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Abstract— In this paper, a simple deep learning method
namely RGBD-PCANet is proposed for object recognition ef-
fectively. The proposed method extends the original PCANet
for RGB-D images. Firstly, the RGB and depth images are
preprocessed to meet the requirement of the network input
layer. Secondly, features of RGB-D images are extracted by
the two stages RGBD-PCANet which consists of cascaded PCA,
binary hashing, and block-wise histograms. Finally, the SVM
method is used as classifier. We evaluate the proposed method
on the popular Washington RGB-D Object dataset. Extensive
experiments demonstrate that the proposed RGBD-PCANet
method achieves comparable performance to state-of-the-art
CNN-based methods and the runtimes are low without GPU
acceleration.

Index Terms— RGB-D Object recognition, PCANet, deep
learning

I. INTRODUCTION

Object recognition is of essential importance in the fields
of robotics, computer vision and multimedia. And it is the
basic procedure for many tasks, for example, robot grabbing,
object searching and environment understanding. Because
of the large variety of categories and variable viewpoints,
it is still a challenging task to recognize objects reliably.
Traditional object recognition methods are mainly based on
available RGB images. These methods usually use features
extracted from RGB images including color, texture and local
features [1][2][3]. Recently, deep learning techniques provide
useful tools for rich feature representation. In particular,
Convolutional Neural Networks (CNN) [4] has achieved
excellent performance in image recognition tasks [5][6][7].
And CNN-based methods [8][9][10] improved the accuracy
in several objects recognition datasets extremely. However,
color information can be easily interfered by illumination,
occlusion and so on. As the popularization of the cheap
RGB-D sensors such as Kinect, one can easily acquire depth
information of images which brings much help in object
recognition. Similar to the domain of RGB object recog-
nition, many CNN-based methods are proposed to extract
features of RGB-D images [18][19][20], and they achieve
excellent performances. But GPUs are always needed for
training and recognizing with these methods which is an

extra cost for robots and other mobile platform. Inspired by
the simple structure and outstanding performance of PCANet
method [22] in feature extraction, we propose a similar deep
learning network namely RGBD-PCANet for RGB-D images
which can be implemented in the platform without GPUs.
Compared with CNN-based methods, experimental results
show that the proposed method achieves comparable accuracy
result but is more efficient.

The structure of the rest of this manuscript is as follows.
Section II gives an introduction to related work. The details
of the proposed method are presented in section III. In section
IV, we present the experimental results in public dataset.
Conclusions, with recommendations for future research, are
given in Section V.

II. RELATED WORK

In recent years, significant efforts have been made for ob-
ject recognition with RGB-D images. The proposed methods
can be roughly categorized into two groups: hand-crafted fea-
tures and machine-learned features. For hand-crafted features,
Rusu et al. [11], [12] proposed to use point feature histogram
to extract the 3D structure feature of objects. Lai et al. [13]
introduced a RGB-D object dataset and used a combination
of several hand-crafted features including spin images, SIFT,
HOG and color histograms. They made a recognition baseline
by comparing the performance of several classifiers such as
linear support vector machine, Gaussian kernel support vector
machine and random forest. In [14], Bo et al. developed a set
of kernel features on depth images that combined size feature,
3D shape and depth edges in a single framework, which
improved the performance on RGB-D datasets. Browatzki et
al. [15] used multiple descriptors such as 3D shape context
and depth buffer for depth and SURF for color. However,
hand-crafted features need the prior knowledge of objects and
do not have a good performance on the large-scale objects
dataset. For machine-learned methods, features are learned
from raw data for RGB-D object recognition. Bo et al. [16]
presented a hierarchical sparse coding learning method to
extract features of multichannel images. In [17], Blum et
al. proposed a convolutional k-means descriptor which can



automatically learn feature responses in the neighborhood
of detected interest points and is able to combine the color
and depth into one, concise representation. Due to the great
success on RGB image recognition, deep learning methods
such as CNN are introduced to deal with RGB-D data and
also obtain excellent performance. Socher et al. [18] proposed
an integrated method with the combination of convolutional
filters and recursive neural network (RNN). Features from
color and depth channels are learned separately and then
concatenated for the final soft-max classifier. Schwarz et al.
[19] proposed to use two pre-trained CNNs to extract features
from color and depth images respectively. In [20], Eitel et al.
proposed a similar structure as [19]. However, they trained
the fusion CNNs end-to-end, which achieved higher accuracy.
Bai et al. [21] proposed to divide input images into several
subsets according to their shapes and colors, and each subset
is learned separately to extract features by RNNs. Despite
the high accuracy achieved by CNN-based methods, they
always need extra GPUs to accelerate the training and feature
extraction process.

