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a b s t r a c t 

Action recognition plays a fundamental role in computer vision and has drawn growing attention recently. 

This paper addresses this issue conditioned on extreme Low Resolution (abbreviated as eLR). Generally, 

eLR video is often susceptible to noise, thus extracting a robust representation is of great challenge. Be- 

sides, due to the limitation of video resolution, eLR video cannot be cropped or resized randomly, then 

it is inevitably complicated to design and to train a deep network for eLR video. This paper proposes 

a novel network for robust video representation by employing pseudo tensor low rank regularization. A 

new Video Low Rank Representation model (named VLRR) is first proposed to recover the inherent robust 

component of a given video, and then the recovered term is introduced to a convolutional Network (de- 

noted pLRN) as an auxiliary pseudo Low Rank guidance. Benefitting from the auxiliary guidance, pLRN can 

learn an approximate low rank term end-to-end. Besides, this paper presents a new initialization strategy 

for eLR recognition neTwork based on Tensor factorization (dubbed TenneT). TenneT is data-driven and 

learns the convolutional kernels totally from the video distribution while without any back-propagation. 

It outperforms random initialization both in speed and accuracy. Experiments on benchmark datasets 

demonstrate the effectiveness and superiority of the proposed method. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Video based human action recognition is currently a hot re-

search topic [1,2] with wide applications, e.g. , video surveillance

[3,4] , event detection [5,6] and crowd analysis [7,8] . The task of

video representation is to learn a discriminative feature transfor-

mation for robust video analysis. Early researches focus on detect-

ing the trajectories of spatio-temporal interest points [9,10] , while

recently various deep models have been exploited for getting dis-

criminative spatial-temporal descriptors in an end-to-end manner

[11,12] . The main difference between a sequence of video frames

and a series of images lies in the temporal correlation. Effort s have

been contributed via 3D spatial temporal convolution [11] , and

further improvements are achieved through two-stream networks

[12–14] . Nevertheless, extracting effective video representation is

still of great challenge especially for extreme Low Resolution (eLR)

videos due to the background motion, foreground occlusion, illu-

mination changes, viewpoint variation and long-temporal duration.

As a promising research topic, eLR video analysis [15–17] has

great potential primarily for three considerations. ( a ) It can pro-
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ect privacy. An emerging challenge for computer vision is how to

nalyze human’s activities without invading privacy. eLR analysis

rovides a potential solution. ( b ) It can be easily implemented to

obile devices. The advent of wearable devices raised the opportu-

ity for eLR analysis. The transmission and storage are simple, fast

nd effective. ( c ) eLR video is widely existing in real-world video

urveillance. Even when the video is of high resolution, the region

f interest often occupies only a small proportion, which in turns,

ransforms the problem into eLR analysis. These make an urgent

emand for eLR video analysis. Prevalent video analysis methods

annot be directly modified to this issue. And it is difficult to con-

truct a rather deep network as applied for High Resolution (HR)

ideos due to the low spatial resolution. To better deal with eLR

ideos, the following three factors must be under thorough con-

ideration. ( a ) The extreme low resolution makes the video vul-

erable to noises. And ( b ) data augmentation is rather difficult for

hat eLR video cannot be cropped or resized arbitrarily, which in

urn makes ( c ) training the model with extra challenge. 

This paper proposes a novel pseudo tensor low rank regular-

zed network for eLR video action recognition. The motivation and

emantic architecture are illustrated in Fig. 1 . Different form the

xisting works [18–20] , in which they exploit the low rank prop-

rty of convolutional kernels, this paper imposes pseudo low rank

https://doi.org/10.1016/j.patcog.2018.07.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.07.033&domain=pdf
mailto:tingzhao.yu@nlpr.ia.ac.cn
https://doi.org/10.1016/j.patcog.2018.07.033
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Fig. 1. Motivation and architecture . Given a noised eLR video V, p LRN learns a low 

rank background B or a sparse foreground F with a pseudo low rank regularization. 

Both B and F can be utilized for eLR action recognition. The training data for p LRN 

can be obtained via VLRR. TenneT is employed to initialize the classification net- 

work for faster convergence. 
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egularization into feature maps. Furthermore, this paper presents

 new initialization policy for eLR recognition network. The contri-

utions are summarized as follows: 

• This paper proposes a new video low rank representation

(VLRR) model for robust motion representation. VLRR decom-

poses the noised eLR video V into three parts - a low rank back-

ground B, a sparse foreground F and a noised term E . B and F
are employed for eLR recognition, and their performances are

superior to the original noised eLR video V . 
• In order to learn B or F end-to-end, a novel convolution net-

work ( p LRN) with pseudo tensor nuclear norm (TNN) regular-

ization is proposed. Instead of directly conducting TNN min-

imization, which is hard to be back-propagated, this paper

employs the pre-obtained B or F (using VLRR) as an auxil-

iary guidance. Thus TNN minimization can be transformed into

the differentiable l p -norm minimization. This yields an efficient

end-to-end network. 
• This paper presents a new network initialization strategy (Ten-

neT) for eLR action recognition. TenneT learns the convolu-

tion kernels totally from the training videos without any back-

propagation. Thus it is data-driven. Without any data augmen-

tation, TenneT initialization promotes the recognition network

converges faster than random initialization. 

