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Abstract

In many herbaceous plants with inflorescence, the axil-
lary flowering branches remain in a substantial dormant
stage between their initiation and the start of expansion.
The durations of dormant stage, called growth delay, are
linked to the positions of branches in plant architecture. For
modeling biomass production and partitioning, it is essential
to describe the growth delay to obtain the number of organs
in expansion competing for the assimilates.

In this paper, position-dependent delay functions are
proposed for herbaceous plants with different branching
inflorescence. The delay intensities can change according
to branch position or plant dynamic source-sink ratio, to
simulate the apical dominance phenomena in plants with
basipetal flowering sequences. Simulation results are given
on the effect of delay parameters on plant architecture. By
integrating the delay functions with GreenLab model, the
growth process of chrysanthemum under two light levels
were simulated. The current work provides a generic module
for modeling the growth of individual organs in plants with
inflorescence.

1. Introduction

An inflorescence is a cluster of flowers arranged on a

stem that is composed of a main branch or a complicated

arrangement of branches. In a deterministic inflorescence,

there are several growth sequences of branches along a stem:

basipetal (top-down), acropetal (bottom-up), and divergent

(starting from the central part). Various combinations of

inflorescence structures and flowering sequences are possible

in plants. Many plants produce inflorescence, such as rape-

seed, lettuce and chrysanthemum. When modeling the crop

yield, in terms of either seed or flower production, simulation

of the structure and growth sequence of inflorescence is an

important issue.

Developmental models of inflorescence have been de-

veloped to simulate various inflorescence structures and

flowering sequences [1][2]. The L-system based approach

[1] was started by simulating the inflorescence in lettuce [3];

the flowering branches were initiated in top-down sequence

to mimic the basipetal flowering sequence. Although visually

realistic, botanically speaking, the top-down branch initia-

tion contradict with the fact that the axillary meristems are

formed earlier in older leaves than in younger leaves [4]. In

some leafy inflorescence, for example the chrysanthemum,

the branch leaves can occupy as high as 20% of total leaf

biomass at the start of generative stage. If biomass is the

main issue, the top-down initiation will bring systematic

error by neglecting their contribution in biomass production

and competition.

To properly simulate the development process of inflores-

cence, and to specify precisely the dynamics of the number

of sink and source organs, growth delay has been introduced

into plant growth model of chrysanthemum, which is the

interval between the initiation and expansion of branch

organs [5]. The growth delay is position-dependent. For

example, in case of basipetal flowering, it takes more time

for branches of lower position to start although they are

initiated earlier than those of higher position. When growth

delay is introduced, branch stems are initiated in parallel to

main axis, but they have negligible sink strength until the

start of expansion. In another application [6], the growth

delay has been shown to be dependent on the ratio between

assimilate supply and demand, or the dynamic source-sink

ratio of plant [6]. This is inline with the observation on

chrysanthemum, that at higher light level, more flowers can

be produced at harvest stage [7]. However, in both previous

works, the branching order was limited to one, which was

insufficient to generalize.

In this paper, we propose a generic method for modeling

the position-dependent growth delay in herbaceous plants of

any branching order. Focus is given to the basipetal flowering

sequence, which is very common in crops. The apical

dominance phenomena were simulated by linking the delay

intensity to the plant source-sink ratio. Simulation results

are shown for effect of different delay functions on plant

architecture. An example of application on chrysanthemum

is shown to illustrate how the model can be calibrated

and how it can be used for simulating the effect of the

environment on plant growth.
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2. Method

Three sub-modules are necessary to simulate the develop-
ment and expansion of herbaceous plants with inflorescence:
(1) an organogenesis model for generating the topological
structure; (2) a delay function describing the time duration
from organ initiation (primordium) to organ expansion; (3)
a functional model computing the biomass production and
partitioning into plant structure, which gives the weights
and sizes of organs. Combination of (1) and (2) generally
leads to the so-called functional structure plant models [8].
The functional model can have different degrees of com-
plexity, either based on simplified concepts as in GreenLab
[6][9][10], or on more sophisticated processes as in [11].
Models contributing to part (1) and part (2) can be referred to
other articles; here we focus on part (2), the delay function.

