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Abstract—Building autonomous systems that achieve human
level intelligence is one of the primary objectives in artificial
intelligence (AI). It requires the study of a wide range of func-
tions robustly across different phases of human cognition. This
paper presents a review of agent cognitive architectures in the
past 20 year’s AI research. Different from software structures
and simulation environments, most of the architectures concerned
are established from mathematics and philosophy. They are
categorized according to their knowledge processing patterns—
symbolic, emergent or hybrid. All the relevant literature can be
accessed publicly, particularly through the Internet. Available
websites are also summarized for further reference.

Index Terms—Agent, artificial intelligence (AI), cognitive
architecture (CA), survey.

I. INTRODUCTION

CREATING general human-like intelligence is always one
of the initial goals in artificial intelligence (AI). To do

this, great effort has been put forward to study the patterns
that how we sense, behave, decide and perhaps the most
important—think. Cognitive architecture (CA) research is a
promising theme in this area that models the main factors
participated in our thinking and decision and concentrates
on the relationships among them. In computer science, CA
mostly refers to the computational model simulating human’s
cognitive and behavioral characteristics. Despite a category
of loose definition, CAs usually deal with relatively large
software systems that have many heterogeneous parts and
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subcomponents. Typically, many of these architectures are
built to control artificial agents, which run both in virtual
worlds and physical robots.

Research on CA has been conducting persistently for
decades. This constant devotion has brought us a large
amount of achievements currently—more than one hundred
architectures available to our knowledge. Moreover, these
achievements also display broad diversity at multiple lev-
els: underlying theoretical assumptions, inspiration, motiva-
tion, requirements, methodology, structure, and technology.
Architectures also target a diverse set of cognitive functions,
although learning, reasoning, planning, and memory seem to
be more common than others. The primary objective of this
paper is to take a broad overview of the latest CA research,
so that it can provide scholars an inventory of what have
accomplished and lead to a solid starting point of our future
study. Similar work was conducted by Chong et al. [1],
Langley et al. [2], and Thorisson and Helgasson [3]. Yet
their work merely involves a small part of architectures.
Kotseruba et al. [4] summarized 40 years of CA research and
mainly focused on perception, attention, learning, and appli-
cation aspects. Despite showing us a macroscopic view of the
field, their work has omitted some CAs in specific domains,
such as emotion and reflex.

To limit the scope, the CAs reviewed here are mainly
emerged in the 21 century and can be mostly achieved via
a public source, specifically, the Internet. Due to space limit,
the CAs are introduced only from its knowledge generation,
knowledge processing, and application. If the reader wants
to go further details, he can easily follow the references and
other relevant literature. The reviewed CAs focus on the sense
of mathematics and philosophy, which means two types of
systems are not contained. The first one is the structure at
the implementation level, such as the agent’s communication
module, the database, and the graphical user interface. Despite
similar to the CA sometimes, these components in essence
belong to the software structure and thus will not be dis-
cussed in this paper. The second type is usually referred to as
the simulation environment. Although a part of the environ-
ments certainly include CAs, they are not generally essential.
Rather, these systems are computational platforms for the
implementation and validation of various agent models.

The remainder of this paper is organized as follows.
According to the cognitive mode which means the way
that how the internal knowledge is generated and pro-
cessed, Sections II–IV summarize three types of cogni-
tive architectures—symbolic, emergent, and hybrid ones.
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Section V further lists the CAs whose websites are avail-
able with their cognitive functions. Section VI puts some
discussions and concludes this paper.

II. SYMBOLIC COGNITIVE ARCHITECTURES

The first dominant kind of CA is called symbolic systems,
which is an important research area in traditional AI. This type
of agents maintains a consistent knowledge base (KB) by rep-
resenting the environment as symbols. Formal logic is usually
introduced to conduct reasoning in each sensation-decision-
actuation cycle. Despite the subsequent emergence of fuzzy
logic, classic symbolic CAs are deterministic and applied to
the system control, such as robotics.

4-D Real-Time Control System (4D/RCS): The 4D/RCS
architecture is developed since the 1980s for the military
unmanned vehicles [5], [6]. It is a three-tiered structure. The
top behavior generation layer converts original missions into
concrete actions. The middle world modeling layer processes
symbolic data and segmented images. The bottom sensory
processing layer monitors the actuator and feedback its sit-
uation to the sensory. There is also a global value judgment
to evaluate the decision and plan candidates.

Adaptive Control of Thought-Rational (ACT-R): ACT-R is
a popular architecture and still being researched actively. Its
models the knowledge exploration and intelligent behavior
production [7], [8]. The latest version involves a declarative
module, an intentional module, motor modules, and sensory
modules. ACT-R uses a buffer in each module with declar-
ative knowledge called “chunks” (different from Soar which
will be discussed later) to simulate short-term memory (STM).
Its long-term production memory, held by the declarative mod-
ule, keeps the past experience that can be used to estimate the
behavioral cost and probability of success. During each deci-
sion cycle, the agent executes the production with maximum
utility.