. Related work & overview 

The motivation behind this paper is to achieve deep robust

ideo representation, and the related work is three-fold. 

Video representation. A discriminative video representation

21,22] is essential for video related analysis. Among the past few 

ecades, hand-crafted features [9,10] with certain encoding tech-

iques [23] are the dominant approaches. These methods usually

epict the trajectories of spatial-temporal interest points. The re-

ently proposed methods mainly concentrate on convolution net-

orks, and a simple method is to conduct deep networks directly

t frame level [24] . Further improvement has been devoted to in-

egrating multiple adjacent frames [25] . Considering the temporal

oherence within video clips, researches have also proposed 3D

patial-temporal convolution [11,26] . 3D convolution contains more

lentiful temporal correlation, which is vital for video sequence

nalysis. Current state-of-the-art algorithms adopt a two-stream

etwork [12–14] . Within this framework, a spatial stream operat-

ng on frame level is designed to recognize the video agent, and a

emporal stream operating on optical flow level is expected to dis-

inguish the video motion. Motivation . Though effective for video

nalysis, two-stream network has three disadvantages. Firstly, two-

tream network needs pre-extracted optical flows, which is time-

onsuming. Secondly, designing a two-stream network for eLR

ideo may confront with extra challenge, because constructing a
ather deep network is impractical for eLR video. Finally, when

t comes to eLR video, two-stream network might be susceptible

o noise. These issues inspire us to design an efficient and robust

ideo representation for eLR video. 

Tensor factorization. Tensor representation and factorization

ave great potential in compute vision [27–30] . Based upon the

ssumption of tensor low rank, researches have made great ad-

ances. A basic formulation [31] of tensor low rank for robust tenor

epresentation is min ‖L‖ � 

+ ‖S‖ 1 , s.t. X = L + S, where X is the

oised data, L is the recovered tensor low rank data and S is the

parse noise. However, one drawback of this model is its limita-

ion in handling data with outliers. Thus an improved formula-

ion [32] is min ‖L‖ � 

+ ‖E‖ 2 , 1 , s.t. X = L + E, where E is the out-

ier. There are also researches devoting to tensor factorization, e.g. ,

anonical Polyadic (CP) [33] decomposition , Tucker decomposition

34] and tensor Singular Value Decomposition (tSVD) [35] . Motiva- 

ion . Tensor factorization is inherently suitable for high-dimension

ata analysis, e.g. , videos. In general, for a given video, the back-

round is often low rank and the foreground is usually sparse [30] .

esides, videos themselves contain abundant information. These

actors motivate us to consider a tensor low rank involved network

or robust representation, and learn some constructive information

otally from the data distribution. 

Low resolution analysis. Low resolution analysis is a promis-

ng research topic with broad applications. For such a task, the

ost straightforward method is to restore the corresponding HR

ata [36–38] . Nevertheless, super resolution is itself an ill-posed

roblem. Utilizing partial least square-canonical correlation anal-

sis [15] is a feasible alternative, yet, it relies heavily on hetero-

eneous feature fusion, which is time-consuming. Semi-Coupled

wo-Stream Fusion ConvNets [17] is a recently proposed method

or eLR recognition. During training, this semi-coupled network

akes both eLR video and its corresponding HR video as input,

hile during testing, only the eLR video is required. Using HR

ideos for training reduces its scalability. Motivation. On the one

and, eLR video is susceptible to noise, because a single pixel in

LR video may correspond to a large region in its corresponding HR

ideo. On the other hand, eLR video cannot be cropped or resized

andomly as HR video due to the limitation of resolution. These

onsiderations raise demands for robust eLR video representation

nd new network training strategy. 

.1. Overview 

In the proposed framework ( see Fig. 1 ), eLR video is first pre-

rocessed via a pseudo low rank regularized sub-network. This

ub-network performs voxel-level prediction. Then a video classi-

cation network is employed to recognize the actions. For better

onvergence, a totally data-driven strategy is employed to initialize

he classification network. In the rest of the paper, Section 3 illus-

rates the pseudo low rank regularized network for robust video

epresentation, Section 4 demonstrates the newly proposed initial-

zation strategy, Section 5 describes the experimental details, and

ection 6 concludes the paper. 

. Robust video representation 

For getting a robust representation O, a typical method is low

ank regularization [31] . Nevertheless, it is difficult to directly op-

imize a network subject to 

in 

O 
L 

R (O) = min ‖O‖ � 

. (1) 

ere, ‖ · ‖ � is the tensor nuclear norm [31] . Instead, this paper

ransforms the objective function from minimizing the tensor nu-

lear norm to approximate a low rank label B via 

in 

O 
L 

A (B, O) = min ‖B − O‖ 

p 
p . (2)
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Herein p > 0 is a constant, thus the loss function can be back-

propagated and the sub-network is called p seudo Low Rank Net-

work ( p LRN). The low rank label B can be obtained through the

following proposed Video Low Rank Representation (VLRR) model. 