2.1. Locating a phytomer

To define a position-dependent growth delay function, the
first task is to give the coordinate of each organ inside plant
topological structure. For a herbaceous plant, the coordinate
of a phytomer can be defined by p + 1 integer numbers,
p being the branching order of the axis. For example,
for main stem, whose branching order is zero, an integer
number i is sufficient to identify a phytomer of rank i
from the stem base of plant. all organs inside a phytomer
have the same coordinates. The coordinate of a branch
is the same as that of phytomer where it is attached to.
Therefore, branch (i) means a first-order branch located at
phytomer (i). For a branching structure, the definition of
the coordinate is recursive. For example, the phytomer of
coordinate (i,j) indicates the j-th phytomer from the base
of a first-order branch of coordinate i. Phytomer (i,j,k)
indicates k-th phytomer from the base of a second-order
branch of coordinate (i,j), etc. Fig. 1 shows a topological
structure of four branching orders, where the coordinates of
some phytomers are indicated. In the case of whorls, all the
branches at the same position are supposed to have the same
coordinate.

To define the plant topological structure, the (maximum)
lengthes of each axis are given in the organogenesis model.
For example, in Fig.1, the length of main stem is five
phytomers, denoted as T1 = 5. Let T2(i) be the length
(number of phytomers) of the first-order branch located
at abscissa i from base of main stem. In the example of
Fig.1, T2(1) = 4, T2(2) = 3, etc. Similarly, let T3(i, j) be
the length of the second-order branch of coordinate (i, j).
Different recursive equations giving the lengthes of branches
can be defined, leading to various topological structures.
Following are several examples for the length of branches
of first- and second- orders respectively. Such definition can
be extended to higher-order branches.

Figure 1. A inflorescence structure with four branching
orders and basipetal flowering sequence. The structure
is of self-similar property (see Eqn.4), with length of
main stem T1 = 5. Delay intensity is two (see Eqn.12).
Numbers in ( ) indicates the coordinates of phytomers
and branches. Each circle represents a terminal flower.
The numbers in circles indicate the time (in cycle) from
the initiation of the terminal phytomer of main stem to
the expansion of current phytomer.

2.1.1. Constant branch length. In this case, a branch
of a given order p have constant lengthes T 0

p (Eqn.1),
independent of its position. An drawing of such a topological
stricture is shown in Fig.2(a).

T2(i) = T 0
2 ;T3(i, j) = T 0

3 (1)

2.1.2. Increasing branch length until a maximum. The
length of a branch may increase from the top of its bearing
axis to the lower positions, until a maximum value T 0

p is
reached, see Fig.2(b).

T2(i) =
{

T1 − i, i > T1 − T 0
2 ,

T 0
2 , else

(2)

T3(i, j) =
{

T2(i)− j, j > T2(i)− T 0
3 ,

T 0
3 , else

(3)

2.1.3. Self-similar structure. If the length of a branch
always increases from the top to the lower position of its
bearing axis, it may lead to a self-similar structure, see
Fig.2(c). If the branching order were infinite, the substruc-
ture would be always similar to its mother structure. The
example in Fig.1 belongs to this type.

T2(i) = T1 − i;T3(i, j) = T2(i)− j (4)

2.1.4. Self-similar structure with rhythm ratio w. This
is a more general case of the self-similar structure, where
the length of a branch is proportional with a ratio w to the
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(a) (b) (c) (d)

Figure 2. Examples of different inflorescence topolog-
ical structure. The lines in the left of each main axis
indicate the profile of the branch lengthes. (a) Constant
branch length (Eqn.1); the dashed lines representing
the same structures as others; (b) Increasing branch
length until a maximum (Eqn.2); (c) Self-similar struc-
ture (Eqn.4); (d) Self-similar structure with rhythm ratio
w=0.5 (Eqn.5).

distance between the top of its mother axis and the position

of the branch, see Fig.2(d).