Adaptive Dynamics and Active Perception for Thought
(ADAPT): ADAPT is specifically designed for robotics. It
concurrently deals with a lot of executable schemas with per-
ception and planning [9], [10]. In contrast with many other
CAs, agent is endowed with the ability of active sensation,
considering the top goal, the context and even the lower raw
sensory data. Also, robots with ADAPT architecture are able
to conduct reasoning based on concurrent real-time behaviors
with an ultimate parallelism.

Architecture for Real-Time Dynamic Inspection Systems
(ARDISs): ARDIS is a knowledge-based architecture for
expert systems. It adopts the CommonKADS methodology and
is mainly applied to inspect the industrial laminated materi-
als [11], [12]. In each cycle, agent first outlines a skeleton as
a seed for subsequent expansion. Then the expansion config-
ures an inspection solution and finally, the agent modifies the
configuration by its received images.

Belief-Desire-Intention (BDI): BDI originally stems from
the main thought of the philosopher Bratman [13]. Since then
it becomes one of the most popular models of agent deci-
sion making. BDI tends to establish a complex task oriented

system that can perform effective reasoning in a dynamic sit-
uation [14]. BDI agent grounds the reasoning on its internal
“mental state.” Such mental state, as the BDI named, is related
to three parts—beliefs, desires and intentions. Thus, this type
of agent is referred to as an “intentional system” as well.

Control Architecture for Robotic Agent Command and
Sensing (CARACaS): CARACaS concentrates on the complex
task involving human and machine simultaneously [15], [16].
A kernel system that incorporates habitat behaviors forms
the main part of CARACaS. The autonomous coordinated
robots provide such habitat behaviors. Shadow behaviors play
a media role to smooth the coordination. These behaviors
convert the mission into global activities or other essential
resources. Each participated agent, either human or robot,
is treated without distinction but marked with a competence
score. The score is used to record activities of others and
estimate the progress of the mission.

CA, Specification, and Implementation of Mental Image-
Based Reasoning (Casimir): Casimir computationally models
human’s cognition of relative positions using spatial analogical
and pictorial knowledge [17]. It contains a working memory
(WM), a long-term memory (LTM) and a diagram processor.
Ontology is built in the LTM to organize abstract knowl-
edge and is available by the current goal decomposition. In
WM, experience from the LTM and the latest perception are
integrated for further exploration and reasoning. Image modifi-
cation and inspection are conducted by the diagram processor
to update the internal KB.

Cerebus: Cerebus tends to manipulate the robot’s behav-
ior from a high level cognition. It benefits from sensors and
motors that focus on behaviors and networks maintaining
semantic knowledge and deduction [18], [19]. Cerebus is able
to complete tasks and answer questions in parallel. Its reflec-
tive knowledge is first transmit to the LTM and then restricted
to the actions and signals within the system. Its behavior is
called higher order behaviors with parameters.

Context Hierarchy-Based Adaptive Reasoning Self-
Motivated Agent (CHARISMA): CHARISMA is designed
to grow a virtual civilization-inspired vying society [20].
Two hypotheses are introduced during its development. First,
agent’s motivation greatly influences on self-maintaining,
knowledge evolution, skill learning, and environment adapta-
tion. Second, knowledge representation, stored in a semantic
network, is modeled as a time-variant structure so that new
skills both from past personal practice and social commu-
nications can be acquired. Overall, CHARISMA contains
intrinsic motivation, reflex, active/passive perception, sensory
buffer, WM with conscious/unconscious concentration, and
preservation drives.

Cognitive Symmetry Engine: Cognitive symmetry engine
combines data analysis of sensors and actuators with abstract
heuristics [21], [22]. Symmetry tokens are extracted from
the sensor and actuator data, and are analyzed to generate
high-level concepts. Basically, the architecture involves short-
term perception memory (STPM), short-term motor memory
(STMM), LTM, and modules of action, perception, context,
and action selection. In cognition, sensor data arrives con-
stantly to form symmetry characterizations in STPM. The
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action selection module determines next steps according to
current STPM, STMM and LTM.

CoJACK: CoJACK tends to capture the variation among
human behaviors [23]. Based on BDI architecture, it includes a
layer played as an arbitrator to maintain continuous reasoning
and planning. In high-level planning, situation representation,
behavioral candidates, prediction, personality, and emotion are
all taken into consideration. Memory is represented as declara-
tive chunks and can be activated with a threshold. Procedural
knowledge for reasoning is delineated by a graphical plan.
CoJACK is applied in virtual reality and military scenarios.

