTING RESULT WITH INITIAL VALUE BEING 5. DIRECT FITTING

MEANS ALL PARAMETERS ARE ESTIMATED SIMULTANEOUSLY BY

FITTING ALL OF TARGET DATA.

Parameter Initial value Final value Direct fitting
P 2
b 5 0.0395 3.5171
P 1
i 5 0.4674 5.0000
P 2
i 5 0.2596 4.2202
P 2
f 5 2.4023 4.9921
R 5 0.000081 0.000019
Sc 5 5.5299 6.1047
Q(0) 5 0.0727 5.0000
RMS 0.0284 0.2350

parameter set for the fitting: using different initial parameter
values, fitting can be achieved with similar final values.

Calibration of a functional structural plant model is a chal-
lenging task because of the complexity of model structure.
Like in real plant, the yield and other organ biomass are
joint results of the genetic background and environmental
conditions, both influencing the development and growth
process of plant. Using a model free analysis technique helps
greatly in understanding the behavior of model and plant.
For example, analysis has been made on maize plant using
the biomass production Q as the output [19]. Current work
proved the advantage of using global sensitivity analysis in
choosing parameters in dynamic fitting. Actually, it makes
use of the fact that the plant growth is sequential: for
the case of chrysanthemum, the plant starts by vegetative
growth of leaves and stem extension; when flowers buds
start to growth, the main stem organs finish extension, while
branch stem and flowers become the dominant sink. So it
is reasonable to estimate dominant parameters for the active
process. As a result, the fitting process is less dependent on
priori knowledge of possible parameter values.

Compared to other applications of SA on plant model,
current work has made use of a key variable that adjust
the growth of organs, source sink ratio (Q/D), instead of
computing the principle components for analysis. According
to prevailing hypothesis that plant growth is regulated by
source sink ratio [1], this choice is not only reasonable but
also more mechanistic compared to statistical approach. The
sensitivity indices can also aid to decide the sampling date
and content to same labor and time in measurement. This is
useful when the online calibration of plant model is needed.
However, in line with the no free lunch rule, the fitting
relies on the sensitivity analysis process, which is costly and
dependent also on sampling space. Moreover, the number of
parameters to be chosen once rely on the threshold η, another
parameter to be tuned.
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VI. APPENDIX

A. Estimation of Sensitivity Index

Given the model y = f(x1, x2, . . . , xk) with independent
random variables, the joint probability density function of
input can be expressed as:

P (x1, x2, . . . , xk) =

k∏
i=1

pi(xi). (9)

Variance of model out y is:

V(y) =

∫∫
· · ·
∫ (

f(x1, x2, . . . , xk)− E(y)
)2 k∏

i=1

pi(xi)dxi

=

∫∫
· · ·
∫
f2(x1, x2, . . . , xk)

k∏
i=1

pi(xi)dxi − E2(y)

(10)

When input factor xj is fixed to x̃j , the conditional

variance of y is:

V(y|xj = x̃j)

=

∫∫
· · ·
∫ (

f(x1, x2, . . . , x̃j , . . . , xk)− E(y|xj = x̃j)
)2

·
k∏

i=1
i6=j

pi(xi)dxi

=

∫∫
· · ·
∫
f2(x1, x2, . . . , x̃j , . . . , xk)

k∏
i=1
i6=j

pi(xi)dxi

− E2(y|xj = x̃j)
(11)

In order to remove the dependence on x̃j , integrating
V(y|xj = x̃j) over the probability density function of x̃j
one obtains:

E
(
V(y|xj)

)
=

∫∫
· · ·
∫
f2(x1, x2, . . . , xj , . . . , xk)

k∏
i=1

pi(xi)dxi

−
∫

E2(y|xj = x̃j)pj(x̃j)dx̃j

(12)

Subtract Eqn.12 from Eqn.10, obtaining

V(y)− E
(
V(y|xj)

)
=

∫
E2(y|xj = x̃j)pj(x̃j)dx̃j − E2(y)

(13)

To avoid a double loop in computing Eqn.13 using Monte
Carlo simulation, it can be rewritten as [15]:∫

E2(y|xj = x̃j)pj(x̃j)dx̃j

=

∫ {∫∫
· · ·
∫
f(x1, x2, . . . , x̃j , . . . , xk)

k∏
i=1
i6=j

pi(xi)dxi

}2

· pj(x̃j)dx̃j

=

∫∫
· · ·
∫
f(x1, x2, . . . , x̃j , . . . , xk)f(x′1, x

′
2, . . . , x̃j , . . . , x

′
k)

·
k∏

i=1
i6=j

(pi(xi)dxi)

k∏
i=1
i6=j

(pi(x
′
i)dx

′
i)dx̃j

=

∫∫
· · ·
∫
f(x1, x2, . . . , xj , . . . , xk)f(x′1, x

′
2, . . . , xj , . . . , x

′
k)

·
k∏
i=1

(pi(xi)dxi)

k∏
i=1
i6=j

(pi(x
′
i)dx

′
i)

(14)

The integral in Eqn.14 is the expectation value of the
function F of a set of (2k − 1) factors:

F (x1, x2, . . . , xj , . . . , xk, x
′
1, x
′
2, . . . , x

′
j−1, x

′
j+1, . . . , x

′
k)

=f(x1, x2, . . . , xk)f(x′1, x
′
2, . . . , x

′
j−1, xj , x

′
j+1, . . . , x

′
k)
(15)
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Therefore, the sensitivity measure for a generic factor xj
is:

Sj =
V
(
E(y|xj)

)
V(y)

=
Uj − E2(y)

V(y)
(16)

where

Uj =

∫
E2(y|xj = x̃j)pj(x̃j)dx̃j (17)

can be computed using a single Monte Carlo loop.

B. Generalized Least Squares Method

Considering a generic model

[y1, y2, . . . , yn] = F (θ1, . . . , θp) (18)

which consists of p parameters and n outputs, the objective
is to adjust the parameters to best fit a observed data set Y =
[Y1, . . . , Yn]. Generalized least squares method estimates
parameters by minimizing the squared Mahalanobis length
of the residual vector [20]:

LΩ(θ) = (Y − F (θ))TΩ(Y − F (θ)), (19)

where Ω is a n × n matrix which weights the different
observations.

Let J be the Jacobian matrix

J =


∂y1
∂θ1

. . . ∂y1
∂θn

...
. . .

...
∂ym
∂θ1

. . . ∂ym
∂θn

 (20)

in which the element can be estimated by

∂yv(θ)

∂θk
≈ ∂yv(θ + hkek)− yv(θ)

hk
(21)

where ek is the kth column vector of the p × p identity
matrix, and hk the step length. Consequently, the model can
be approximated at θ(q) by

F (θ) = F (θ(q)) + J(θ(q))(θ − θ(q)) + o(||θ − θ(q)||). (22)

Let ∆Y = Y − F (θ(q)), ∆θ = θ − θ(q) and omit the
higher-order infinitesimal, LΩ(θ) becomes

LΩ(θ) =
(

∆Y − J(θ(q))∆θ
)T

Ω
(

∆Y − J(θ(q))∆θ
)
(23)

Setting the gradient of LΩ(θ) with respect to ∆θ to zero,
we get

∆θ =
(
J(θ(q))TΩJ(θ(q))

)−1

J(θ(q))TΩ∆Y (24)

Then the parameters are updated iteratively

θ(q+1) = θ(q) + ∆θ (25)

until converged.
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