T2(i) = w · (T1 − i); T3(i, j) = w · (T2(i) − j) (5)

Fig.2 illustrates the topology of plants for the four cases

mentioned above. It is worth noticing that the topological

structure of inflorescence and the form of delay function

(see below) can be defined independently as mentioned in

[3], although the topological information are used in delay

function.

2.2. Quantifying the delay

The growth delay is defined as the time duration between

the initiation time tI (the moment that a phytomer appears),

and the expansion time tE (the moment that the growth

of organs is triggered). Time is expressed in cycle, or

phyllochron, which is the interval for the creation of a

phytomer, generally in terms of growing degree days. While

the initiation time of phytomers and the contained organs

are given by the organogenesis model, their expansion time

is determined by the growth delay. In one phytomer, the

growth delay was not necessary the same for all organs,

for example, for the case of chrysanthemum, there was no

delay for branch leaves. As the basipetal flowering sequence

is very common in herbaceous plants, we start by this case

to show how the delay function can be defined as a function

of coordinate.

A most simple basipetal case is that branches start to grow

one after another in each cycle from the top. An illustration

is given in Fig.1. In Fig.1, all branch buds keep dormant

before the initiation of terminal phytomer of main axis at

cycle five (T1 = 5). At cycle 6, the top-most first-order

branch is triggered, and then at cycle seven, the expansion

of its terminal flower starts as the length of this axis is

one. This flower is actually initiated at cycle five, so the

delay is two cycles for this flower, indicated in the circle.

The other first-order branches, with coordinates (3), (2), (1)

respectively, begin to grow sequentially at cycle 7, 8 and

9. The expansion time of a first-order branch of coordinate

(i), tE(i), is then the sum of T1 and the distance in number

of phytomer from its position (i) to length of main stem

(T1 − i). The positional information is converted into delay

because one cycle corresponds to the time for initiating a

new phytomer. The growth delay d(i) of the bud, being

the difference between the expansion time and the initiation

time i, can be obtained as tE(i)− tI(i) for this simple case.

Finally, for a first-order branch of coordinate (i), its initiation

time tI(i), expansion time tE(i) and delay function d(i) are

given as in Eqn.6.

tI(i) = i

tE(i) = 2T1 − i (6)

d(i) = tE(i) − tI(i) = 2(T1 − i)

Once an axis starts to grow, phytomers in this axis start

expansion in the order that they are created. In other word,

they have the same growth delay as indicated in the terminal

flower. Therefore, for the terminal phytomer (with a flower)

of a branch (i), its expansion time is that of the axis plus

the length of the axis.

For a second-order branch of phytomer (i, j), suppose

the phyllochron is the same for branches of any order, the

initiation time of this phytomer can be computed from its

coordinate, as in Eqn.7.

tI(i, j) = i + j (7)

The way of computing the expansion time of a second-

order branch is similar to the case of the first-order branch.

The second-order branch waits until the terminal phytomer

of this mother branch (i) has started expansion, which takes

place at cycle tE(i) + T2(i). As the second-order branches

start one by one from the top, it take (T2(i) − j) cycles

for the branch (i, j) to start from that moment. Then the

expansion time of branch (i, j) is computed recursively, as

shown in Eqn.8.

tE(i, j) = tE(i) + (2T2(i) − j) (8)

The delay, being the difference between them, is

d(i, j) = tE(i, j) − tI(i, j) (9)

= 2(T1 − i) + 2(T2(i) − j)
= d(i) + 2(T2(i) − j)

For a third-order branch of coordinate (i, j, k), its ini-

tiation time, expansion time and delay function are given

directly in recursive way as in Eqns.10, 11, and 12.
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tI(i, j, k) = tI(i, j) + k (10)

tE(i, j, k) = tE(i, j) + (2T3(i, j) − k) (11)

d(i, j, k) = d(i, j) + 2(T3(i, j) − k) (12)

The recursive computation can be extended to higher-

order branches. In this way, the positional information i, j, k
are taken into accounted using the delay function. The result

can be seen from the example in Fig.1: of lower position

and higher branching order, it takes longer time to have

flowering, although these terminal flowers are all initiated

at the same cycle.