Companions: Companions concentrates on evolutionary
intelligence with social intelligent agents. It includes deduc-
tive operation, adaptive reasoning, comprehensive conceptual
knowledge, parallel implementation, hierarchical leaning, per-
sistent operation, and social interaction [24], [25]. Deduction
matches current situation with internal knowledge, and stores
new memory. Comprehensive conceptual knowledge encodes
rules as ontology. Adaptive reasoning tracks and explains the
inference process. Parallel implementation provides concur-
rent computational mechanism. Hierarchical learning deter-
mines the goals to be pursued. Persistent operation supports
comprehensive sessions, and social interaction facilitates the
communication with other agents.

CORTEX: As a successive version of RoboCog [26], [27],
CORTEX is developed for social robots. It is a three-layered
structure—perception, simulation, and action execution. The
kernel of CORTEX is a graph-based network called deep state
representation (DSR), which encodes knowledge in different
levels. DSR is accessible and can be updated by perceptual
agents through the modification of the truth-value of logic
statements or the numerical value of properties. Deliberative
agents can also put action/state tuples planed from the goal
to the graph. Such tuples will stimulate the action generation
agents to cooperate with each other.

Distributed Integrated Affect, Reflection, Cognition
(DIARC) Architecture: DIARC is designed for natural and
reasonable interaction between human and machine. It tries
to let the agent be capable of processing natural language,
analyzing dialog structure, recognizing emotion, communi-
cating in nonverbal form. Robustness is also emphasized for
fault tolerant when the system breaks down [28]. Formally,
there are three primary modules: 1) goal manager; 2) heuris-
tic inference; and 3) analogical reasoning. Goal manager
receives mission and combines actions. Heuristic inference
conducts reasoning. Analogical reasoning filters suitable
actions. Based on DIARC, some other extensions are studied
later [29], [30].

Distributed Practical Reasoning Architecture (DiPRA):
DiPRA refers to BDI but emphasizes the distinctions between
offline planning and online action, integration of differ-
ent reasoning and deliberation, and allocation of limited
resources [31], [32]. Beliefs and actions, plans, goals, and
reasoner are all contained in an intentional layer, which
determines the plan according to current intention. A sen-
sorimotor layer generates various particular schemas. Such
schemas can be run in parallel to conduct actions in a
expected way and estimate the subsequent influences. DiPRA

is validated as a simulated robot that plays a “thief” role in a
guards-and-thieves case.

Defense Science Organization-CA (DSO-CA) Architecture:
DSO-CA tries to combine extensive knowledge from low-
level sensory information, high-level contextual information,
and visual input to perform realistic reasoning [33], [34].
Perception, execution, affection, integration, and actuator con-
trol are mapped into five modules at the top level. The
affection further involves four components: goal monitor ana-
lyzes the top mission to subgoals and dynamically evaluates
their progresses. Selector determines the behavior. Relay mod-
ule correlates and updates distributed knowledge. Episodic
module extracts new memory from experience. DSO-CA is
used in image processing particularly.

EMILE: EMILE considers different emotions with influence
on planning and reasoning [35]. It partitioned planning into
five independent phrases. At first, plans are produced to assem-
ble actions with further goals. Second, the agent will evaluate
the goals with its mental and physical states. Third, each eval-
uation result will be associated with a score and an overall
emotional state will be achieved through the results. Finally,
the emotions are adopted to determine the behavior selection.
Objectively, EMILE gives a general explanation of the rela-
tionship between the plan representation and the emotional
state processing.

Elementary Perceiver and Memorizer (EPAM): EPAM
is a general architecture with immediate, short-term and
LTM [36], [37]. The LTM consists of procedure memory,
declarative memory, algorithms, and explicit knowledge. The
algorithm and knowledge are arranged with indexes in a
network. Auditory and visual patterns, in the STM, are linked
with specific perceptions and to produce expected behaviors.
In the immediate memory, concrete conditions for behav-
ior activation are identified from the visual and auditory
sensory data. EPAM is applied in a wide variety of experi-
mental paradigms including classification learning and serial
anticipation learning.

Executive-Process/Interactive Control (EPIC): EPIC aims
to model the object searching process of visual input and
the interaction between human and environment [38], [39].
In each cognitive cycle, event objects are produced from
sensors and allocated to different cognitive processors for
successive activation of formal logic rules. The rules are
dynamically maintained in the long-term and productive
memory. When the objects match the preconditions of asso-
ciate actions in vocal and manual processors, related behaviors
are performed subsequently. Software of EPIC can now be
achieved freely.

Grounded Layered Architecture With Integrated Reasoning
(GLAIR): Based on BDI architecture, GLAIR is a tiered
structure developed for real, virtual, and simulated agents in
multiple domains [40]. Its top knowledge layer includes the
latest representation on current environment and plays several
cognitive functions. Its bottom sensory-actuator layer moni-
tors and controls the executor of software robot. The middle
perceptual-motor layer provides the knowledge layer symbolic
and behavioral base, and extracts the actions from the bottom
layer to abstract candidates. It also bridges the top and bottom
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with specific communications. In execution, GLAIR agents
mostly conduct sensation-reasoning-action loops.