Recently, Chan et al. [22] proposed a simple deep mod-
el named PCANet in which PCA was employed to learn
multistage filter banks. It can learn robust invariant features
for various image recognition tasks. This method is easy
to design and train on the platform without GPUs. Then
PCANet method was applied to more image recognition
tasks such as scene recognition [23], live fish recognition
[24]. Many modified versions were proposed to improve
the recognition performance including SPCANet [25], 2D-
PCANet [26], Weighted-PCANet [27] and so on. In our
method, we employ the similar structure with PCANet but
modify the first layer to make full use of color and depth
information.

III. OBJECT RECOGNITION BASED ON RGBD-PCANET

Benefit from the great success of PCANet method in face
recognition domain, we propose a similar method to extract
the features of RGB-D images. First, RGB-D image pairs
are preprocessed to fit the requirement of feature extraction
process. Then RGBD-PCANet method is used to extract the
object feature. The final output is fed to an SVM classifier.
We train the RGBD-PCANet using Washington RGB-D
Object dataset [13] and then train the SVM classifier with
the output of feature extraction.

A. Image Preprocessing

The image preprocessing process consists of two steps. The
first step is encoding the raw depth image to the pseudo-color
depth image. The second step is scaling the color image and
the depth image to a constant size.

1) Encoding the Raw Depth Images: Pixels in raw depth
images represent the distances between the corresponding
points to the camera. To make full use of the surface depth
information of the object, the raw depth image is encoded

to the pseudo-color depth image. First, we normalize all
depth values to lie between 0 and 255 which map the raw
depth image to a gray image. Then the normalized depth
images are transformed to three-channel RGB images to
obtain more distinguishing depth information. A hierarchy
mapping method is applied on the normalized depth images.
For each pixel in depth image, the gray value is transformed
to color value which encode the depth information by values
of RGB. Mapping table is shown in Table I. Examples of
normalized depth images and pseudo-color depth images are
shown in Fig. 1.

TABLE I
MAPPING TABLE

Input gray level Output color
0 ∼ 31 Blue

32 ∼ 63 Green
64 ∼ 95 Pale blue
96 ∼ 127 Purple
128 ∼ 159 Red
160 ∼ 191 Orange
192 ∼ 223 Yellow
224 ∼ 255 Canary yellow

Fig. 1. Examples of normalized depth images (top) and pseudo-color depth
images (bottom).

2) Scaling the Images: To fit the requirement of the fea-
ture extraction process, input color and depth images should
be scaled to an appropriate size. The simplest method is to
resize the cropped image by warping the image. However,
the object may lost its inherent shape information by this
procedure. So we employ the scaling process proposed in
[20]. The original image is expanded to a square image by
tiling the border of the longest side along the axis of the
shorter side. Then the square image is scaled to the constant
size. Fig. 2 shows the image scaling results of the two
methods. The experimental results of different image sizes
in Fig. 5 proved that the best size is 60×60.



Fig. 2. Image scaling results of warping approach and method in [20].

B. Feature Extraction and Recognition

PCANet method is designed to extract features of color
images. We follow the principle of PCANet and modify the
data input method for RGB-D images. The proposed feature
extraction method is named RGBD-PCANet and the block
diagram is illustrated in Fig. 3. The details of the proposed
method are described as following.

1) The First Convolution Layer: Suppose that there are N
input RGB-D image pairs for training which is denoted by
{Ii}Ni=1. The depth and color image size is m × n and the
patch size is k1 × k2. For a given RGB-D image pair, we
have a color image and a pseudo-color depth image. Then
an RGB-D image pair is regarded as a 6-channel image.
The 6 channels are r, g, b, dr, dg, db where dr, dg, db
are the r, g, b channels of the pseudo-color depth image. For
each channel, all patches in the i-th image are collected with
the overlapping approach; i.e., xi,1, xi,2, ..., xi,mn ∈ Rk1k2

where each xi,j denotes the j-th vectorized patch in Ii.
Then we subtract the patch mean from each patch and get
Xi = [xi,1, xi,2, ..., xi,mn], where xi,j is a mean-removal
patch. By constructing the same matrix for all input images
and putting them together, we get:

X = [X1, X2, ..., XN ] ∈ Rk1k2×Nmn (1)

So for a given RGB-D image pair, we gather the same indi-
vidual matrix for 6 channels of RGB-D image pairs, denoted
by Xr, Xg, Xb, Xdr, Xdg, Xdb ∈ Rk1k2×Nmn, respectively.
Assuming that the number of filters in layer i is Li, we use
PCA to minimize the reconstruction error within a set of
orthogonal filters:

min
V ∈R6k1k2×L1

∥∥X − V V TX
∥∥2
F
, s.t. V TV = IL1 (2)

where X = [XT
r , X

T
g , X

T
b , X

T
dr, X

T
dg, X

T
db] and IL1 is an

identity matrix of size L1 × L1, V is a matrix consisting

of a set of eigenvectors. Solve the optimization problem, and
we get the L1 principal eigenvectors of XXT . Then the PCA
filters of the first stage can be denoted as:

W r,g,b,dr,dg,db
l = matk1,k2,6(ql(XXT )) ∈ Rk1×k2×6, (3)

where l = 1, 2, ..., L1, ql(XXT ) is the l-th principal eigen-
vector of XXT , matk1,k2,6(v) is a function that maps v ∈
R6k1k2 to a matrix W ∈ Rk1×k2×6. Finally, the output of the
first layer is:

I li = Ii ∗W 1
l , i = 1, 2, ..., N (4)

where Ii is the i-th input image, and W 1
l is the l-th filter of

the PCA filter bank in the first layer.
2) The Second Convolution Layer: This layer is similar

to the second layer of PCANet. The output of the last layer
is used as the input of this one. All the overlapping patches
of Ii

l are collected and the patch mean subtraction process
is performed. The we get Y i

l
= [yi,l,1, yi,l,2, ..., yi,l,mn] ∈

Rk1k2×mn, where yi,l,1 is the j-th mean-removed patch in
Ii

l. Then Y l = [Y 1
l
, Y 2

l
, ..., Y N

l
] ∈ Rk1k2×Nmn is defined

as all the mean-removed patched of the l-th filter output. So
all of the filter outputs can be expressed as:

Y = [Y 1, Y 2, ..., Y L1 ] ∈ Rk1k2×L1Nmn (5)

Filters in second convolution layer are solved as:

Wℓ
2 = matk1,k2(qℓ(Y Y T )) ∈ Rk1×k2 , ℓ = 1, 2, ..., L2

(6)
Finally, for each input Iil of the second layer, we will have

L2 outputs, each convolves Ii
l with Wℓ

2 for ℓ = 1, 2, ..., L2:

Ol
i = {Iil ∗Wℓ

2}L2

ℓ=1
(7)

The number of outputs of the second layer is L1L2.
3) The Output Layer: After the second layer, for each

of the L1 input Ii
l, there are L2 real-valued output filters

{Iil ∗Wℓ
2}L2

ℓ=1
. These outputs are binarized to get {H(Ii

l ∗
Wℓ

2)}L2
ℓ=1

. The value of H(·) is 1 if the argument is positive,
and 0 otherwise. Then we view each corresponding pixel of
the L2 output as L2 binary bits of a decimal number, denoted
as:

T l
i =

L2∑
ℓ=1

2ℓ−1H(Ii
l ∗Wℓ

2) (8)

The above process convents the L2 outputs in Ol
i back into a

single integer-valued image, whose every pixel is an integer
in the range [0, 2L2 − 1].

Now L1 single integer-valued images are obtained, then
each of them is partitioned into H blocks and the histogram
of the decimal values in each block is computed. Finally, the
H histograms are concatenated into one vector Hist(T l

i ), l =
1, 2, ..., L1. After the encoding process above, the feature of
the input image Ii is defined as:

fi = [Hist(T 1
i ), ..., Hist(TL1

i )]T ∈ R(2L2 )L1H (9)



Fig. 3. The block diagram of RGBD-PCANet method.

The model parameters of RGBD-PCANet include the
patch size k1, k2, the filters number L1, L2, the block size for
histograms. In our experiments, the image size is set 60×60,
the patch size is 5×5, L1 = 40, L2 = 8 and the block size
is 7×7.

As the obtained object images consists of complex poses,
we connect the Spatial Pyramid Pooling [28] process to the
output layer and a pyramid of 4×4, 2×2, 1×1 is used. The
dimension of each pooled feature is reduced to 2048 by PCA.
So the feature dimension of each input RGB-D image pair is
2048× (4×4+2×2+1) = 43008. This process can extract
information invariant to large poses.

After feature extraction by RGBD-PCANet method, we
use linear Support Vector Machines (SVMs) as the classifier
to recognize categories of objects.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

RGB-D object recognition methods are usually evaluated
on the challenging Washington RGB-D object dataset. There
are 300 household objects with 51 categories in the dataset.
Each object was captured with a Kinect style 3D camera
witch was placed at three different heights and from multiple
views.

Object recognition experiment in this paper was focused
on category recognition. So the proposed RGBD-PCANet
method was evaluated using the same ten cross-validation
splits as in [13]. Each split consisted of roughly 35,000
training images and 7,000 images for testing. The task of the
RGBD-PCANet was to predict the correct category of a new
instance. Concerning the parameters of RGBD-PCANet, we
set the image size 60×60, patch size 5×5, L1 = 40, L2 = 8
and the block size 7×7 to get the best result.