2.3. General delay functions

The delay functions in Sec.2.2 is limited to the simple

basipetal flowering sequence where flowers open in a given

speed. Here they are extended to more general functions for

the basipetal case, and other flowering sequences are defined.

2.3.1. Basipetal delay functions with delay intensity.
Consider the case that the expansion sequence of axillary

branch is not necessary one after another. Instead, multiple

branches may start simultaneously, followed by the expan-

sion of another cluster of branches. To achieve such effect,

instead of having a coefficient of two as in Eqn.9, we use

a non-negative vector parameter �g that reduces or increases

the growth delay according to the branching order. Then the

delay function for a second-order branch of coordinate (i, j)

can be written as in Eqn.13.

d(i, j) = g1 · (T1 − i) + g2 · (T2(i) − j) (13)

where gp is called delay intensity of pth-order branch. When

the maximum branching order is two, �g has two components,

i.e., �g = [ g1 g2 ]. Branches have longer dormant stage if

the delay intensities are bigger. When �g = �0, there is no

delay, and branches grow immediately at their initiation.

Regarding the plant topological structure, the flowering

sequence is acropetal for the case of Fig.2(a), while for the

case of Fig.2(c), all terminal flowers expand simultaneously.

When �g = �1, all flowers start expansion simultaneously at

cycle T 0
1 + T 0

2 + T 0
3 for the structure in Fig.2(a), while for

Fig.2 (c), the flowers expand one after another. When �g = �2,

for the case of Fig.2(a), branches start extension one by one

from top, giving sequential flowering, while the flowering

is every two cycles for the case of Fig.2(c), as shown by

the example in Fig.1. Obviously, the flowering sequence

is dependent on the delay parameters and the topological

structure of inflorescence. The same delay function may give

different flowering sequence if the plant topology changes.

Real �g values can give clusters of starting branches

because of round-up effect. If several flowers grow simulta-

neously, they compete for assimilate and share the same life

history, finally it is possible to observe groups of flowers of

the same size, as seen in chrysanthemum.

The expansion time of a phytomer can finally computed

from the delay of the axis that it belongs to. Remind that the

initiation time is known according to its coordinate. As the

delay function is not necessarily the same for the organs in

one phytomer, to distinguish, parameter gp can be written as

gO
p , O being type of organs, I for internode, F for flower,

and L for leave.

2.3.2. Delay intensity dependent on branch position. In

real plants, growth delay is not necessary linearly dependent

on the position of the branch on the mother axis, as in Eqn.

13. Assuming that the delay intensity increases at lower

position of branch, we may introduce such a function as

in Eqn.14 for the first and second- order branches.

g1 = g0
1 · cT1−i

1 (14)

g2 = g0
2 · cT2(i)−j

2

where g0
p is called the initial delay intensity, and cp(cp ≥ 1)

is called position coefficient. When cp equals to one, the

delay intensity is independent on the position. Otherwise, at

lower branch position (smaller i, j values), delay intensities

are stronger, and chance is less for these branches to start

extension.

2.3.3. Delay intensity dependent on source-sink ratio.
Assume that the delay may be regulated by the assimilate

competition level within the plant. To simulate such a

mechanism, the delay intensity is set to be proportional to

the dynamic sink-source ratio. Let Q(n) be the assimilate

supply from last cycle n− 1, D(n) be the total demand for

assimilates of the growing organs ay cycle n. Both Q(n)
and D(n) can be obtained using different approach, one

of them is though calibrating GreenLab functional model

[6][9]. The dynamic sink-source ratio is defined as the ratio

between the assimilate demand D(n) and supply Q(n). The

delay intensity at cycle n+1 is then computed as in Eqn.15.

gp(n + 1) = g0
p + kp · D(n)/Q(n) (15)

In Eqn.15, g0
p is the initial delay intensity, and kp is

called dependency coefficient, a non-negative value reflecting

to which degree the delay intensity is dependent on the

sink-source ratio. When k is zero, the delay intensity �g
is constant, as in previous case. Otherwise, according to

Eqn.15, when the ratio Q(n)/D(n) decreases, the delay

intensity becomes bigger, and hence the delay duration is

longer according to Eqn.13. This can limit the expansion of

new sink organs and avoid fast increase of plant demand.
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In each cycle, the growth delays of dormant branches are

recomputed using the updated delay intensity. In this way,

the plant become self-regulating system.