George Mason University Biologically Inspired CA (GMU-
BICA): GMU-BICA is developed for computer-aided educa-
tional systems. In a high level, GMU-BICA represents the
knowledge both in symbolic and connectionist ways [41], [42].
Its memory involves working, episodic, semantic, and proce-
dural memory. The WM maps neural information into virtually
mental states. The episodic memory maintains long-term expe-
riences. The semantic memory stores schemas objects and
environment. And the procedural memory keeps patterns of
neocortices. A driving engine and a reinforcement learning
system links the memories with each other.

ICARUS: ICARUS is a tiered system with analytical knowl-
edge representations and task completion skills. The analytical
knowledge is explained by other objects and relationships. The
skills are the concrete measures for specific goals [43], [44].
Each recognize-act cycle is composed of two independent
stages. During the recognize stage, sensory data are kept in
perceptual buffers and are compared with intrinsic knowledge.
Matched pairs are stored as the latest perception. In the act
stage, the agent searches the solution from top-down. The
solution is defined as the skill sequences whose preconditions
are satisfied but the actions are not performed. Finally, these
actions are integrated to be conducted physically.

Integrated Cognitive Universal Body (iCub): iCub primarily
concerns about individual exploration and social interaction.
It originally involves locomotion, gaze control and reaching,
but later introduces episodic and procedural memories. There
are 13 modules in the architecture now [45], [46]. The atten-
tion selection, exogenous salience, egosphere, and endogenous
salience comprise the perception system. The gaze control,
vergence, reach and grasp, and locomotion are integrated as
the execution system. Episodic and procedural memories con-
struct the expectation and adaptation. Motivations are formed
by the affective state component.

Improved Performance Research Integration Tool
(IMPRINT): IMPRINT is developed for computer-aided
human performance evaluations. It is grounded with the Micro
Saint task network that models the environment [47], [48].
Cognitive functions are categorized into several levels. At
the top, original mission is converted into subtasks with
appropriate logics. At the bottom, IMPRINT uses ACT-R
to model its atomic thought. Goals in ACT-R are directly
integrated from the IMPRINT tasks, and can be represented
as ACT-R models.

Methodology for Analysis and Modeling of Individual
Differences (MAMID): Heterogeneity is mainly considered
in MAMID as the result of personality (trait) and transient
emotions (states). Different personality styles are modeled
as processing-biases. It deems the desired characteristics as
content-biases [49]. Five modules lie in the kernel. The per-
ception preprocessing dynamically updates the current state
of the world. The attention selects perceptual cues for fur-
ther processing. The situation assessment combines historical
beliefs with the latest perceptual cues. The behavioral selection
determines appropriate actions for future execution. And the
execution and monitor handle the feedback from environment.

MicroPsi: MicroPsi adopts Psi theory to model the
interaction between motivation and emotion [50]. Such
interaction is often reflected as the action regulation in
human behavior. Basically, MicroPsi incorporates all the cog-
nitive functions into a motivational structure. Those functions
involve sensory data analysis, approach and effect analysis,
action execution, personality/emotional modeling, reinforce-
ment learning, simple neural learning, and memory maintain-
ing. MicroPsi is implemented in robot control scenarios.

MusiCog: MusiCog tends to support the research of music
representation, recognition, and generation [51], [52]. There
are four main parts. The perception module preprocesses the
musical input and separates it into stream segments. The
WM matches melodic patterns with knowledge and stores
similar ones. The LTM maintains tiered musical voices and
acquires new experiences concurrently. And the production
module finally synthesizes the melody as its output. The out-
put is further directed back to perception to form a feedback
loop. MusiCog is implemented in the ManuScore interactive
composition environment.

Nonaxiomatic Reasoning System (NARS): Assuming that
intelligence is the environment adaptation with insufficient
knowledge and resources, NARS emphasizes real-time work-
ing, limited computational capacity, and various task adapta-
tions [53], [54]. It is suitable for learning, answering questions,
and planning. The major components include a memory
system, a reasoning engine, a task buffer, input/output chan-
nels, and a control center. In a cognitive cycle, agent chooses
a concept from memory and gets a task. Then it stores the
related beliefs in the buffer, and processes the tasks with feed-
back information. NARS is applied in decision-support system
for crisis response [55].

Novamente Engine: Novamente Engine concerns multiple
AI subfields [56], [57]. Its main elements are nodes, links,
mind agents, mind OS, maps, and units. Concepts and objects
are represented as symbolic nodes. Links among nodes or
other links portray the relationship of concepts and objects.
Mind agents are the containers for knowledge update and
logical reasoning. Mind OS provides the system a paral-
lel computational environment. Maps store different types
of knowledge. A unit is an entity including maps, mind
agents, and particular cognitive functions. Novamente engine
is implemented in the second life virtual world [58].

