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Semantic labeling for very high resolution (VHR) images in urban areas, is of significant importance in a
wide range of remote sensing applications. However, many confusing manmade objects and intricate
fine-structured objects make it very difficult to obtain both coherent and accurate labeling results. For
this challenging task, we propose a novel deep model with convolutional neural networks (CNNs), i.e.,
an end-to-end self-cascaded network (ScasNet). Specifically, for confusing manmade objects, ScasNet
improves the labeling coherence with sequential global-to-local contexts aggregation. Technically,
multi-scale contexts are captured on the output of a CNN encoder, and then they are successively aggre-
gated in a self-cascaded manner. Meanwhile, for fine-structured objects, ScasNet boosts the labeling
accuracy with a coarse-to-fine refinement strategy. It progressively refines the target objects using the
low-level features learned by CNN’s shallow layers. In addition, to correct the latent fitting residual
caused by multi-feature fusion inside ScasNet, a dedicated residual correction scheme is proposed. It
greatly improves the effectiveness of ScasNet. Extensive experimental results on three public datasets,
including two challenging benchmarks, show that ScasNet achieves the state-of-the-art performance.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Semantic labeling in very high resolution (VHR) images is a
long-standing research problem in remote sensing field. It plays a
vital role in many important applications, such as infrastructure
planning, territorial planning and urban change detection (Lu
et al., 2017a; Matikainen and Karila, 2011; Zhang and Seto,
2011). The target of this problem is to assign each pixel to a given
object category. Note that it is not just limited to building extrac-
tion (Li et al., 2015a), road extraction (Cheng et al., 2017b) and veg-
etation extraction (Wen et al., 2017) which only consider labeling
one single category, semantic labeling usually considers several
categories simultaneously (Li et al., 2015b; Xu et al., 2016; Xue
et al., 2015). As a result, this task is very challenging, especially
for the urban areas, which exhibit high diversity of manmade
objects. Specifically, on one hand, many manmade objects (e.g.,
buildings) show various structures, and they are composed of a
large number of different materials. Meanwhile, plenty of different
manmade objects (e.g., buildings and roads) present much similar
visual characteristics. These confusing manmade objects with high
intra-class variance and low inter-class variance bring much diffi-
culty for coherent labeling. On the other hand, fine-structured
objects in cities (e.g., cars, trees and low vegetations) are quite
small or threadlike, and they also interact with each other through
occlusions and cast shadows. These factors always lead to inaccu-
rate labeling results. Furthermore, it poses additional challenge to
simultaneously label all these size-varied objects well.

To accomplish such a challenging task, features at different
levels are required. Specifically, abstract high-level features are
more suitable for the recognition of confusing manmade objects,
while labeling of fine-structured objects could benefit from
detailed low-level features. Convolutional neural networks (CNNs)
(Lecun et al., 1990) in deep learning field are well-known for feature
learning (Mas and Flores, 2008). CNNs consist of multiple trainable
layers which can extract expressive features of different levels
(Lecun et al., 1998). Moreover, recently, CNNs with deep learning
have demonstrated remarkable learning ability in computer vision
field, such as scene recognition (Yuan et al., 2015) and image seg-
mentation (Long et al., 2015). Meanwhile, the development of
remote sensing has also been greatly promoted by numerous
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CNNs-based methods (Cheng et al., 2017a). For example,
deconvolution networks (Zeiler et al., 2010) are investigated by
Lu et al. (2017b) for remote sensing scene classification, and
Chen et al. (2016b) perform target classification using CNNs for
SAR Images.

Based on CNNs, many patch-classification methods are pro-
posed to perform semantic labeling (Mnih, 2013; Mostajabi et al.,
2015; Paisitkriangkrai et al., 2016; Nogueira et al., 2016;
Alshehhi et al., 2017; Zhang et al., 2017). These methods determine
a pixel’s label by using CNNs to classify a small patch around the
target pixel. However, they are far from optimal, because they
ignore the inherent relationship between patches and their time
consumption is huge (Maggiori et al., 2017). Typically, fully convo-
lutional networks (FCNs) have boosted the accuracy of semantic
labeling a lot (Long et al., 2015; Sherrah, 2016). FCNs perform
pixel-level classification directly and now become the normal
framework for semantic labeling. Nevertheless, due to multiple
sub-samplings in FCNs, the final feature maps are much coarser than
the input image, resulting in less accurate labeling results.

Accordingly, a tough problem locates on how to perform accu-
rate labeling with the coarse output of FCNs-based methods, espe-
cially for fine-structured objects in VHR images. To solve this
problem, some researches try to reuse the low-level features
learned by CNNs’ shallow layers (Zeiler and Fergus, 2014). The
aim is to utilize the local details (e.g., corners and edges) captured
by the feature maps in fine resolution. Technically, they perform
operations of multi-level feature fusion (Ronneberger et al.,
2015; Long et al., 2015; Hariharan et al., 2015; Pinheiro et al.,
2016), deconvolution (Noh et al., 2015) or up-pooling with recorded
pooling indices (Badrinarayanan et al., 2015). Most of these meth-
ods use the strategy of direct stack-fusion. However, this strategy
ignores the inherent semantic gaps in features of different levels.
An alternative way is to impose boundary detection (Bertasius
et al., 2016; Marmanis et al., 2016). It usually requires extra bound-
ary supervision and leads to extra model complexity despite boost-
ing the accuracy of object localization.

Another tricky problem is the labeling incoherence of confusing
objects, especially of the various manmade objects in VHR images.
To tackle this problem, some researches concentrate on leveraging
the multi-context to improve the recognition ability of those
objects. They use multi-scale images (Farabet et al., 2013;
Mostajabi et al., 2015; Cheng et al., 2016; Liu et al., 2016b; Chen
et al., 2016a; Zhao and Du, 2016) or multi-region images (Gidaris
and Komodakis, 2015; Luus et al., 2015) as input to CNNs. How-
ever, these methods are usually less efficient due to a lot of repet-
itive computation. Differently, some other researches are devoted
Fig. 1. Overview of the proposed ScasNet. (For interpretation of the references to colo
to acquire multi-context from the inside of CNNs. They usually per-
form operations of multi-scale dilated convolution (Chen et al.,
2015), multi-scale pooling (He et al., 2015b; Liu et al., 2016a;
Bell et al., 2016) or multi-kernel convolution (Audebert et al.,
2016), and then fuse the acquired multi-scale contexts in a direct
stack manner. Nevertheless, this manner not only ignores the hier-
archical dependencies among the objects and scenes in different
scales, but also neglects the inherent semantic gaps in contexts
of different-level information.

In summary, although current CNN-based methods have
achieved significant breakthroughs in semantic labeling, it is still
difficult to label the VHR images in urban areas. The reasons are
as follows: (1) Most existing approaches are less efficient to
acquire multi-scale contexts for confusing manmade objects recog-
nition; (2) Most existing strategies are less effective to utilize low-
level features for accurate labeling, especially for fine-structured
objects; (3) Simultaneously fixing the above two issues with a sin-
gle network is particularly difficult due to a lot of fitting residual in
the network, which is caused by semantic gaps in different-level
contexts and features.