3.1. Video low rank representation 

Due to the fact that low resolution videos are easily affected

by noises, e.g. , occlusion and motion blur, we expect to seek ro-

bust features for videos. Fortunately, according to early researches

[31,32] , tensor low rank is a capable regularization for obtaining

robust representations. Therefore, we proposed VLRR (Video Low

Rank Representation) to get a robust “low rank video representa-

tion”. For a given video, a simple foreground prior is that the mov-

ing object is sparse and a basic assumption of the background is

that it is low rank [30] . Combining these two priors with the fact

that the eLR video frames are easily affected by noises, a direct

formulation of VLRR can be described as 

min 

B, F, E 
‖B‖ � 

+ λ‖F‖ 1 + γ ‖E‖ 2 , 1 

s.t. V = B + F + E 
. (3)

Here V, B, F and E are the eLR video, the low rank back-

ground, the sparse foreground and the frame-level noise, respec-

tively. Therefore, the prerequisite of VLRR is the assumption that

“video = low rank background + sparse foreground + noise”. This

comes from the basic cognition that within a short video clip, the

neighbor surrounding (background) often varies little and the ac-

tion agent (foreground) usually occupies a small proportion of the

video. This leads to the description that the “background is of low

rank” and the “foreground is sparse”. Consequently, the goal of

VLRR is to extract robust low rank representations for eLR video

action recognition, and the obtained “low rank background” is re-

garded as the “low rank video representation”. The sparse “fore-

ground” is an auxiliary restriction because the obtained low rank

“background” will be inaccurate without any prior assumption. The

tensor nuclear norm ‖ · ‖ � restricts the background to be low rank,

tensor 1-norm ‖ · ‖ 1 limits the foreground to be sparse, and tensor

2,1-norm ‖ · ‖ 2, 1 depicts the frame-level noise. To solve this prob-

lem, the augmented Lagrangian function of Eq. (3) is formulated

as 

L (B, F, E, X ) = ‖B‖ � 

+ λ‖F‖ 1 + γ ‖E‖ 2 , 1 + 〈X , V − B − F − E〉 
+ 

μ

2 

‖V − B − F − E‖ 

2 
F , (4)

where X is the Lagrange multiplier and μ is a positive penalty

scalar. This formulation can be solved using alternating methods

by keeping one item fixed at each iteration. 

Update B. Fix F , E and X , the B-subproblem can be reformu-

lated as 

min 

B 
‖B k +1 ‖ � 

+ 

μk 

2 

‖B k +1 −
(
V − F k − E k + 

X k 

μk 

)
‖ 

2 
F . (5)

Suppose M k = V − F k − E k + 

X k 
μk 

, according to Hu et al. [30] , the

globally optimal solution to Eq. (5) is given by the tensor singular

value convoluting 

B k +1 = C τ (M k ) = U ×t C τ (S) ×t U 

T , (6)

where U ×t S ×t U T = M k is the tensor singular value decomposi-

tion of M k , × t is the tensor t -product, and C τ is the tensor con-

voluting operator. 

Update F . Fix B, E and X , the F-subproblem [31] can be

rewritten as 

min 

F 
λ‖F k +1 ‖ 1 + 

μk 

2 

‖F k +1 −
(
V − B k +1 − E k + 

X k 

μk 

)
‖ 

2 
F . (7)
he closed-form solution for Eq. (7) is 

 k +1 = max ( 0 , P k − λ/μk ) + min ( 0 , P k + λ/μk ) , (8)

here P k = V − B k +1 − E k + X k /μk . 

Update E . Fix B, F and X , the E-subproblem [32] can be solved

ia 

min 

E 
γ ‖E k +1 ‖ 2 , 1 + 

μk 

2 

‖E k +1 −
(
V − B k +1 − F k +1 + 

X k 

μk 

)
‖ 

2 
F . (9)

nd the closed-form solution for Eq. (9) is 

E k +1 (: , i, :) = 

{ ‖Q k ‖ F − γ /μk 

‖Q k ‖ F 

Q k (: , i, :) if ‖Q k ‖ F > 

γ
μk 

0 otherwise 
, (10)

here Q k = V − B k +1 − F k +1 + X k /μk , i = 1 , · · · , h . 

Update X . The Lagrange multiplier is updated through 

X k +1 = X k + μk ( V − B k +1 − F k +1 − E k +1 ) . (11)

Both the low rank background B and the sparse foreground

can be employed for eLR action recognition. Section 5 demon-

trates its superiority to original eLR video V . Specifically, B and F
re taken as the desired auxiliary output of p LRN, which restricts

 LRN to learn an approximate low rank auxiliary output. 

.2. Pseudo low rank network 

The architecture of p LRN is demonstrated in Fig. 2 . p LRN con-

ists of several 3D convolution, 3D deconvolution and residual con-

atenation units. Considering the extreme low resolution of the

nput video, there is only one 3D maxpooling layer. For better

reservation of the input details, there are two residual concate-

ation units. Both of the input video and the middle layer feature

aps are transformed to concatenate with the corresponding fea-

ure map. 