OpenCogPrime: OpenCogPrime is for artificial general
intelligence and established on a weighted labeled knowledge
hyper-graph, called the atomspace. In essence, the atomspace
is a probabilistic logic network that supports all the cogni-
tive algorithms [59], [60]. Chain reasoning is activated based
on deduction rules. Forward and backward chaining are both
adopted to add new results to the KB and to perform particular
propositional check. OpenCogPrime is still being developed
recently and needs to be further implemented.

Performance Moderator Functions server (PMFserv):
PMFserv investigates the influence of biological stress, per-
sonality and culture, and social interactions upon individual
and group decisions [61], [62]. The biology component deter-
mines behaviors and predicts effects for specific situations.
The personality/cultural module categorizes human emotion
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into 11 pairs. It is linked with biology, perceptual, and other
modules. The social module endows other agent with trust
degrees and introduces their impacts in decision-making pro-
cess. And the cognitive component plays as a container that
all the emotions, memories, object representations are com-
bined to determine successive actions for maximum expected
rewards or utilities.

Pogamut: Pogamut aims to build a 3-D virtual world with
ACT-R human cognition model [63]. In contrast to ACT-R,
Pogamut develops action selection mechanism (ASM), LTM,
STM, and goal structures [64]. The STM has four functions:
1) encoding objects and entities of current world; 2) extract-
ing related knowledge in LTM; 3) decomposing goals into
subtasks; and 4) estimating other tasks. The LTM keeps tasks
and experiences in a knowledge tree. And the ASM is calcu-
lated according to the level that an action can achieve the goal
and task.

Polyscheme: Polyscheme focuses on multidomain knowl-
edge representation, reasoning, planning, as well as their
integration to model intelligent behaviors. The primary parts
are specialists, attention buffer, and focus manager [65], [66].
Beliefs are kept as specialists to support the higher reasoning
and planning. Dempster–Shafer theory is used to quantify the
probability and agent’s confidence of an event. Polyscheme
plays a three phrase cognitive cycle. The top focus man-
ager chooses specialists to extract opinions as candidates. The
specialists collaborate to reach a consensus. And the result
expertise will be diffused for current problem.

Recognition-Primed-Decision-EnabledCollaboratingAgents
Simulating Teamwork (R-CAST): R-CAST aims to improve
the efficiency of teamwork by considering systemic flexibility,
collaboration adaptability, and context-based reasoning [67],
[68]. Three components form the core. The RPD-based deci-
sion making module maintains different beliefs, the past
experiences, and the perception of environment. The team-
work manager facilitates the collaboration among different
agents to promote the achievement of a mutual goal. The
task work manager operates on internal activities for subtask
completion.

REflexive Architecture for PERceptive Agents (REAPER):
REAPER is a general CA for mobile robot [69]. It concerns
about internal state transferring, visual and auditory percep-
tion, language and speech processing, monitoring, navigation,
and interaction. It also provides multiple functions of environ-
mental sensation, reflexive behavioral generation, motor and
actuator control, and also debugging for the developers. Each
module, except the central controller, has its own program
cycle after initialization. The module cycle starts from an idle
state and the controller judges whether the modules are all
assigned an action. If so, execution will begin concurrently. If
not, they will be marked with an idle token and waiting for
new assignment.

Reflective Evolutionary Mind (REM): REM is an instant-
based reasoning architecture which treats human’s intelligence
as tasks, methods, and knowledge [70]. Task is the fundamen-
tal ultimate goal and is represented as proposition knowledge
of past, present, and future world’s states. Methods delin-
eate the manipulation sequence with their transition process.

Knowledge provides the basis of chain reasoning. In a com-
puter war strategy game, REM is validated and plays well in
many task traces [71].

State, Operator, and Result (Soar): Soar is an early
classic symbolic architecture and still being improved cur-
rently [72], [73]. Apart from perception and action, it primar-
ily contains a WM, an LTM, and a decision procedure. Beliefs
of current perception are stored in the WM. The LTM holds
semantic network, past experiences, and procedural memory.
In each execution cycle, current perceptions beliefs trigger
production rules to propose operators. Then the decision proce-
dure selects an operator to execute according to its knowledge
and other available resources. If there are no operator candi-
dates or such kind of knowledge, Soar will create an impasse
and randomly try one possible operator in another problem
space.

III. EMERGENT COGNITIVE ARCHITECTURES

The second type of CA is named as emergent CA. Based
on the biological structure of the brain, they try to “repro-
duce” the process of human cognition from bottom up.
Emergent CA usually adopts hierarchical structure. The bot-
tom level simulates human cortex and neurons by artificial
neural network, while the top level simulates the active con-
sciousness. Environmental knowledge and basic behaviors are
first formed at the bottom concurrently. Then the active selec-
tion mechanism at the top level will solve their conflicts
according to current available resources and choose a suit-
able behavior to perform. Emergent CAs are able to deal with
uncertain cognitions. Thus, they are comprehensively applica-
ble in many domains, specifically in pattern recognition and
image processing.