2.3.4. Other delay functions. To control the flowering

sequence, one can either define the delay function d, or the

expansion time tE . They can be computed from each other

as the coordinate gives the initiation time tI . Here are some

flowering patterns with example on second-order branch of

coordinate (i, j). These definitions can be extended to other

branching orders.

• Divergent flowering sequence. If the flowering se-

quence is divergent, the expansion function can be

defined as in Eqn.16.

tE(i, j) = (T1+|1
2
T1−i|)+(T2(i)+|1

2
T2(i)−j|) (16)

• Constant delay. If all phytomers of a given branching

order p have a constant delay d0
p, independent on its

coordinate, the delay function can be written as in

Eqn.17.

d(i, j) = d0
2 (17)

• Flowering at a given moment. If organs keep dormant

until the arrival of a certain event at cycle t0, such as

raining or transition of light cycle, the expansion time

of organs can be specified as in Eqn.18.

tE(i, j) = t0 (18)

2.4. Identifying the delay parameters for basipetal
case

A relevant issue of a model is to identify parameters

according to observed data. We still focus on the basipetal

flowering case as it is the most common among herbaceous

plants. The aim is to obtain the parameter values of Eqn.13,

Eqn.14 or Eqn.15. There are at least two choices. One is

to observe the time duration between every two succes-

sive branches, but it is tedious to do, and the precision

of recorded data is often dependent on the experience of

observers. An elegant way is to count the number of visible

flowers at different stages, and fit them with the computed

number of flowers Nf . In the model, a flower is counted

when its age is older than the delay. The numbers of flowers

at different stages are functions of the delay parameters

and topological parameters. For example, for the self-similar

case of T2(i) = T1 − i, the number of flowers in first-order

branches is Nf (n) = 1
g1

(n − T1), T1 < n < (g1 + 1)T1,

when the delay intensity is constant. For the number of

flowers in higher order branches, equations are of more

complex form, but it is always possible to count them in

simulation software, which is very efficient for herbaceous

plants that have a limited number of phytomers. Fig.3 shows

Figure 3. Simulated number of flowers with constant
delay intensities (Eqn.13). The plant structure is of
type Fig.2 (b), with T1 = 15, T 0

2 = 5, T 0
3 = 3. The

corresponding plant architectures can be seen in Fig.4.

the number of started flowers case of different constant delay

intensities, as shown in Fig. 4.

An optimization algorithm is needed in fitting the number

of flowers. Because of the round-up effect in computing the

number of flower as a function of �g, the model output is

generally not sensitive to a small change of parameter values.

In that case, gradient-based optimization is not suitable

for this purpose. A heuristic algorithm - particle swarm

optimization [12] – was chosen for the application.

3. Result

3.1. Simulation

Below we show several simulated virtual plants with inflo-

rescence whose growth is dependent on the delay function.

The growth of plant is simulated using GreenLab approach.

No delay is set for leaves. The indices of parameter g are

indicated only when the values are different for branching

orders or organ types. The plant topology is the same for

all plants with the maximum branching order being three,

of the same type as in Fig.2(b), with T1 = 15, T 0
2 = 5,

T 0
3 = 3.

3.1.1. Effect of delay intensity. The growth delay changes

the number of sink organs (internodes and flowers) and

consequently the source-sink ratio. As the biomass acqui-

sition of organs is dependent on this source-sink ratio, the

organ biomass and size will be changed. Moreover, the delay

function changes directly the plant architecture with different

number of visible branches. Fig.4 shows the gradient of

flowering at the same plant age when parameter g (Eqn.13)

takes different values.