For a given video V, p LRN is desired to learn its low rank repre-

entation B. Practically, the desired low rank representation is ex-

ctly the low rank background recovered by VLRR. Nevertheless,

imply learning a low rank representation at voxel-level is of great

hallenge. Therefore, to achieve action recognition, p LRN is jointly

earned with a classification network C . Denote the combination of

 LRN and C as p LRNC, the low rank representation is taken as an

uxiliary output, and the main output is the predicted action la-

el. In summary, given the eLR video as input, p LRNC outputs a

redicted action label p and meanwhile an auxiliary output O. In

xperiments, we can also restrict the auxiliary output O to fit a

parse F . Suppose the desired auxiliary output (i.e., the output of

LRR) is represented as D and the action label is y . Thus the loss

unction of p LRNC is defined as 

 

P = σ L 

A ( D , O ) + (1 − σ ) L 

C ( p , y ) (12)

here L 

A (D , O ) , D ∈ {B, F} is defined as Eq. (2) , L 

C ( p , y ) is the

ategorical crossentropy loss, p and y are the corresponding pre-

icted and groundtruth label, respectively. 

.3. Feasibility analysis 

It is proved to be effective [30] for tasks, e.g. , moving object

etection, to learn low rank representations of videos. Benefitting

rom the low rank assumption, the learned representation is more

obust to noise. p LRN introduces low rank assumption into convo-

ution neural networks. Instead of learning an exact low rank rep-

esentation directly, p LRN aims to recover an approximate low rank

epresentation pre-obtained by VLRR. Then the objective function

hanges from TNN minimization to l p -norm minimization. This

akes p LRN an end-to-end network. 
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Fig. 2. The semantic architecture of p LRN . The output of p LRN is to approximate the low rank background B or the sparse foreground F pre-obtained through VLRR. 
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Fig. 3. Illustration of TenneT . TenneT learns convolution kernels without any back- 

propagation in an unsupervised manner. 
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p LRN is also effective for large dataset. Specifically, the expense

or precomputing B and F using VLRR is proportional to the num-

er of videos. And it takes only 0.2 s for a video clip using an In-

el i7 CPU. The expected time-consumption for large datasets, e.g. ,

CF 1 , ActivityNet 2 and Kinetics 3 are approximately 0.3, 0.6 and

 h, respectively. Compared with the long training time of net-

orks, e.g. , several days, the precomputing time can be ignored.

lso note that one of the key point of p LRNC is the auxiliary low

ank guidance. p LRNC is not the first contribution to explore the

ffect of auxiliary guidance. For example, Li et al. [39] leverages

eak semantic relevance as the auxiliary guidance for event clas-

ification, and Pan et al. [40] employs visual-semantic embedding

s the auxiliary guidance for video captioning. These contributions

emonstrate its feasibility and effectiveness. 

Considering VLRR, at each iteration, B, F and E have closed

orm solutions. For gray videos, where the channel number c

quals 1, suppose w, h and t are the corresponding video width,

eight and number of frames, then the computation complexity is

(wht log (t) + 2 wh 2 t) . 

. Initialization for classification network 

After getting the low rank representation of the video, a classi-

cation network is designed to recognize the actions being taken

lace. The noised video V, the low rank background B and the

parse foreground F can be implemented as the input of the classi-

cation network. For simplicity, V, B and F are not treated distin-

uished later in this section. For the given video clips {V i } N i =1 
, V i ∈

 

w ×h ×t×c , suppose there are S convolutional layers, the numbers of

onvolution kernels for each layer are s 1 , s 2 , ���, s S , and the size of

onvolution kernel is x × y × z . 

.1. Unsupervised convolutional kernel learning 

For each V i , the method starts by selecting a small cube of the

ame size as the convolution kernel around each voxel, and then

his cube is slid within each video clip. The sliding cube values are

ollected and flatten into a vector v k ∈ R 

xyz . After padding with ze-

os and overlapping sliding (including temporal padding and tem-

oral sliding), there will be wht vectors v k , k = 1 , · · · , wht . Then

or each video clip V i , these vectors can be processed with mean-

emoving by the mean vector v and stacked into a large matrix 

 i = 

[
ˆ v 1 , ̂  v 2 , · · · , ̂  v wht 

]
∈ R 

xyz×wht . (13) 

ere ˆ v k = v k − v is the mean-removed vector. For all N video clips,

he stacked matrix is 

 = [ V 1 , V 2 , · · · , V N ] ∈ R 

xyz×Nwht . (14) 
1 http://www.crcv.ucf.edu/data/UCF101.php . 
2 http://www.activity-net.org/ . 
3 https://www.deepmind.com/research/open-source/open-source-datasets/ 

inetic . 

i  

m  

c  

b  

w  

t  
nd the covariance matrix is obtained via S v = VV 

T . According to

heories about PCA [41] and PCANet [42] , here an optimal projec-

ion direction W can be obtained via 

 = arg max 
WW 

T = I 
tr 

(
W 

T S v W 

)
. (15) 

sing techniques of Singular Value Decomposition (SVD), the first

 1 principle components of S v , denoted as q 1 , q 2 , · · · , q s 1 , q i ∈ R 

xyz ,

an be reshaped as s 1 kernel cubes of size x × y × z . Then these

ernel cubes are selected as the convolutional kernels for TenneT.

ithout loss of comprehension, for simplicity, these kernel cubes

re denoted as Q 

s ∈ R 

x ×y ×z , s = 1 , · · · , s 1 . 