In this paper, we propose a novel self-cascaded convolutional
neural network (ScasNet), as illustrated in Fig. 1. The aim of this
work is to further advance the state of the art on semantic labeling
in VHR images. To this end, it is focused on three aspects: (1)
multi-scale contexts aggregation for distinguishing confusing man-
made objects; (2) utilization of low-level features for fine-
structured objects refinement; (3) residual correction for more
effective multi-feature fusion. Specifically, a conventional CNN is
adopted as an encoder to extract features of different levels. On
the feature maps outputted by the encoder, global-to-local contexts
are sequentially aggregated for confusing manmade objects recog-
nition. Technically, multi-scale contexts are first captured by dif-
ferent convolutional operations, and then they are successively
aggregated in a self-cascaded manner. With the acquired contex-
tual information, a coarse-to-fine refinement strategy is performed
to refine the fine-structured objects. It progressively reutilizes the
low-level features learned by CNN’s shallow layers with long-span
connections. In addition, to correct the latent fitting residual
caused by semantic gaps in multi-feature fusion, several residual
correction schemes are employed throughout the network. As a
result of residual correction, the above two different solutions
could work collaboratively and effectively when they are inte-
grated into a single network. Extensive experiments demonstrate
the effectiveness of ScasNet. Moreover, the three submodules in
ScasNet could not only provide good solutions for semantic label-
ing, but are also suitable for other tasks such as object detection
ur in this figure legend, the reader is referred to the web version of this article.)
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(Cheng and Han, 2016) and change detection (Zhang et al., 2016;
Gong et al., 2017), which will no doubt benefit the development
of the remote sensing deep learning techniques.

To sum up, the main contributions of this paper can be high-
lighted as follows:

� A self-cascaded architecture is proposed to successively aggre-
gate contexts from large scale to small ones. In this way,
global-to-local contexts with hierarchical dependencies among
the objects and scenes are well retained, resulting in coherent
labeling results of confusing manmade objects.
� A coarse-to-fine refinement strategy is proposed, which pro-
gressively refines the target objects using the low-level features
learned by CNN’s shallow layers. Thus, accurate labeling results
can be achieved, especially for the fine-structured objects.
� A residual correction scheme is proposed to correct the latent
fitting residual caused by semantic gaps in multi-feature fusion.
It greatly improves the effectiveness of the above two different
solutions.
� All the above contributions constitute a novel end-to-end deep
learning framework for semantic labeling, as shown in Fig. 1. It
achieves the state-of-the-art performance on two challenging
benchmarks by the date of submission: ISPRS 2D Semantic Label-
ing Challenge (ISPRS, 2016) for Vaihingen and Potsdam. Further-
more, these results are obtained using only image data with a
single model, without using the elevation data like the Digital
Surface Model (DSM), model ensemble strategy or any
postprocessing.

A shorter version of this paper appears in Liu et al. (2017). Apart
from extensive qualitative and quantitative evaluations on the
original dataset, the main extensions in the current work are:

� More comprehensive and elaborate descriptions about the pro-
posed semantic labeling method.
� Further performance improvement by the modification of net-
work structure in ScasNet.
� Comparative experiments with more state-of-the-art methods
on another two challenging datasets for further support the
effectiveness of ScasNet.
� More detailed and in-depth analyses, as well as model visual-
ization and complexity analyses of ScasNet.

The remainder of this paper is arranged as follows. The basic
modules used in ScasNet are briefly introduced in Section 2. Sec-
tion 3 presents the details of the proposed semantic labeling
method. Experimental evaluations between our method and the
state-of-the-art methods, as well as detailed analyses of ScasNet
are provided in Section 4. Finally, the conclusion is outlined in
Section 5.
2. Preliminaries

CNNs (Lecun et al., 1990) are multilayer neural networks that
can hierarchically extract powerful low-level and high-level fea-
tures. The input and output of each layer are sets of arrays called
feature maps. Commonly, a standard CNN contains three kinds of
layers: convolutional layer, nonlinear layer and pooling layer. The
convolutional layer offers filter-like function to generate convo-
luted feature maps, while the nonlinear layer simply consists of
an elementwise nonlinear activation function applied to each value
in the feature maps. The pooling layer generalizes the convoluted
features into higher level, which makes features more abstract
and robust. Meanwhile, in CNNs, the feature extraction module
and the classifier module are integrated into one framework, thus
the extracted features are more suitable for specific task than
hand-crafted features, such as HOG (Dalal and Triggs, 2005), SIFT
(Lowe, 2004), and spectral features in remote sensing (Zhang
et al., 2012).

In the following, each basic layer used in the proposed network
will be introduced, and their specific configurations will be pre-
sented in Section 3.4.

Convolutional Layer: The convolutional (Conv) layer performs
a series of convolutional operations on the previous layer with a
small kernel (e.g., 3� 3). The output of each convolutional oper-
ation is computed by dot product between the weights of the
kernel and the corresponding local area (local receptive field).
A weight sharing technique that the parameters (i.e., weights
and bias) are shared among each kernel across an entire feature
map, is adopted to reduce parameters in great deal (Rumelhart
et al., 1986).
Batch Normalization Layer: Batch normalization (BN) mecha-
nism (Ioffe and Szegedy, 2015) normalizes layer inputs to a
Gaussian distribution with zero-mean and unit variance, aiming
at addressing the problem of internal covariate shift, i.e., the dis-
tribution of each layer’s inputs changes during training, as the
parameters of the previous layers change. Thus, it allows us to
use much higher learning rate.
ReLU Layer: The rectified linear unit (ReLU) (Glorot et al., 2011;
Nair and Hinton, 2010) is usually chosen as the nonlinearity
layer. It thresholds the non-positive value as zero and keeps
the positive value unchanged, i.e., an elementwise activation
as maxð0; xÞ. ReLU can achieve a considerable reduction in
training time (Krizhevsky et al., 2012).
Pooling Layer: Pooling is a way to perform sub-sampling along
the spatial dimension. Commonly, there are two kinds of pool-
ing: max-pooling and ave-pooling. Max-pooling samples the
maximum in the region to be pooled, while ave-pooling com-
putes the mean value. In our network, we use max-pooling.
Dropout Layer: Dropout (Srivastava et al., 2014) is an effective
regularization technique to reduce overfitting. It randomly
drops units (along with their connections) from the neural net-
work during training, which prevents units from co-adapting
too much.
Interpolation Layer: Interpolation (Interp) layer performs
resizing operation along the spatial dimension. In our network,
we use bilinear interpolation.
Elementwise Layer: Elementwise (Eltwise) layer performs ele-
mentwise operations on two or more previous layers, in which
the feature maps must be of the same number of channels and
the same size. There are three kinds of elementwise operations:
product, sum, max. In our network, we use sum operation.
Softmax Layer: The softmax nonlinearity (Bridle, 1989) is
applied to the output layer in the case of multiclass classifica-
tion. It outputs the posterior probabilities over each category.