Adaptive, Reflective Cognition in an Attention-Driven
Integrated Architecture (ARCADIA): ARCADIA is proposed
recently with emphasis on attention in perception and cog-
nition [74], [75]. It involves low-level movements, tempo-
rary knowledge (called uninspected processing), and focused
object. In the cognitive process, accessible knowledge with
attention is sent to the low-level component. The components
connected to sensors provide perceptual knowledge, while oth-
ers retain such information. Actions are generated by all the
components as long as they can be determined according to
the input. The focus element and accessible knowledge can be
transmitted to other low-level components in the next cycle.

Attentive Self-Modifying (ASMO): ASMO stems from a
project exploring the mechanism of attention, self-adjustment,
and awareness in robotics. It also attempt to solve practical
problems in its implementation [76]. The hypothesis behind
ASMO is that our mind is founded on a large collection of
autonomous information processes. Each of these processes is
associated with an attention value. Such attention value can be
assigned by the system designer, or learned by the machine
itself using various AI algorithms. The results of information
processes can lead to different actions of different motors. The
processes with high attention values will play dominantly and
their actions will be conducted.



YE et al.: SURVEY OF CAs IN PAST 20 YEARS 3285

Brain-Based Device (BBD): Based on computational neuro-
science, BBD tends to simulate neural activities in microscope.
It assumes that the machine needs an artificial neural network
with brain structure to dynamically monitor its behavior; the
machine needs to be placed in real world to test its adaptabil-
ity; and its behavioral data must be comparable with historical
results [77]. BBD can actively explore in dynamic world, sim-
ulate the brain’s activities, and update the agent’s memory. In
addition, this architecture introduces feedbacks to adjust its
behaviors from its evaluation system. In application, BBD is
constructed in Darwin VIII for visual object recognition [78].

Brain-Emulating Cognition and Control Architecture
(BECCA): BECCA focuses on brain cognition and control in
multiple task completion [79], [80]. It is mainly comprised of
a feature generator and a reinforcement learner. The former
explicitly represents the features in the problem space. While
the latter learns the models by maximizing the received reward.
The main cognitive cycle involves perception, learning, plan-
ning, and actuation phrases. These phrases can be further
decomposed into six major steps: 1) evaluating the perception
and reward; 2) maintaining the feature basis; 3) interpreting
the perception; 4) estimating probable results; 5) choosing an
action; and 6) updating the representation of current world.

Conscious and Emotional Reasoning Architecture-Cognitive
Robotics Architecture Neurologically Inspired Underlying
Manager (CERA-CRANIUM): CERA-CRANIUM combines
CERA (a tiered subsystem for control mission) and
CRANIUM (a container for parallel micro computation) to
ubiquitously model consciousness [81], [82]. In CERA. The
low level sensory layer receives perception data and sends
controlling strategies. The physical layer manages sensors and
actuators. The mission layer keeps specific goals and gener-
ates typical behaviors. The highest core layer provides primary
cognitive functions. CRANIUM supports the concurrent unit
computation of CERA. And CERA, in turn, uses these micro
processes to complete dynamical responses.

Cognitive Systems for Cognitive Assistants (CoSy): CoSy
comes from a European project that tries to shed light on
the construction of physical entity with high autonomy. It
involves knowledge representation, perception, learning, plan-
ning, reasoning, etc. The overall architecture is designed
as a loose structure for coordination of flexible and par-
allel components. Components usually cooperate with each
other to achieve global missions, and they also compete for
shared resources. A part of these subarchitecture can be
further decomposed and they organize their knowledge as
ontology [83].

Distributed Adaptive Control (DAC): DAC is developed
to solve the problem of interaction among expectation,
prediction, attention, and memory of actual and software
robot [84], [85]. From bottom to top, four layers—somatic,
reactive, adaptive, and contextual—are arranged, respectively.
The somatic layer contains interfaces of agent’s various phys-
ical components. The reactive layer interprets perceptual data
into low-level actions. The adaptive layer selects higher-level
action with concern of active motivation and reward estima-
tion. The top contextual layer stores the long-term experiences
and conducts abstract planning and reasoning.

Hierarchical Temporal Memory (HTM): HTM is another
architecture from computational neuroscience to simulate
the brain’s function of recognition and categorization [86].
Artificial neurons are embedded in different layers. Each
neuron node is connected with others (from its own layer
and adjacent layers) and contains similar cognitive functions.
Perceptual information is diffused from bottom up. The neu-
ron in higher layer receives stimuli from a great many nodes
in low-level. Thus, the final response is given by a few highest
nodes.

Ikon Flux: Ikon Flux emphasizes that the machine should
have self-programming capability to achieve the general intel-
ligence [87]. Thus, it tries to learn new models from its
behaviors. These models are evaluated by the reward and used
to control actuators. Low-level self-programming adjusts the
models to the missions. Whereas high-level self-programming
monitors the low-level ones and completes meta-learning func-
tions. With constant running, new models are added and are
semantically organized by an independent component.