From Fig.4 (a) to (e), the growth delay increases with

bigger values of parameter g. In case (a) where g = 0,

branches start growth once they are initiated. This leads to

the smallest plant because early competition for assimilates
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(a) (b) (c) (d) (e)

Figure 4. Architectures of inflorescence at cycle 25
using different delay intensities. (a)g = 0; (b)g = 1;
(c)gF

1 = 1.5, gF
2 = 1.3, gI

1 = 2, gI
2 = 1.3; (d)g = 2;

(e)g = 4. The plant structure is of type Fig.2 (b), with
T1 = 15, T 0

2 = 5, T 0
3 = 3. Delay intensity gp (Eqn.13)

take the same values for organs and all branching
orders if no index is given.

inhibits the expansion of leaves, which are the source organs.
Case (b) shows a specific case with g = 1, where flowers
begin to grow at the same cycle except the top ones. In case
(c), a typical basipetal inflorescence structure is found, where
flowers locating at higher position gains bigger size because
they begin expansion earlier. Different delay parameters for
internodes and flowers are set so that the flowers start to
grow lightly earlier than the internodes. Expansion of lower
branches seem inhibited as the source-sink ratio has been
too low. The tallest plants are found in cases (d) and (e), as
there is little competition from the branches on the extension
of main stem.

3.1.2. Effect of source-sink ratio Q/D. Consider the case
where the values of parameter g depend on the source-
sink ratio, as in Eqn.15. The Q/D ratio typically increases
with plant age in vegetative stage until a maximum value,
and decreases afterwards [6] since expansion of flowers
increases the plant demand D and possible senescence of
leaves can decrease the assimilate supply Q. Therefore,
stronger dependency on the ratio Q/D will lead to bigger
delay intensities and therefore less flowers. Fig.5 shows the
effect of assimilate supply and demand ratio on the plant
architecture with different dependency coefficient k.

Increasing dependency on Q/D from Fig.5 (a) to (d) leads
to more delay. Compared to the control plant in the case (a),
the plant in (b) has less second-order branches. In case (c),
the first-order branches have shrunk. In case (d), only few
branches in top of plants expanded, typically observed in
nature. Comparing the Fig.5 (d) and Fig.4, it can be seen
sink-source dependent delay intensity give different plant

(a) (b) (c) (d)

Figure 5. Architectures of inflorescence at cycle 25 with
different dependency coefficient ~k on source-sink ratio,
according to Eqn.15. (a)k = 0; (b)k = 5; (c)k = 50;
(d)k = 100. The control plant in (a) is the same as
in Fig.4c. Dependency coefficient kp (Eqn.13) take the
same values for all branching orders.

Figure 6. Simulated source-sink ratio (Q/D) with dif-
ferent dependency coefficient k of delay parameters on
Q/D, using the same parameter sets as in Fig.5.

shape.
As the delay of flower expansion influences on the plant

demand, there is actually feedback of the growth delay on
the source-sink ratio. Fig.6 shows the source-sink ratio at
different dependency coefficient k on Q/D ratio. From the
figure it can be seen that Q/D values increase in vegetative
stages, and decrease at flowering stage. At higher k, as delay
is greater, and less flowers begin to grow, plant demand is
smaller, leading to higher Q/D. At later stage, the dynamics
of Q/D ratio highly depends on the leaf functioning time.
In this example, leaf functioning time is 20, and at plant age
25, all leaves are still contributing to biomass production.

3.1.3. Effect of environmental condition. The environ-
mental conditions can influence on the resource supply for
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plant growth. In case that the growth delay is dependent

on sink-source ratio, the adaption of plant architecture to

environment, or plant plasticity, can be partially simulated.

In GreenLab model, a variable E is used for indicating

environmental conditions at each cycle. The biomass supply

at each cycle Q(n) is proportional to E. The meaning of E
can be either the intercepted light integral per cycle, or the

potential evapo-transpiration, if water is the limiting factor.

In previous examples as in Fig.4 and 5, E is set to be

one. Fig.7 shows the simulated plant architectures when the

control parameter E changes, where k equal to 50, and delay

parameters depend on the source-sink ratio.

(a) (b) (c) (d)

Figure 7. Architectures of inflorescence dependent on
environmental factor E. (a)E = 0.5; (b)E = 1; (c)E =
1.5; (d)E = 2. The control plant in (b) is the same as in
Fig.5c.