3. Self-cascaded convolutional neural network (ScasNet)

Semantic labeling also called pixel-level classification, is aimed
at obtaining all the pixel-level categories in an entire image. For

this task, we have to predict the most likely category k̂ for a given
image x at j-th pixel x j, which is given by

k̂ ¼ argmax
k2C

pkðx jjhÞ; 8 j 2 f1; � � � ;Ng; ð1Þ

where pkðx jjhÞ, estimated by a model with parameters h, denotes
the posterior probability of x j belonging to the k-th category in a
set of categories C ¼ f1; � � � ;Kg. K is the number of categories and
N is the number of pixels in the given image.
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In this work, we perform semantic labeling for VHR images in
urban areas by means of a self-cascaded convolutional neural net-
work (ScasNet), which is illustrated in Fig. 1. In the following, we
will describe five important aspects of ScasNet, including (1)
Multi-scale contexts Aggregation, (2) Fine-structured Objects Refine-
ment, (3) Residual Correction, (4) ScasNet Configuration, (5) Learning
and Inference Algorithm.

3.1. Multi-scale contexts aggregation

Obtaining coherent labeling results for confusing manmade
objects in VHR images is not easily accessible, because they are
of high intra-class variance and low inter-class variance. To fix this
issue, it is insufficient to use only the very local information of the
target objects. We need to know the scene information around
them, which could provide much wider visual cues to better distin-
guish the confusing objects. The scene information also means the
context, which characterizes the underlying dependencies
between an object and its surroundings, is a critical indicator for
objects identification. Therefore, we are interested in discussing
how to efficiently acquire context with CNNs in this section.

In CNNs, each unit of deeper layers (feature maps) contains more
extensive, powerful and abstract information, due to the larger
receptive field on the input image and higher nonlinearity (Zeiler
and Fergus, 2014). Thus, the context acquired from deeper layers
can capture wider visual cues and stronger semantics simultane-
ously. However, only single-scale context may not represent hier-
archical dependencies between an object and its surroundings.
Naturally, multi-scale contexts are gaining more attention. How-
ever, it is very hard to retain the hierarchical dependencies in con-
texts of different scales using common fusion strategies (e.g., direct
stack). To address this issue, we propose a novel self-cascaded
architecture, as shown in the middle part of Fig. 1. It is aimed at
aggregating global-to-local contexts while well retaining hierarchi-
cal dependencies, i.e., the underlying inclusion and location rela-
tionship among the objects and scenes in different scales (e.g.,
the car is more likely on the road, the chimney and skylight is more
likely a part of roof and the roof is more likely by the road).

Specifically, we perform dilated convolution operation on the
last layer of the encoder to capture context. The reasons are two-
fold. On one hand, dilated convolution expands the receptive field,
which can capture high-level semantics with wider information.
On the other hand, although theoretically, features from high-
level layers of a network have very large receptive fields on the
input image, in practice they are much smaller (Zhou et al.,
2015). This problem can be alleviated by dilated convolution.
Fig. 2(a) illustrates an example of dilated convolution. To make
the size of feature map after dilated convolution unchanged, the pad-
ding rate should be set as the same to the dilation rate. More details
about dilated convolution can be referred in Yu and Koltun (2016).

Then, by setting a group of big-to-small dilation rates (24, 18, 12
and 6 in the experiment), a series of feature maps with global-to-
local contexts are generated.1 That is, multi-scale dilated convolution
operations correspond to multi-size regions on the last layer of enco-
der (see Fig. 1). Large region (high-level context) contains more
semantics and wider visual cues, while small region (low-level con-
text) otherwise. Meanwhile, the obtained feature maps with multi-
scale contexts can be aligned automatically due to their equal
resolution.

To well retain the hierarchical dependencies in multi-scale con-
texts, we sequentially aggregate them from global to local in a self-
1 Due to the inherent properties of convolutional operation in each single-scale
context (same-scale convolution kernels with large original receptive fields convolve
with weight sharing over spatial dimension and summation over channel dimension),
the relationship between contexts with same scale can be acquired implicitly.
cascaded manner as shown in Fig. 2(b). In this way, high-level con-
text with big dilation rate is aggregated first and low-level context
with small dilation rate next. Formally, it can be described as:

T ¼ ! � � �! !½T1 � T2� � T3½ � � � � � � Tn½ �;
dT1 > dT2 > dT3 > � � � > dTn :

�
ð2Þ

Here, T1;T2; . . . ; Tn denote n-level contexts, T is the final aggregated
context and dTi (i ¼ 1; . . . ;n) is the dilation rate set for capturing the
context Ti. ‘�’ denotes the fusion operation. !½�� denotes the residual
correction process, which will be described in Section 3.3. In fact,
the above aggregation rule is consistent with the visual mechanism,
i.e., wider visual cues in high-level context could play a guiding role
in integrating low-level context. For instance, the visual impression
of a whole roof can provide strong guidance for the recognition of
chimney and skylight in this roof.

The proposed self-cascaded architecture for multi-scale con-
texts aggregation has several advantages: (1) The multiple con-
texts are acquired from deep layers in CNNs, which is more
efficient than directly using multiple images as input (Gidaris
and Komodakis, 2015); (2) Besides the hierarchical visual cues,
the acquired contexts also capture the abstract semantics learned
by CNN, which is more powerful for confusing objects recognition;
(3) The self-cascaded strategy of sequentially aggregating multi-
scale contexts, is more effective than the parallel stacking strategy
(Chen et al., 2015; Liu et al., 2016a), as shown in Fig. 2(c), which
potentially loses the hierarchical dependencies in different scales;
(4) The more complicated nonlinear operation of Eq. (2) has a
stronger capacity to fit the underlying mapping than those stacking
operations.

3.2. Fine-structured objects refinement

Besides the complex manmade objects, intricate fine-structured
objects also increase the difficulty for accurate labeling in VHR
images. Actually, the final feature maps outputted by the FCN-
based methods is quite coarse due to multiple sub-samplings. For
example, the size of the last feature maps in VGG-Net (Simonyan
and Zisserman, 2015) is 1/32 of input size. Thus, it is very hard
to restore the low-level details of objects (e.g., boundary and local-
ization) for accurate labeling, especially for fine-structured objects.

In CNNs, it is found that the low-level features can usually be
captured by the shallow layers (Zeiler and Fergus, 2014). Based
on this observation, we propose to reutilize the low-level features
with a coarse-to-fine refinement strategy, as shown in the right-
most part of Fig. 1. Specifically, the shallow layers with fine resolu-
tion are progressively reintroduced into the decoder stream by
long-span connections. As a result, the coarse feature maps can
be refined and the low-level details can be recovered. Each single
refinement process is illustrated in Fig. 3, which can be formulated
as:

Miþ1 ¼ R ! LðMi �wMi Þ � LðFi �wFi Þ
h ih i

; ð3Þ

where Mi denotes the refined feature maps of the previous process,
and Fi denotes the feature maps to be reutilized in this process com-
ing from a shallower layer. wMi and wFi are the convolutional

weights for Mi and Fi respectively. ‘�’ and ‘�’ denote the operations
of convolution and fusion, respectively. Lð�Þ is the ReLU activation
function. R½�� denotes the resize process and !½�� denotes the pro-
cess of residual correction. To fuse finer detail information from
the next shallower layer, we resize the current feature maps to
the corresponding higher resolution with bilinear interpolation to
generate Miþ1.