Leabra: Leabra is developed from computational neuro-
science for visual image processing. It has biological founda-
tions and simulates three brain parts: 1) inferotemporal cortex
(IT); 2) extrastriate cortex (V2/V4); and 3) primary visual cor-
tex (V1) [88], [89]. In a recognition cycle, visual signal is first
sent to a group of artificial neurons which play the function of
retina. The output signal is used by V1 to extract spatial fea-
tures that are encoded in a neural network. From the features,
V2/V4 and IT layers are able to analyze the object with much
fewer neurons and match the features with the agent’s own
knowledge. In essence, Leabra can be viewed as a construction
of forward visual processing in the brain.

Learning Intelligent Distribution Agent (LIDA): LIDA is a
popular computational framework in artificial general intel-
ligence [90], [91]. Its perceptual memory stores messages
from environment and self-awareness. Global workspace con-
tains the latest and unforgotten perceptions. Episodic memory
includes the past experience. Attentional memory simulates the
attentions. Action determination and sensory-motor memory
propose and select final actions. In a cognitive cycle, agent ini-
tially updates its beliefs and mental state. Then the perceptual
contents compete the attentional resources. Finally, the agent
selects one action to execute in the next period. The overall
process can be viewed as a comprehension, deliberation, and
actuation iterative cycle.

Multilevel Darwinist Brain (MDB): MDB aims to build
a system for adaptation to time variant environment with
restricted resources [92], [93]. It is grounded on three evo-
lutionary parts: 1) the world model which represents the
surrounded world and collects the effects of previous behav-
iors; 2) the internal model, which delineates the distinctions
between the mental states before and after behavioral actu-
ations; and 3) the satisfaction model, which evaluates and
estimates the reward of generated actions. Learning is imple-
mented in every cycle using heuristic algorithms. MDB is
experimented on a Sony AIBO robot and a Pioneer 2 robot.

Sensory-Motor, Episodic Memory and Learning, and
Central Executive (SEMLC): SEMLC emphasizes the global
management of multiple cognitive functions [94], [95]. Its
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subsystems are called sensory-motor, episodic memory and
learning, and central execution. In sensory-motor, perceptual
information, motor control dynamics, and emotional rewards
are collected. Objects with semantic relationships, new knowl-
edge and experiences are maintained in episodic memory
and learning. The most important central execution module
facilitates the cooperation of other components.

Shruti: Shruti has a biological foundation with ability to
encode objects, entities, types, relations, and episodic knowl-
edge in a unified network. It can conduct near real-time
reasoning and prediction [96], [97]. The role nodes in the
knowledge network carry concrete knowledge while the col-
lector nodes, both positive and negative, control its degree of
trust or skepticism. Enabler nodes search beliefs to explain
current facts. Shruti is implemented in a pilot system, and can
filter the most suitable explanation in a competitive way.

IV. HYBRID COGNITIVE ARCHITECTURES

The third type is called the hybrid architectures. This type
usually adopts hierarchical structures as well, and contains
both behavior emergence from bottom up and direct symbolic
processing. They have multiple application domains, ranging
from knowledge discovery, computational neural science to
artificial general intelligence.

Cortical Capacity-Constrained Concurrent Activation-
Based Production System (4CAPS): As a cognitive neuro-
architecture, 4CAPS inherits the features from 3CAPS [98].
It concentrates on natural language processing, problem solv-
ing, spatial knowledge representation, and task performing.
Information processes are concurrently computed and moni-
tored by control centers for the load balance. Such processes
can simulate various functions related to the areas of human
brain. 4CAPS is still being studied and is implemented by
ANSI Common Lisp [99].

Conscious Emotional Learning Tutoring System (CELTS):
CELTS introduces transferring learning and memory with
analogical information [100]. It implements emotional unit,
attention, learning, memory system (declarative and tem-
porary), self-awareness, perception, and action repertoire to
construct the cognitive cycle [101]. Agent will first extract the
representation of its surrounded world and keep the perceptual
results in its temporary memory. Then sensation-action pairs
are connected and evaluated to select behaviors and spread
them into actuators. Stress is imposed on the emotional signals
and responses in order to improve intelligence.

Chunk Hierarchy Retrieval Structures (CHREST):
Generally, CHREST involves STM, LTM, and input
and output (I/O) modules [102]. It places perception and
learning in a central position. The I/O module encloses basic
visual signals, audio signals, and behavioral units. Chunks,
held by STM and LTM, are produced via evaluation of
signals and units. The evaluation is according to how familiar
they are for the agent. In contrast to other architectures, such
as ACT-R and Soar, where knowledge is differentiated to
be declarative, procedural, or semantic, CHREST treats the
memory as a whole.