Then the first layer output can be defined as 

 

s 
i = V i ∗ Q 

s , i = 1 , · · · , N; s = 1 , · · · , s 1 , (16) 

here ∗ denotes 3D convolution. Similarly, the subsequent layers

an be defined equally. 

The convolution kernels are learned via Tensor factorization,

hus the neTwork is called TenneT. On the one hand, the learned

onvolution kernels Q 

s i can be employed to initialize a 3D convo-

ution network with the same structure as TenneT. On the other

and, the final output of TenneT are of size N × w × h × t × s S ,

hich is hard for further analysis. Different from PCANet, this pa-

er adopts Bag of Features to reduce the dimension of feature

aps (here the outputs of convolution layers are also called fea-

ure maps). Specifically, suppose the values at the same spatial-

emporal position construct a feature vector of length s S . K-means

lustering is employed to learn a code book and its corresponding

igh level representation. In this case, TenneT can be employed di-

ectly for action recognition using SVM. A more intuitive illustra-

ion can be found in Fig. 3 . 

.2. Feasibility analysis 

Learning a network for eLR action recognition is difficult. This

s primarily due to the fact that eLR video is hard to be aug-

ented using techniques such as random crop. TenneT learns the

onvolution kernels directly from the data distribution without any

ack-propagation, thus it is feasible and efficient. The most related

ork is PCANet [42] , nevertheless, TenneT differs from PCANet in

wo aspects. ( a ) PCANet is designed for image classification, while

http://www.crcv.ucf.edu/data/UCF101.php
http://www.activity-net.org/
https://www.deepmind.com/research/open-source/open-source-datasets/kinetic
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Fig. 4. Examples of eLR Videos in Penn Dataset. This paper mainly deals with res- 

olution of 16 × 16, which is even hard for humans to recognize the actions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Recognition Accuracy of VLRR and p LRN on Penn and HMDB. p LRN outperforms 

VLRR in both datasets. 

Methods VLRR p LRN 

V B F B + F V B F B + F

Penn 20.5 21.3 21.5 22.6 20.9 23.7 23.9 24.0 

HMDB 8.8 8.9 8.8 10.1 8.9 9.2 8.9 11.3 
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TenneT is able to handle a sequence of video frames. ( b ) More

importantly, TenneT is used for initializing a deep 3D classifica-

tion network with identical architecture. TenneT makes the net-

work converges faster than random initialization. And it will be

discussed in next section. 

TenneT is also effective for high resolution video and large

datasets. Though the size of V ∈ R 

xyz×Nwht is large for large dataset,

TenneT only requires computing the SVD of the covariance matrix

S v = VV 

T ∈ R 

xyz×xyz instead of V . Usually, x = y = z = 3. As a result,

TenneT is efficient for large datasets. 

5. Experiments 

This section evaluates the performance of the proposed method

on two benchmark datasets, i.e., Penn [43] , HMDB [44] . The effec-

tiveness of each component, i.e., VLRR, p LRN and TenneT, is first

analyzed. And then a comparison with other state-of-the-art algo-

rithms is reported. For reproducible research, codes has been re-

leased 

4 . 

5.1. Datasets 

Penn 

5 is a challenging action recognition dataset with large

variations in viewpoint, scale, background, illumination, camera

motion and temporal duration. It contains of 2326 video sequences

categorized into 15 action classes. 

HMDB-51 6 is a more challenging action recognition dataset

with 6 84 9 videos divided into 51 human action classes. Compared

with Penn, the videos are extracted from commercial movies as

well as YouTube, thus HMDB-51 is more challenging. 

The widths of video frames vary from 270 to 482 pixels, while

the heights of video frames vary from 204 to 480 pixels. Most

frame resolutions are 480 × 270 and 480 × 360. These videos are

rescaled into low resolutions, e.g. , 32 × 32, 16 × 16 and 8 × 8. Some

examples can be found in Fig. 4 . Without specific illustration, the

spatial resolution is set to be 16 × 16 and the temporal length is

16. 