It is fairly beneficial to fuse those low-level features using the
proposed refinement strategy. On one hand, in fact, the feature



Fig. 4. Residual correction scheme. ‘C1�1’ and ‘C3�3’ denote convolutional
operation with kernel size 1 � 1 and 3 � 3, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. (a) An illustration of dilated convolution used in ScasNet to capture context, where the size of feature map and convolution kernel is 9� 9 and 3� 3, respectively, both
the dilation rate and the padding rate equal 3, and the padding value is zero. (b) The proposed multi-context aggregation approach, i.e., performing aggregation sequentially in a
self-cascaded manner. (c) Multi-context aggregation in a parallel stack. ‘ReC’ denotes the proposed residual correction scheme. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Single process of refinement. ‘C1�1’ denotes convolutional operation with kernel size 1 � 1, ‘ReC’ denotes the residual correction scheme. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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maps of different resolutions in the encoder (see Fig. 1) represent
semantics of different levels (Zeiler and Fergus, 2014). Thus, due
to their inherent semantic gaps, stacking all these features directly
(Hariharan et al., 2015; Farabet et al., 2013) may not be a good
choice. In our method, the influence of semantic gaps is alleviated
when a gradual fusion strategy is used. On the other hand, in train-
ing stage, the long-span connections allow direct gradient propa-
gation to shallow layers, which helps effective end-to-end training.

The most relevant work with our refinement strategy is pro-
posed in Pinheiro et al. (2016), however, it is different from ours
to a large extent. On one hand, our strategy focuses on performing
dedicated refinement considering the specific properties (e.g.,
small dataset and intricate scenes) of VHR images in urban areas.
Specifically, as shown in Fig. 1, only a few specific shallow layers
are chosen for the refinement. Those layers that actually contain
adverse noise due to intricate scenes are not incorporated. On
the other hand, our refinement strategy works with our specially
designed residual correction scheme, which will be elaborated in
the following section.
3.3. Residual correction

It is notable that the proposed two solutions for labeling confus-
ing manmade objects and fine-structured objects are quite differ-
ent. In order to collaboratively and effectively integrate them into
a single network, we have to find a approach to perform effective
multi-feature fusion inside the network. This task is very challeng-
ing due to two issues. Firstly, as network deepens, it is fairly difficult
for CNNs to directly fit a desired underlying mapping (He et al.,
2016). Furthermore, this problem is worsened when it comes to
fuse features of different levels. Secondly, there exists latent fitting
residual when fusing multiple features of different semantics,
which could cause the lack of information in the progress of fusion.
To address this problem, a residual correction scheme is proposed,
as shown in Fig. 4. It is dedicatedly aimed at correcting the latent
fitting residual in multi-feature fusion inside ScasNet.

Specifically, building on the idea of deep residual learning (He
et al., 2016), we explicitly let the stacked layers fit an inverse resid-
ual mapping, instead of directly fitting a desired underlying fusion
mapping. Formally, let f denote fused feature and f 0 denote the
desired underlying fusion. We expect the stacked layers to fit
another mapping, which we call inverse residual mapping as:

H½�� ¼ f 0 � f : ð4Þ
Actually, the aim of H½�� is to compensate for the lack of infor-

mation caused by the latent fitting residual, thus to achieve the
desired underlying fusion f 0 ¼ f þH½��. Moreover, as demonstrated
by He et al. (2016), the inverse residual learning can be very effec-
tive in deep network, because it is easier to fit H½�� than to directly
fit f 0 when network deepens. As a result, the adverse influence of
latent fitting residual in multi-feature fusion can be well counter-
acted, i.e., the residual is well corrected.

It should be noted that, our residual correction scheme is quite
different from the so-called chained residual pooling in RefineNet
(Lin et al., 2016) on both function and structure. Functionally, the
chained residual pooling in RefineNet aims to capture background
context. However, our scheme explicitly focuses on correcting the
latent fitting residual, which is caused by semantic gaps in multi-
feature fusion. Structurally, the chained residual pooling is fairly
complex, while our scheme is simple and efficient. As can be seen
in Fig. 4, only one basic residual block is used in our scheme, and it
is simply constituted by three convolutional layers and a skip
connection.
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As shown in Fig. 1, several residual correction modules are elab-
orately embedded in ScasNet, which can greatly prevent the fitting
residual from accumulating. As a result, the proposed two different
solutions work collaboratively and effectively, leading to a very
valid global-to-local and coarse-to-fine labeling manner. Besides,
the skip connection (see Fig. 4) is very beneficial for gradient prop-
agation, resulting in an efficient end-to-end training of ScasNet.

3.4. ScasNet configuration

As depicted in Fig. 1, the encoder network corresponds to a fea-
ture extractor that transforms the input image to multi-
dimensional shrinking feature maps. To achieve this function, any
existing CNN structures can be taken as the encoder part. In this
paper, we propose two types of ScasNet based on two typical net-
works, i.e., 16-layer VGG-Net (Simonyan and Zisserman, 2015) and
101-layer ResNet (He et al., 2016). Compared with VGG ScasNet,
ResNet ScasNet has better performance while suffering higher
complexity.

We supply the trained models of these two CNNs so that the
community can directly choose one of them based on different
applications which require different trade-off between accuracy
and complexity. All codes of the two specific ScasNet are released
on the github.2 For clarity, we briefly introduce their configurations
in the following.

VGG ScasNet: In VGG ScasNet, the encoder is based on a VGG-
Net variant (Chen et al., 2015), which is to obtain finer feature maps
(about 1/8 of input size rather than 1/32). On the last layer of enco-
der, multi-scale contexts are captured by dilated convolution oper-
ations with dilation rates of 24, 18, 12 and 6. We only choose three
shallow layers for refinement as shown in Fig. 1. There are two rea-
sons: (1) shallower layers also carry much adverse noise despite of
finer low-level details contained in them; (2) It is very difficult to
train a more complex network well with remote sensing datasets,
which are usually very small. In the encoder, we always use the
last convolutional layer in each stage prior to pooling for refine-
ment, because they contain stronger semantics in that stage. Six
residual correction modules are employed for multi-feature fusion.
Finally, a softmax classifier is employed to obtain probability maps,
which indicate the likelihood of each pixel belonging to a category.

ResNet ScasNet: The configuration of ResNet ScasNet is almost
the same as VGG ScasNet, except for four aspects: the encoder is
based on a ResNet variant (Zhao et al., 2016), four shallow layers
are used for refinement, seven residual correction modules are
employed for feature fusions and BN layer is used.