Connectionist Learning With Adaptive Rule Induction
Online (CLARION): As a popular hybrid architec-
ture, CLARION tries to incorporate most cognitive
aspects [103], [104]. It distinguishes abstract and con-
crete knowledge, where concrete knowledge is easier to
obtain and gets more attention than the abstract one. Action-
centered subsystem (ACS), motivational subsystem (MS),
nonaction-centered subsystem (NACS), and meta-cognitive
subsystem (MCS) are the four subsystems. Procedural and
declarative knowledge is kept in ACS and NACS. The ACS
performs behavioral control and supports NACS. The MS
maintains goals and motivations for active cognition. The
MCS conducts learning and selection and evaluates the
performance of other components.

Cognitive Networks of Tasks/iGEN (COGNET/iGEN): As
indicated by its name, COGNET/iGEN is a combined frame-
work to model human cognition with a symbolic memory
and emergent attention. COGNET is a container that holds
multiple agents via its application program interfaces. iGEN
is a development tool for debugging and testing [105], [106].
Perceptions are represented by symbols in the LTM. Multiple
tasks are generated and kept in parallel and will be chosen
by the attention in high level. Learning is also conducted
separately in the memory.

Synthesis of ACT-R and Leabra (SAL): SAL combines
ACT-R and Leabra to exploit the advantages of symbolic
representation and emergent neural cognition [107], [108].
In general, ACT-R deals with the main cognitive cycle
that links different components to perform reasoning and
problem solving. While artificial neural network in Leabra
stores explicit knowledge and actions. Thus, ACT-R man-
ages “macro” process of sensation-actuation and validates the
behaviors according to human aggregate data at the top, while
Leabra introduces “micro” restrictions that guide the cognition
in a biological mode at the bottom.

Simulation of the Mental Apparatus and Applications
(SiMA): SiMA tends to create plausible and reasonable
motivation in human decision and behavior. It adopts the
psychoanalytic drive theory to model personality and emo-
tions [109], [110]. SiMA has three layers. At the bottom is
the basic activity layer of neural network, which receives sen-
sory signals and motor control commands from higher layers.
At the top is a symbolic system that plays multiple cogni-
tive functions and contains KB. The middle layer bridges the
former two by converting the low-level perceptions into sym-
bolic concepts for the higher system, and vice versa. SiMA is
applied in case-driven agent-based simulations.

V. OPEN SOURCES AND WEBSITES

To compare the reviewed architectures more intuitively, we
list the cognitive functions of each CA in Table I. Some of
them have established their websites, which collect the related
research achievements, such as project introductions, publi-
cations, source codes, and forums. These open sources have
tied scholars and engineers from different areas together and
facilitated the further research as well as application to a
great extent. In addition, the CAs are summarized by their
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TABLE I
COGNITIVE ARCHITECTURES WITH WEBSITES

proposed years, shown in Fig. 1. To our knowledge, ACT-R,
CHREST, CLARION, HTM, LIDA, Soar are popular CAs.
They are mostly maintained by a team and are constantly
improved. Beginners are suggested to start their research by

focusing on these CAs because they cover basic aspects of cog-
nitive process and have plenty of references. BDI is another
famous CA. But it is only a framework without implementa-
tion. Thus, using this architecture needs to introduce concrete
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Fig. 1. Temporal arrangement of all architectures.

rules. OpenCogPrime is the most comprehensive CA among
the reviewed ones. It involves all cognitive functions. However,
it stays at it is early stage and needs to be further researched.

VI. CONCLUSION

An essential path toward understanding human cognition
and developing systems with human level intelligence is to
study a wide range of functions robustly across different
phases of cognition. Referred to be the CA, this field has
attracted a lot of research for decades. This paper gives a
broad review of the latest cognitive architectures, which are
organized in three categories according to their knowledge
generation and processing mechanisms. Available websites are
also summarized for further research.

Basically, symbolic architectures are mainly applied in plan-
ning, reasoning, and robot control, whereas emergent ones are
prevalent in computer vision and pattern recognition. An obvi-
ous gap still exists between them. This is probably because
symbolic CAs primarily derive from engineering, where deter-
ministic human expert knowledge is used to solve specific
problems, while emergent ones are from the exploration of
the biological cognitive basis. However, many emerging CAs
and agent systems are inclined to adopt a hybrid architecture
to merit both advantages simultaneously.

Another less concerned in this paper but highly promis-
ing direction is the social cognition and social intelligence
based on multiagent system. This field attempts to study the
generation and evolution of swarm intelligence. To our knowl-
edge, due to the limitation of computational resources, agent
architectures in most of such scenarios, if any, involve several
simple rules (referred to be the reactive agent). Complex delib-
erative process in human intelligent decision-making needs
to be further explicitly modeled. Thus, with the increasing
computational power, introducing integrated cognitive archi-
tectures into multiagent social simulation is probably an issue
worthy of study.
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