5.2. Analysis of VLRR and p LRN 

5.2.1. Implementation details 

VLRR . λ and γ are critical for recovery, and in this paper, λ

and γ are both set to be 1 / 
√ 

max { w, h } × t [31,32] . The penalty

term μ = 1 e −4 , μmax = 1 e 10 , the update parameter δ = 1 . 1 and the

converge tolerance τ = 1 e −8 . 
4 https://www.github.com/Tsingzao/pLRN . 
5 http://www.dreamdragon.github.io/PennAction/ . 
6 http://www.serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion- 

database/ . 

f  

p  

m  

m  

s  

I  
p LRN . The network is implemented on Keras [45] . The weight

f auxiliary output σ is 0.1 while the weight of the main output is

.9. Without loss of generality, the classification network is set to

e a two-layer fully connected network in this subsection. Each layer

onsists of 4096 hidden units, with dropout ratio 0.9. Adadelta with

r = 1 . 0 , ρ = 0 . 95 and ε = 1 e −8 is employed to optimize the net-

ork. 

.2.2. Convergence of VLRR 

This paper solves VLRR iteratively via alternating method. Fig. 5

emonstrates its convergence on Penn and HMDB under various

esolutions. The rank error, as demonstrated in Fig. 5 the vertical

xis, converges within 50 iterations. 

.2.3. Performance of VLRR and p LRN 

This section demonstrates the performance of VLRR and p LRN,

nd the results are reported in Table 1 . As demonstrated in

ection 5.2.1 , for simplicity and without loss of generality, the clas-

ification network is set to be a two-layer fully connected network

FCNet). 

Table 1 illustrates five points. ( a ) Performances of the recov-

red background B and foreground F are better than that of the

riginal video V . This is probably because the eLR video V is eas-

ly affected by noise. The recovered two components B and F are

ore robust since the noise term E is removed. ( b ) A combination

f B and F boosts the performance than both of the two terms.

rom the perspective of two-stream network, F behaves as optical

ow while B represents multiple static frames. Intuitively, these

wo components are complimentary to each other. ( c ) p LRN out-

erforms VLRR. Generally, VLRR decomposes the two components

otally from the video without any other information. Whereas

 LRN learns an auxiliary output with the guidance of VLRR, and

 main output of the predicted label. Both of the two terms are

ptimized jointly. With the main objective of improving recogni-

ion accuracy, p LRN is superior to VLRR. ( d ) The results of p LRN

ithout any supervision of VLRR are shown in the sixth row (row

of p LRN). It is inferior to those with VLRR supervision. Never-

heless, they perform better than using the original video. ( e ) F is

uperior to B for Penn, while F is worse than B for HMDB. HMDB

s a rather challenging dataset even with high resolution. It con-

ists of large object and background shift, thus the background also

ontains valuable motion information, which can be employed for

ction recognition. Whereas for Penn, the background is static and

he foreground possesses more information. 

Fig. 6 presents an intuitive illustration about rank error and

ecognition accuracy. As training goes, the rank error gets smaller

i.e., the rank drops down) and the testing accuracy gets higher. 

.2.4. Visualization of VLRR and p LRN 

Fig. 7 visualizes a given video and its corresponding recovered

oreground F and background B. The results obtained by VLRR and

 LRN are both shown. The background B depicts the static infor-

ation as multiple frames, and the foreground F describes the

otion detail as the optical flow. Under the framework of two-

tream network, this corresponds to the results reported in Table 1 .

n general, there is no straightforward distinct among rows (b), (c)

https://www.github.com/Tsingzao/pLRN
http://www.dreamdragon.github.io/PennAction/
http://www.serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
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Fig. 5. Rank error vs. iteration curves. Two datasets, i.e., Penn and HMDB, conditioned on three resolutions, i.e., 32 × 32, 16 × 16 and 8 × 8, are reported. 

Fig. 6. Rank error vs. testing accuracy on both Penn and HMDB datasets. 

Fig. 7. Visualization of VLRR and p LRN. The first row (a) represents the original 

video, the second row (b) and the third row (c) are the low rank background B and 

the sparse foreground F obtained by VLRR, while the fourth row (d) and the fifth 

row (e) are the results of p LRN. 
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Table 2 

Accuracy of C3D and TenneT. TenneT initialization for C3D outperforms random ini- 

tialization. 

Methods Penn HMDB 

V B + F V B + F

C3D 26.0 35.8 12.9 14.1 

C3D ∗ 28.3 36.3 14.3 15.9 

TenneT 29.4 38.1 15.0 17.9 

∗Note the results are re-implemented using TenneT for initialization. 
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nd rows (d), (e), which indicates that p LRN indeed learns a low

ank and a sparse component. 

.3. Analysis of TenneT 

.3.1. Implementation details 

For better TenneT initialization, this section employs a two-

ayer 3D convolution network for eLR recognition. The number of

onvolution layers and convolution kernels are set to be S = 2 and

 i = 10 , i = 1 , 2 , and the kernel size is set to be 3 × 3 × 3. For Ten-

eT, it employs SVM with C = 10 for classification. The size of code

ook is set to be 256. SGD is employed for C3D network optimiza-

ion. The parameters are set without cross validation in this sec-

ion. 

.3.2. Performance of TenneT 

This section evaluates both the effectiveness of TenneT for eLR

ction recognition and the feasibility of TenneT for network initial-
zation. The results are shown in Table 2 . B and F are obtained

sing VLRR. 