Algorithm 1. Learning procedure of the proposed ScasNet.

Input: The image and label data ðx; yÞ.
Output: The network parameters h of ScasNet.
1: Initialize h and the learning rate g.
2: Repeat:
3: Call the encoder forward pass to obtain feature maps of
different levels F ¼ FEATUREEXTRACTIONðx; hÞ.

4: Aggregate multi-context information
T ¼ MULTISCALECONTEXTSAGGREGATIONðF; hÞ by Eq. (2).

5: Perform refinement to obtain the refined feature map
f ðxÞ ¼ REFINEMENTðT; F; hÞ by Eq. (3).

6: Calculate LossðhÞ ¼ NORMALIZEDCROSSENTROPYLOSSðy; f ðxÞÞ by
Eqs. (5) and (6)

7: Calculate the back propagation gradient @ LossðhÞ
@ h by Eqs.
2 https://github.com/Yochengliu/ScasNet.
(7) and (8) with chain rule.

8: Update h h� g @ LossðhÞ
@ h .

9: Until: LossðhÞ converges
10: Return h
Algorithm 2. Inference procedure of the proposed ScasNet.

Input: The image data x and the number of scales L.
Output: The prediction labeling map k.
1: Initialize the network parameters h outputted by
Algorithm 1
and the average prediction probability map pkðxÞ ¼ 0.

2: for ‘ in f1; . . . ; Lg do
3: Calculate the resized image
x‘ ¼ RESIZEWITHBILNEARINTERPOLATIONðx; ‘Þ.

4: Obtain the final feature map for the ‘-th scale

f ‘ðx‘Þ ¼ NETWORKFORWARDPASSðx‘; hÞ.
5: Calculate the prediction probability map for the ‘-th
scale p‘kðx‘Þ ¼ SOFTMAXFUNCTIONðf ðx‘ÞÞ by Eq. (6).

6: Resize p‘kðx‘Þ to original image size
pkðx‘Þ ¼ RESIZEWITHBILNEARINTERPOLATIONðp‘kðx‘Þ;xÞ.

7: Add pkðx‘Þ to the average prediction probability map
pkðxÞ ¼ pkðxÞ þ pkðx‘Þ

8: end for
9: Perform average operation pkðxÞ ¼ 1

L pkðxÞ
10: Calculate the prediction labeling map k̂ ¼ argmax

k
pkðxÞ in

Eq. (1).

11: Return: k̂

It should be noted that due to the complicated structure,
ResNet ScasNet has much difficulty to converge without BN
layer. On the contrary, VGG ScasNet can converge well even
though the BN layer is not used since it is relatively easy to
train. In both of the two types of ScasNet, sum fusion operation
is performed for efficiency.
3.5. Learning and inference

In the learning stage, original VHR images and their correspond-
ing reference images (i.e., ground truth) are used. Both of them are
cropped into a number of patches, which are used as inputs to
ScasNet. We use the normalized cross entropy loss as the learning
objective, which is defined as

Lossðy; f ðxÞ; hÞ ¼ 1
MN

XM
i¼1

XN
j¼1

XK
k¼1
� Iðyj

i ¼ kÞ log pkðx j
i Þ; ð5Þ

where h represents the parameters of ScasNet; M is the mini-batch
size; N is the number of pixels in each patch; K is the number of cat-
egories; Iðy ¼ kÞ is an indicator function, it takes 1 when y ¼ k, and 0

otherwise; x j
i is the j-th pixel in the i-th patch and yj

i is the ground

truth label of x j
i . Let f ðx j

i Þ denote the output of the layer before soft-

max (see Fig. 1) at pixel x j
i , the probability of the pixel x j

i belonging

to the k-th category pkðx j
i Þ is defined by the softmax function, that is

pkðx j
i Þ ¼

expðf kðx j
i ÞÞPK

l¼1 expðf lðx j
i ÞÞ

: ð6Þ

https://github.com/Yochengliu/ScasNet
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To train ScasNet in the end-to-end manner, LossðhÞ is mini-
mized w.r.t. the ScasNet parameters h. We have to first calculate
the derivative of the loss in Eq. (5) w.r.t. the parameters of different
component layers with chain rule, and then update the parameters
layer-by-layer with back propagation. For clarity, we only present
the generic derivative of loss to the output of the layer before soft-
max and other hidden layers. The derivative of LossðhÞ to the out-

put (i.e., f kðx j
i Þ) of the layer before softmax is calculated as:

@ LossðhÞ
@ f kðx j

i Þ
¼ 1

MN

XM
i¼1

XN
j¼1

XK
k¼1
� Iðyj

i ¼ kÞ 1� pkðx j
i Þ

� �
: ð7Þ

The specific derivation process can be referred in the Appendix
A of supplementary material.

The derivative of LossðhÞ to each hidden (i.e., hkðx j
i Þ) layer can be

obtained with the chain rule as:

@ LossðhÞ
@hkðx j

i Þ
¼ @ LossðhÞ

@ f kðx j
i Þ

@ f kðx j
i Þ

@ hkðx j
i Þ
: ð8Þ

The first item in Eq. (8) is given in Eq. (7), and the second item
also can be obtained by corresponding chain rule.

The pseudo-code of learning procedure of ScasNet is shown in
Algorithm 1. In the experiments, we implement ScasNet based on
the Caffe framework (Jia et al., 2014). The image patches of size
400� 400 are used as inputs.3 Due to the limit of GPU memory,
we set the mini-batch size as 4. To train ScasNet, we use stochastic
gradient descent (SGD) with initial learning rate of 0.01, and drop
the learning rate by a factor of 0.1 every 20 epochs. The momentum
and weight decay are set as 0.9 and 0.0005, respectively. Experimen-
tally, ScasNet is trained for about 80 epochs.

The pseudo-code of inference procedure is shown in Algorithm
2. In the inference stage, we perform multi-scale inference of 0.5, 1
and 1.5 times the size of raw images (i.e., L ¼ 3 scales), and we
average the final outputs at all the three scales. Specifically, we
first crop a resized image (i.e., x‘) into a series of patches without
overlap. Then, the prediction probability maps of these patches
are predicted by inputting them into ScasNet with a forward pass.
Finally, the entire prediction probability map (i.e., p‘

kðx‘Þ) of this
image is constituted by the probability maps of all patches. The
purpose of multi-scale inference is to mitigate the discontinuity
in final labeling map caused by the interrupts between patches.

4. Experiments and evaluations

In this section, dataset description, experimental setting, com-
paring methods and extensive experiments in both qualitative
and quantitative comparisons are first presented. Then, the pro-
posed ScasNet is analyzed in detail by a series of ablation
experiments.

4.1. Dataset description

We evaluate the proposed ScasNet on three challenging public
datasets for semantic labeling.