From Fig.7 it can be seen that when E increases, the plant

height increases with E. It is worthy to notice that the ar-

chitectures are not simply amplified at better environmental

condition. Instead, more branches start extending at better

condition.

3.2. Applications

To simulate the development and growth process of a

herbaceous plant with basipetal inflorescence, the three

components of the model as introduced in Sec.2 need to

be calibrated. Generally the parameters of the organogenesis

model can be observed directly from the plant architecture

with naked eyes, which are the length of branches of

different types, i.e., T1, T2(i), T3(i, i), etc. The parameters of

delay function can be identified using the inverse method as

in Sec.2.4. After that, parameters controlling the functional

model can be identified as the last step by fitting the organ

biomass.

Figure 8. The number of flowers in chrysanthemum
plants in generative stage, from four samplings (circles)
and model output (lines), at low and high light level.

An application is made on chrysanthemum using Green-

Lab approach. The number of flowers were counted at four

stages from flowering (unpublished data). They were the

fitting target in identifying the delay parameters. The results

of fitting for two light levels are shown in Fig.8. Remember

that before the calibration of the functional model, the

source-sink ratio is still unknown, therefore only positional

information can be used to simulate the change of growth

delay intensity (14). Four parameters (g0
1 , g0

2 , c1, c2) were

identified in this fitting exercise.

The next step is the identification of source-sink pa-

rameters by fitting simultaneously the biomass of different

types of organs (main stem leaves, branch leaves, main stem

internodes, branch internodes, flowers) from nine sampling

stages. The delay function is used in the functional model

to compute the plant demand. The model gives good fitting

on all data with a set of parameters regulating biomass

production and repartition (unpublished data). Fig.9 shows

two virtual chrysanthemums grown at low and high light

conditions, with organ size and weight being computed using

the calibrated model. At high light condition, the simulated

plants produce more flowers, while the size of flowers is

equivalent to the low light condition. This result is close to

the behavior of real plants, which is assured by the delay

function.

4. Conclusions and perspectives

In this paper we presented the delay functions controlling

various flowering sequence in herbaceous plants with in-

florescence. Emphasis was made on the basipetal flowering

which is very common in crops. The effect of different

delay parameters on plant growth was visualized by the

plant architectures. Especially, it was presented how the

growth delay and consequently the plant architecture can

be adjusted by the internal source-sink ratio of plant and

furthermore the environmental level. Simulation results in

Fig.5 reproduced faithfully the apical dominance effect. An
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(a) (b)

Figure 9. Simulated cut chrysanthemums under (a)low
light and (b)high light levels.

example of application was given on chrysanthemum to

illustrate the calibration of the delay function (Fig.8) and the

importance of delay function in describing the plant growth.

Differing from the previous works [1] [3] where flowering

sequence was controlled purely by the plant development, in

the current work, the flowering sequence was controlled by

the delay functions, which quantifies the time duration from

organ initiation and organ expansion. Finally the resulting

flowering sequence is dependent both on the delay function

and the topological structures of plant, which result from

the organ initiation sequences. Moreover, from the computer

simulation point of view, the computation of delay with

equations is more efficient compare to the step by step

simulation of signal propagation in the plant structure.

It is often controversial whether it is hormone or source-

sink ratio that control flowering. Lindenmayer [3] has pro-

posed two mechanisms control the flowering sequence: (1)

the florigen (the flowering substances, which have unfortu-

nately not been identified despite of more than 70 years’

effort) propagates from the base of plant to main stem and

branches. After the arrival of florigen, the apex is rapidly

transformed from a vegetative to a flowering condition; (2)

the production of an inhibitory hormone (auxin) by the main

apices and its basipetal transport in the branches (role of

apical dominance). The first mechanism corresponds to the

organogenesis model in this paper. The simulated result as

in Fig.5 demonstrated that based on a source-sink approach,

the effect of inhibitory hormone can be well simulated. In

future, it is encouraging to test the link between the growth

delay and source-sink ratio on different species and different

environmental conditions.
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