Compared with Table 1 , C3D outperforms FCNet at a great deal

ecause C3D depicts more spatial-temporal correlation. Further-

ore, the two-stream framework integrating background B and

oreground F boosts the performance about 9% on Penn. Using

enneT as the initialization strategy is superior to random ini-

ialization in testing accuracy for both Penn and HMDB. This is

ue to the property that TenneT learns convolution kernels totally

rom the data distribution. In particular, TenneT with SVM classifier

chieves better performance than the former two (C3D and C3D 

∗)

ethods. The reason is that C3D requires more parameters in fully

onnected layers, which is more likely to be overfitting due to the

ack of training data. 

.3.3. Convergence analysis of TenneT 

This section demonstrates the advantage that using TenneT for

etwork initialization promotes the convergence. A comparison of

ith and without TenneT initialization for both Penn and HMDB is

hown in Fig. 8 . 

Random initialization converges at about 300 and 410 epochs

hile TenneT initialization converges at about 250 and 370 epochs

or Penn and HMDB, respectively. Combined with the results in

able 2 , TenneT initialization outperforms random initialization

oth in speed and accuracy. 

.3.4. Visualization of TenneT 

Fig. 9 visualizes the learned convolution kernels for TenneT. In

ig. 9 , there are two convolution layers. From Fig. 9 , the unsuper-

ised learned kernels are similar to the basis of Discrete Wavelet

ransform, i.e., DWT. DWT is originally proposed for signal pro-

essing, e.g., foreground detection [46] , and graph decomposition

47] . It defines a set of bases that can represent an arbitrary func-

ion [48] . In fact, researches have demonstrated that Wavelets are

aturally appropriate for analysis of biological data or bio-inspired

trategy [49] . TenneT agrees with this mechanism. 
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Fig. 8. Training loss vs. epoch curves on both Penn and HMDB. TenneT initialization converges faster than random initialization. 

Table 3 

Recognition accuracy of TenneT compared with other methods on Open Domain Action Recognition (ODAR) dataset. 

The resolution is set to be 32 × 32. Results show TenneT is more suitable to open domain analysis. 

Method ODAR Average 

Weizmann URALD UIUC MSR UCFARG 

Pixel level feature Average pooling + SVM 40.0 79.7 59.8 22.7 72.3 54.9 

Max pooling + SVM 49.0 83.7 49.5 24.6 78.1 57.0 

Deep CNN feature FCNet 60.0 81.4 64.3 35.6 78.1 63.9 

CIFARNet 63.6 80.9 63.1 36.4 80.0 64.8 

AlexNet 65.4 82.5 56.0 36.7 79.0 63.9 

C3D [11] 67.3 82.9 79.0 37.8 80.1 69.4 

C3D ∗ 65.4 85.2 75.5 36.7 81.9 68.9 

Unsupervised feature PCANet [42] + SVM 63.6 83.1 67.2 29.0 79.0 64.4 

TenneT + SVM 67.3 94.9 87.0 36.8 80.0 73.2 

Fig. 9. Visualization of the convolutional kernels of TenneT. 
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Fig. 10. Accuracy vs. NR curve on Penn. Benefiting from the pseudo low rank guid- 

ance, p LRN + C3D is more robust than C3D. 
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5.3.5. Additional experiment for TenneT 

Additionally, this section conducts an extra experiment for

demonstrating the effectiveness of TenneT. Table 3 presents the re-

sults on ODAR dataset. ODAR 

7 is an open domain action recogni-

tion dataset composed of several small datasets, i.e., Weizmann,

URALD, UIUC, MSR and UCFARG. In this section, the spatial reso-

lution is set to be 32 × 32. 

From Table 3 , methods that employ 3D convolution are supe-

rior to other 2D convolution methods. This is because a sequence

of video frames is quite different from a series of temporal in-

dependent images. Taking temporal correlation into consideration

boosts the performance. Note that TenneT is mainly inspired by

PCANet, Table 3 also makes a comparison with PCANet. Neverthe-

less, PCANet can not take temporal information into consideration,

thus it deals with multiple frames via simple temporal pooling.

On the contrary, TenneT takes full consideration of temporal rel-
7 http://www.sesame.comp.nus.edu.sg/workshop/odar2017/ . 

 

t  

N  

e

vance by 3D convolution, thus TenneT is more suitable for eLR

ction recognition than PCANet. 

.4. Analysis of noise and resolution 

This section demonstrates the robustness of p LRN, and illus-

rates the capability of TenneT in handling different resolutions.

ote that in this section, the networks are trained within 100

pochs without cross-validation. 

http://www.sesame.comp.nus.edu.sg/workshop/odar2017/
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Fig. 11. Accuracy vs. resolution curve of TenneT on both Penn and HMDB. Recognition accuracy decreases rapidly when resolution is smaller than 16 × 16. 
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Table 4 

Testing accuracy on Penn and HMDB. 