Massachusetts Building Dataset: This dataset is proposed by
Mnih (2013). It consists of 151 aerial images of the Boston area,
with each of the images being 1500� 1500 pixels at a GSD
(Ground Sampling Distance) of 1 m. The ground truth of all these
images are available. We randomly split the data into a training
set of 141 images, and a test set of 10 images. As Fig. 5(a) shows,
it covers mostly urban areas and buildings of all sizes, including
houses and garages.
3 The possibly few number of categories in these patches doesn’t influence the high
diversity of categories in raw VHR images.
ISPRS Vaihingen Challenge Dataset: This is a benchmark data-
set for ISPRS 2D Semantic labeling challenge in Vaihingen (ISPRS,
2016). It consists of 3-band IRRG (Infrared, Red and Green) image
data, and corresponding DSM (Digital Surface Model) and NDSM
(Normalized Digital Surface Model) data. Overall, there are 33
images of 	 2500� 2000 pixels at a GSD of 	9 cm in image data.
Among them, the ground truth of only 16 images are available,
and those of the remaining 17 images are withheld by the chal-
lenge organizer for online test. For offline validation, we randomly
split the 16 images with ground truth available into a training set
of 8 images, and a validation set of 8 images. For online test, we use
all the 16 images as training set. Note that DSM and NDSM data in
all the experiments on this dataset are not used.

ISPRS Potsdam Challenge Dataset: This is a benchmark dataset
for ISPRS 2D Semantic labeling challenge in Potsdam (ISPRS, 2016). It
consists of 4-band IRRGB (Infrared, Red, Green, Blue) image data,
and corresponding DSM and NDSM data. Overall, there are 38
images of 6000� 6000 pixels at a GSD of 	5 cm. Among them,
the ground truth of only 24 images are available, and those of
the remaining 14 images are withheld by the challenge organizer
for online test. For offline validation, we randomly split the 24
images with ground truth available into a training set of 14 images,
a validation set of 10 images. For online test, we use all the 24
images as training set. Note that only the 3-band IRRG images
extracted from raw 4-band data are used, and DSM and NDSM data
in all the experiments on this dataset are not used.

Table 1 summarizes the detailed information of all the above
datasets. Fig. 5 shows some image samples and the ground truth
on the three datasets. As it shows, there are many confusing man-
made objects and intricate fine-structured objects in these VHR
images, which poses much challenge for achieving both coherent
and accurate semantic labeling.

4.2. Experimental setting

The remote sensing datasets are relatively small to train the
proposed deep ScasNet. To reduce overfitting and train an effective
model, data augmentation, transfer learning (Yosinski et al., 2014;
Penatti et al., 2015; Hu et al., 2015; Xie et al., 2015) and regulariza-
tion techniques are applied.

In the experiments, 400� 400 patches cropped from raw
images are employed to train ScasNet. For the training sets, we
use a two-stage method to perform data augmentation. In the first
stage, given an image, we crop it to generate a series of 400� 400
patches with the overlap of 100 pixels. In the second stage, for each
patch, we flip it in horizontal and vertical reflections and rotate it
counterclockwise at the step of 90�. The detailed number of
patches in the augmented data is presented in Table 1.

In the experiments, the parameters of the encoder part (see
Fig. 1) in our models are initialized with the models pre-trained
on PASCAL VOC 2012 (Everingham et al., 2015). All the other
parameters in our models are initialized using the techniques
introduced by He et al. (2015a).

To avoid overfitting, dropout technique (Srivastava et al., 2014)
with ratio of 50% is used in ScasNet, which provides a computa-
tionally inexpensive yet powerful regularization to the network.

4.3. Comparing methods

To verify the performance, the proposed ScasNet is compared
with extensive state-of-the-art methods on two aspects: deep
models comparison and benchmark test comparison.

Comparing Deep Models: ScasNet is compared with five state-
of-the-art deep models on the three datasets. The main informa-
tion of these models (including our models) is summarized as
follows:



(a) Massachusetts Building (b) Vaihingen Challenge (c) Potsdam Challenge

Fig. 5. The image samples and corresponding ground truth on the three datasets. The label of Massachusetts building includes two categories: building (red) and background
(black). The label of Vaihingen and Potsdam challenge includes six categories: impervious surface (imp surf, white), building (blue), low vegetation (low veg, cyan), tree
(green), car (yellow) and clutter/background (red), where the boundary (black) is depicted for visual clarity. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
The detailed information of experimental setting on the three datasets. ‘offline/online’ denotes the training set for offline validation and the training set for online test,
respectively.

Dataset Training set Validation set Test set

Images Patches (400 � 400) Images Images

Massachusetts building 141 20727 0 10

Vaihingen challenge Offline/online Offline/online 8 17
8/16 12384/24400

Potsdam challenge Offline/online Offline/online 10 14
14/24 16800/28800

4 http://www2.isprs.org/commissions/comm3/wg4/results.html.
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(1) Ours-VGG: The self-cascaded network with the encoder
based on a variant of 16-layer VGG-Net (Chen et al., 2015).

(2) Ours-ResNet: The self-cascaded network with the encoder
based on a variant of 101-layer ResNet (Zhao et al., 2016).

(3) FCN-8s: Long et al. (2015) propose FCN for semantic seg-
mentation, which achieves the state-of-the-art performance
on three benchmarks (Everingham et al., 2015; Silberman
et al., 2012; Liu et al., 2008). There are three versions of
FCN models: FCN-32s, FCN-16s and FCN-8s. We use the best
performance model FCN-8s as comparison.

(4) SegNet: Badrinarayanan et al. (2015) propose SegNet for
semantic segmentation of road scene, in which the decoder
uses pooling indices in the encoder to perform non-linear
up-sampling. It provides competitive performance while
works faster than most of the other models.

(5) DconvNet: Deconvolutional network (DconvNet) is proposed
by Noh et al., 2015 for semantic segmentation, which is com-
posed of deconvolution and un-pooling layers. It achieves the
state-of-the-art performance on PASCAL VOC 2012
(Everingham et al., 2015).

(6) Deeplab-ResNet: Chen et al. (2015) propose Deeplab-ResNet
based on three 101-layer ResNet (He et al., 2016), which
achieves the state-of-the-art performance on PASCAL VOC
2012 (Everingham et al., 2015). Actually, they use three-
scale (0.5, 0.75 and 1 the size of input image) images as
input to three 101-layer ResNet respectively, and then fuse
three outputs as final prediction.

(7) RefineNet: RefineNet is proposed by Lin et al. (2016) for
semantic segmentation, which is based on ResNet (He
et al., 2016). It achieves the state-of-the-art performance
on seven benchmarks, such as PASCAL VOC 2012
(Everingham et al., 2015) and NYUDv2 (Silberman et al.,
2012). Here, we take RefineNet based on 101-layer ResNet
for comparison.

It should be noted that all the experimental settings for the
above models are the same, except for two aspects. Firstly, their
training hyper-parameter values used in the Caffe framework (Jia
et al., 2014) are different. This is because it may need different
hyper-parameter values (such as learning rate) to make them con-
verge when training different deep models. Secondly, all the mod-
els are trained based on the widely used transfer learning (Yosinski
et al., 2014; Penatti et al., 2015; Hu et al., 2015; Xie et al., 2015) in
the field of deep learning. Specifically, except for our models, all the
other models are trained by finetuning their corresponding best
models pre-trained on PASCAL VOC 2012 (Everingham et al.,
2015) on semantic segmentation task. For our models, only the
parameters of the encoder part (see Fig. 1) are initialized with
the pre-trained models. Furthermore, the influence of transfer
learning on our models is analyzed in Section 4.7.