To show the effectiveness of the RGBD-PCANet method,
we made a comparison of category recognition accuracies on
the RGB-D object dataset with other methods. The result is
shown in Table II. It can be seen that our method achieved

TABLE II
COMPARISON WITH OTHER APPROACHES REPORTED FOR THE RGB-D

OBJECT DATASET

Method Accuracy(%)
Nonlinear SVM [13] 83.9 ± 3.5

KDES [14] 86.2 ± 2.1
Upgraded HMP [16] 87.5 ± 2.9

CKM [17] 86.4 ± 2.3
CNN-RNN [18] 86.8 ± 3.3

CNN Features [19] 89.4 ± 1.3
Fus-CNN [20] 91.3 ± 1.4

ours 90.6 ± 2.3

very competitive results compared with state-of-the-art CNN-
based method [20]. Note that our method has such a simple
structure while the method in [20] need a fussy parameter
fine-tune process and extra GPUs to accelerate the train
and feature extraction procedures. Our method can achieve
a comparable result under the condition that only common
CPU are equipped, which verifies the effectiveness of the
proposed method. The per-class recall is presented in Fig. 4
and almost two-thirds of the categories achieve a value
greater than 95%. To find the best input image resolution,
we conducted the experiment with different resolution input
images. Results in Fig. 5 show that performance achieves
the best when image size is 60×60. The main reason is that
the resolutions of original images in the RGB-D dataset are
mostly around 60×60. Besides, the higher input image size
will cost more computation time in feature extraction process.

Then we conducted experiments with four different P-
CANet based baselines: 1) PCANet trained using RGB
images only, named RGB PCANet; 2) PCANet trained using
depth images only, named Depth PCANet; 3) PCANet with
separate training for color and depth images, followed by
concatenating the features of color and depth images, similar
as structures in [19], named RGBD concatenated PCANet;



Fig. 4. Pre-class recall of our method on all test-splits.

Fig. 5. Classification accuracy with different image sizes.

4) RGBD-PCANet trained using 4-channel inputs formed by
RGB images and grayscale depth images, named RGBD-
PCANet with 4-channel input. Linear SVM method was used
as classifier when testing all the four baselines. Table III
shows the comparison of recognition accuracy between our
method and the four baselines. Results demonstrate that
the depth information brings improvement of recognition
accuracy indeed. And the performance of proposed structure
was better than that of RGBD concatenated PCANet method.
The comparison of our method with RGBD-PCANet with 4-
channel input demonstrate that the pseudo-color depth image
can provide more distinguishing information than grayscale
depth image.

TABLE III
COMPARISON WITH DIFFERENT BASELINES ON RGB-D OBJECT

DATASET

Method Accuracy(%)
RGB PCANet 82.3 ± 3.4
Depth PCANet 75.6 ± 2.0

RGBD concatenated PCANet 88.4 ± 3.4
RGBD-PCANet with 4-channel input 88.9 ± 2.5

ours 90.6 ± 2.3

Computing power is usually very constrained in robotic

applications. We tested the average runtime of feature ex-
traction procedure on Washington RGB-D object dataset and
on the notebook computer with a Core i5 CPU @ 2.5GHZ.
Our method achieved 0.285s per input object which is low
enough to allow frame rates of up to 3HZ. While the CNN-
based method usually can achieve a high execution efficiency
on the condition that GPUs are equipped. Schwarz et al. [19]
presented the runtimes of the feature extraction procedure
for a single object on a computer with an Intel Core i7
CPU 2.7GHz chipset and an NVidia GeForce GT 730M for
acceleration. In their experiment platform, method in [16]
cost 1.153s to process one frame, while CNN-based method
in [19] cost 0.186s. As expected, the runtime of CNN-based
methods could be low with the help of GPUs. However,
without acceleration by GPUs, our method can still achieve
a high efficiency which indicates that the proposed method
is more practicable and suitable for mobile robots.

V. CONCLUSION

In this paper, we proposed an effective RGBD-PCANet
method for object recognition with RGB-D images. The
proposed method is composed of RGB-D images preprocess-
ing, feature extraction and SVM classification. The proposed
RGBD-PCANet is a simple deep learning method which
extend the original PCANet method to jointly leverage the
RGB and depth information. The proposed method was
evaluated using the popular Washington RGB-D Object
dataset. Compared with the latest CNN-based methods, the
proposed method achieved comparable performance without
the fussy parameter fine-tune process and extra GPUs for
acceleration, which demonstrated the effectiveness. What’s
more, the runtime is low which means the proposed method
is more practicable for application on robots and other mobile
platforms. In the future, work will focus on a more efficient,
robust approach to achieve higher precision for RGB-D
objects recognition and more experiments on real scenes.
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