Methods OF HR TI Penn HMDB 

C3D [11] – – � 37.1 14.3 

ConvNet + SVM [16] – – � – 18.9 

Two-Stream [12] � – � 41.0 ∗ 19.6 

ConvNet ++ ISR + SVM [16] – � � – 20.8 

SCN [17] � � � 44.9 ∗ 21.4 

PCANet [42] + SVM – – – 28.3 12.7 

VLRR + FC – – – 22.6 10.1 

p LRN + FC – – – 24.0 11.3 

VLRR + C3D – – � 35.8 14.1 

p LRN + C3D – – � 43.7 20.1 

VLRR + TenneT – – � 38.1 17.9 

p LRN + TenneT – – � 47.1 21.7 

∗The re-implemented results. Here OF represents optical flow, HR denotes high res- 

olution data and TI indicates temporal information. 
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.4.1. Analysis of noise 

Fig. 10 describes the performance of C3D and p LRN + C3D with

ifferent noise ratio NR . The noise ratio describes the percentage

f noised frames defined by NR = 

nF 
aF , where nF is the number of

oised frames and aF is the number of all frames. Generally, with-

ut the auxiliary regularization of pseudo low rank, C3D is suscep-

ible to noise. 

In fact, the VLRR model is designed to remove additional noises

s illustrated in Eq. (3) . And p LRN aims to generate an approxi-

ate output of VLRR. Thus it is expected to be robust to noise.

pecifically, p LRN has an additional skip connection from the input

ayer to the output layer ( see Fig. 2 ). At the worst case, p LRN+C3D

s competitive against single C3D by learning an identity mapping.

s the increasing of noise ratio, both C3D and p LRN+C3D are get-

ing worse performance on testing accuracy. Nevertheless, with the

uidance of pseudo low rank, the performance of p LRN+C3D de-

reases in a much slower tendency, especially when the noise ratio

s less than 60%. 

.4.2. Analysis of resolution 

Typically, low resolution is the main challenge that affects ac-

ion recognition. Fig. 11 illustrates the performance of TenneT with

ifferent resolutions. Principally, the proposed method concentrate

n eLR video action recognition, while it is still effective for high

esolution videos. 

From Fig. 11 , the results of resolution 64 × 64 and 32 × 32 are

cceptable compared with resolution 256 × 256 when taking other

onditions, e.g. , memory storage, into consideration. When the res-

lution is smaller than 16 × 16, e.g. , 8 × 8, the recognition accuracy

rops rapidly. As have shown in Fig. 4 , it is even hard for hu-

an to recognize the actions with resolution smaller than 16 × 16.

o demonstrate that the proposed method is effective irrespective

f aspect ratio, this subsection also report the recognition accu-

acy on videos with unequal width and height. Note that the ac-

ion agent, i.e., human body, often lies in a tall and thin rectan-

le area, this subsection mainly consider videos of size 16 × 8 and

2 × 16. Specifically, the videos are first resized into 16 × 16 and

2 × 32, and then cropped to 16 × 8 and 32 × 16. The results are

lso shown in Fig. 10 . The red circles denote the testing accuracy

nder 16 × 8 and the red crosses represent the testing accuracy

nder 32 × 16. Interestingly, the testing accuracy is dominant by

in { width, height }. For example, the result of 16 × 8 is close to

 × 8, and the result of 32 × 16 is close to 16 × 16. One possible

xplanation is that the discriminative information video contained

s restricted by min { width, height }. To keep the basic aspect ratio,
s illustrated in the previous paragraph, the videos are cropped

rom 16 × 16 and 32 × 32 to 16 × 8 and 32 × 16. This rough strat-

gy might omit the discriminative background information. 

.5. Comparison with state-of-the-art methods 

This section compares the proposed VLRR, p LRN, TenneT with

ther methods, e.g. , C3D [11] , Two-Stream [12] , and Semi-Coupled

etwork [17] etc. , on both Penn and HMDB. The results are shown

n Table 4 . This section uses five-fold cross-validation for parameter

election. 

C3D and Two-Stream are two most widely used methods for

ction recognition. Semi-Coupled Network (SCN) and Inverse Su-

er Resolution (ISR) network are two recently proposed methods

or eLR recognition. However, they need high resolution videos for

raining. From Table 4 , an integration of p LRN and TenneT outper-

orms others methods. 

. Conclusion 

This paper has proposed a new method for eLR action recog-

ition. Basically, the proposed method contains three components,

 video low rank representation (VLRR) model, a pseudo low rank

etwork ( p LRN) and a new data-driven network initialization strat-

gy (TenneT). Extensive experiments demonstrate that the pro-

osed method is effective to eLR action recognition. Compared

ith other methods, the proposed method is more robust bene-
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fitting from VLRR and p LRN, and it converges much faster due to

the introduction of TenneT initialization. 

Nevertheless, though the proposed methods are still effective

for high resolution videos, the time consumption of VLRR can not

be overlooked. Our future work will focus on seeking a more ef-

ficient video low rank representation model. And a more direct

method of imposing low rank regularization to deep networks

is under construction. Besides, the proposed TenneT learns con-

volution kernels based on tensor factorization, and this is time-

consuming. The future work will focus on a more efficient method

without tensor factorization. 
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