Benchmark Comparing Methods: By submitting the results of
test set to the ISPRS challenge organizer, ScasNet is also compared
with other competitors’ methods on benchmark test. The details
of these methods (including our methods) are listed as follows,
where the names in brackets are the short names on the challenge
evaluation website4:

(1) Ours-ResNet (‘CASIA2’): The single self-cascaded network
with the encoder based on a variant of 101-layer ResNet
(Zhao et al., 2016). In our method, only raw image data is
used for training. Specifically, 3-band IRRG images are used
for Vaihingen and only 3-band IRRG images obtained from
raw image data (i.e., 4-band IRRGB images) are used for
Potsdam. Moreover, we do not use the elevation data (DSM
and NDSM), additional hand-crafted features, model ensem-
ble strategy or any postprocessing.

(2) SVL-features +DSM + Boosting + CRF (‘SVL_⁄’): The method
as baseline implemented by the challenge organizer
(Gerke, 2015). In addition to the standard SVL-features
(Gould et al., 2011), they also use NDVI (Normalized Digital
Vegetation Index), saturation and NDSM features. Then, an
Adaboost-based classifier is trained. A CRF (Conditional
Random Field) model is applied to obtain final prediction.

http://www2.isprs.org/commissions/comm3/wg4/results.html
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For comparison, ‘SVL_6’ is compared for Vaihingen and
‘SVL_3’ (no CRF) for Potsdam.

(3) CNN + NDSM + Deconvolution (‘UZ_1’): The method pro-
posed by Volpi and Tuia (2017). They use an downsample-
then-upsample architecture, in which rough spatial maps
are first learned by convolutions and then these maps are
upsampled by deconvolution. NDSM data is used in their
method.

(4) CNN + DSM + NDSM + RF + CRF (‘ADL_3’): The method pro-
posed by Paisitkriangkrai et al. (2016). They apply both
CNN and hand-crafted features to dense image patches to
produce per-pixel category probabilities. Random forest
(RF) classifier is trained on hand-crafted features and the
output probabilities are combined with those generated by
the CNN. CRF is applied as a postprocessing step.

(5) FCN + DSM + RF + CRF (‘DST_2’): The method proposed by
Sherrah (2016). They use a hybrid FCN architecture to com-
bine image data with DSM data. Then, CRF is applied as a
postprocessing step.

(6) FCN + SegNet + VGG + DSM + Edge (‘DLR_8’): The method
proposed by Marmanis et al. (2016). They use a multi-scale
ensemble of FCN, SegNet and VGG, incorporating both image
data and DSM data. Moreover, they combine semantic label-
ing with informed edge detection.

(7) SegNet + DSM + NDSM (‘ONE_7’): The method proposed by
Audebert et al. (2016). They fuse the output of two multi-
scale SegNets, which are trained with IRRG images and syn-
thetic data (NDVI, DSM and NDSM) respectively.

(8) CNN + DSM + SVM (‘GU’): In their method, both image data
and DSM data are used to train a CNN. Moreover, CNN is
trained on six scales of the input data. Finally, a SVM maps
the six predictions into a single-label.

(9) CNN + DSM (‘AZ_1’): In their method, a CNN with encoder-
decoder architecture is used. The input to the network
includes six channels of IRRGB, NDVI, and NDSM, which
are concatenated together.

(10) SegNet + NDSM (‘RIT_2’): In their method, two SegNets are
trained with RGB images and synthetic data (IR, NDVI and
NDSM) respectively. Then, feature fusion in the early stages
is performed.
(a) Image (b) SegNet (c) FCN-8s (d) DeconvNet (e)

Fig. 6. Qualitative comparison with the state-of-the-art deep models on Massachusetts b
the last two rows show the close-ups of the corresponding regions in the 1st row. In the co
negative (fn) in blue. (For interpretation of the references to colour in this figure legend
4.4. Evaluation metrics

To assess the quantitative performance, two overall benchmark
metrics are used, i.e., F1 score (F1) and intersection over union (IoU).
F1 is defined as
F1 ¼ 2
Pre� Rec
Preþ Rec

; Pre ¼ tp
tpþ fp

; Rec ¼ tp
tpþ fn

: ð9Þ
Here, tp; fp and fn are the number of true positives, false positives
and false negatives, respectively.

IoU is defined as:
IoUðPm;PgtÞ ¼ jPm \ Pgtj
jPm [ Pgtj ; ð10Þ
where Pgt is the set of ground truth pixels and Pm is the set of pre-
diction pixels, ‘\’ and ‘[’ denote intersection and union operations,
respectively. j � j denotes calculating the number of pixels in the set.

To evaluate the performance of different comparing deep mod-
els, we compare the above two metrics on each category, and the
mean value of metrics to assess the average performance. Further-
more, precision-recall (PR) curve is drawn to qualify the relation
between precision and recall on each category. Specifically, the pre-
dicted score maps are first binarized using different thresholds
varying from 0 to 1. Then by comparing these binarized results
with the ground truth, a series of precision-recall values can be
obtained to plot the PR curve.

When compared with other competitors’ methods on bench-
mark test (ISPRS, 2016), besides the F1 metric for each category,
the overall accuracy (Overall Acc.) derived from the pixel-based
confusion matrix (ISPRS, 2016) is also compared to assess the glo-
bal performance.

It should be noted that all the metrics are computed using an
alternative ground truth in which the boundaries of objects have
been eroded by a 3-pixel radius. The eroded areas are ignored dur-
ing evaluation, so as to reduce the impact of uncertain border
definitions.
 Deeplab-ResNet (f) RefineNet (g) Ours-VGG (h) Ours-ResNet

uilding TEST SET. The 1st row illustrates the overall results of one image sample, and
lored figures, true positive (tp) is marked in green, false positive (fp) in red and false
, the reader is referred to the web version of this article.)



Fig. 7. Precision-recall (PR) curves of all the comparing deep models on Mas-
sachusetts building TEST SET. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 2
Quantitative comparison (%) with the state-of-the-art deep models on Massachusetts building TEST SET, where the values in bold are the best and the values underlined are the
second best.

Metric SegNet FCN-8s DeconvNet Deeplab-ResNet RefineNet Ours-VGG Ours-ResNet

IoU 56.38 50.94 60.74 69.50 71.92 69.22 74.34

F1 72.11 67.96 75.57 82.01 83.67 81.81 85.58
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4.5. Comparison with deep models

To evaluate the effectiveness of the proposed ScasNet, the com-
parisons with five state-of-the-art deep models on the three chal-
lenging datasets are presented as follows:

(1) Massachusetts Building Test Set: As the global visual per-
formance (see the 1st row in Fig. 6) and local close-ups
(see the last two rows in Fig. 6) show, SegNet, FCN-8s and
DeconvNet have difficulty in recognizing confusing size-
varied buildings. For fine-structured buildings, FCN-8s per-
forms incomplete and inaccurate labeling while SegNet
and DeconvNet do better. The results of Deeplab-ResNet,
(a) Image (c) SegNet (d) FCN-8s (e) Decon(b) Ground Truth

Fig. 8. Qualitative comparison with the state-of-the-art deep models on ISPRS Vaihingen
surface (imp surf, white), building (blue), low vegetation (low veg, cyan), tree (green), car
in this figure legend, the reader is referred to the web version of this article.)
RefineNet and Ours-VGG are relatively good, but they tend
to have more false negatives (blue). Ours-ResNet generates
more coherent labeling on both confusing and fine-
structured buildings. Table 2 summarizes the quantitative
performance. As it shows, Ours-VGG achieves almost the
same performance with Deeplab-ResNet, while Ours-
ResNet achieves more decent score. Fig. 7 shows the PR
curves of all the deep models, in which both Our-VGG and
Our-ResNet achieve superior performances.

(2) Vaihingen Challenge Validation Set: As shown in Fig. 8,
SegNet, FCN-8s, DeconvNet and RefineNet are sensitive to
the cast shadows of buildings and trees. They cannot distin-
guish similar manmade objects well, such as buildings and
roads. Meanwhile, for fine-structured objects, these methods
tend to obtain inaccurate localization, especially for the car.
The results of Deeplab-ResNet are relatively coherent, while
they are still less accurate. Ours-VGG and Ours-ResNet show
better robustness to the cast shadows. They can achieve
coherent labeling for confusing manmade objects. Moreover,
fine-structured objects also can be labeled with precise
localization using our models. The quantitative performance
is shown in Table 3. As can be seen, the performance of our
best model outperforms other advanced models by a consid-
erable margin on each category, especially for the car. Fur-
thermore, the PR curves shown in Fig. 9 exhibit that, our
best model performs better on all the given categories.

(3) Potsdam Challenge Validation Set: As Fig. 10 shows, all the
five comparing models are less effective in the recognition of
confusing manmade objects. They are not robust enough to
the occlusions and cast shadows. For fine-structured objects
like the car, FCN-8s performs less accurate localization,
while other four models do better. Although the labeling
results of our models have a few flaws, they can achieve rel-
atively more coherent labeling and more precise boundaries.
Table 4 summarizes the quantitative performance. As it
shows, in labeling the VHR images with such a high resolu-
tion of 5 cm, all these models achieve decent results. Still,
the performance of our best model exceeds other advanced
vNet (f) Deeplab-ResNet (g) RefineNet (h) Ours-VGG (i) Ours-ResNet

challenge OFFLINE VALIDATION SET. The label includes six categories: impervious
(yellow) and clutter/background (red). (For interpretation of the references to colour



Table 3
Quantitative comparison (%) with the state-of-the-art deep models on ISPRS Vaihingen challenge OFFLINE VALIDATION SET, where the values in bold are the best and the values
underlined are the second best.

Model imp surf building low veg tree car Avg.

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mean IoU mean F1

SegNet 66.85 80.13 76.10 86.43 50.56 68.65 69.71 82.15 62.38 76.83 65.12 78.83
FCN-8s 75.26 85.89 80.51 89.20 65.58 79.21 70.49 82.69 45.84 62.87 67.54 79.97

DeconvNet 80.27 89.06 87.19 93.16 68.57 81.36 74.91 85.65 51.93 68.36 72.57 83.52
Deeplab-ResNet 82.20 90.23 91.22 95.41 71.12 83.12 76.93 86.96 56.78 72.43 75.65 85.63

RefineNet 80.08 88.94 88.62 93.97 70.69 82.83 76.00 86.36 68.35 81.56 76.75 86.73

Ours-VGG 82.70 90.53 89.54 94.48 69.00 81.66 76.17 86.47 76.89 86.93 78.86 88.02
Ours-ResNet 85.86 93.76 92.45 96.19 76.26 87.62 83.77 90.61 81.14 89.81 83.90 91.60

Fig. 9. Precision-recall (PR) curves of all the comparing deep models on ISPRS Vaihingen challenge OFFLINE VALIDATION SET. Categories from left to right: impervious surface
(imp surf), building, low vegetation (low veg), tree, car. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

(a) Image (c) SegNet (d) FCN-8s (e) DeconvNet (f) Deeplab-ResNet (g) RefineNet (h) Ours-VGG (i) Ours-ResNet(b) Ground Truth

Fig. 10. Qualitative comparison with the state-of-the-art deep models on ISPRS Potsdam challenge OFFLINE VALIDATION SET. The label includes six categories: impervious
surface (imp surf, white), building (blue), low vegetation (low veg, cyan), tree (green), car (yellow) and clutter/background (red). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 4
Quantitative comparison (%) with the state-of-the-art deep models on ISPRS Potsdam challenge OFFLINE VALIDATION SET, where the values in bold are the best and the values
underlined are the second best.

Model imp surf building low veg tree car Avg.

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mean IoU mean F1

SegNet 85.42 92.14 91.17 95.38 78.58 88.01 75.71 86.17 88.12 93.68 83.80 91.08
FCN-8s 77.55 87.35 79.94 88.85 71.95 83.68 69.53 82.02 79.68 88.69 75.73 86.12

DeconvNet 87.08 93.09 93.12 96.44 77.59 87.38 71.67 83.50 92.28 95.98 84.35 91.28
Deeplab-ResNet 88.23 93.75 94.39 97.11 78.85 88.18 74.50 85.39 87.11 93.11 84.62 91.51

RefineNet 86.80 92.93 91.13 95.36 78.69 88.07 73.51 84.74 92.75 96.24 84.58 91.47

Ours-VGG 88.68 94.00 94.12 96.97 80.67 89.30 77.86 87.55 94.07 96.94 87.08 92.95
Ours-ResNet 90.06 94.77 96.27 98.10 80.83 89.40 76.86 86.92 94.90 97.38 87.78 93.31
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models by a considerable margin, especially for the car.
Moreover, as the PR curves in Fig. 11 show, our best model
presents very decent performance.
In short, the above comparisons show that, on one hand, the
proposed ScasNet has strong recognition ability for confusing man-
made objects in VHR images. Meanwhile, ScasNet is quite robust to
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the occlusions and cast shadows, and it can perform coherent
labeling even for very uneven regions. These results demonstrate
the effectiveness of our multi-scale contexts aggregation approach.
On the other hand, ScasNet can label size-varied objects com-
pletely, resulting in accurate and smooth results, especially for
the fine-structured objects like the car. This demonstrates the
validity of our refinement strategy.
Fig. 11. Precision-recall (PR) curves of all the comparing deep models on ISPRS Potsdam c
(imp surf), building, low vegetation (low veg), tree, car. (For interpretation of the referen
article.)

(a)

(b)

(c)

(d)

(e)

Image

(g)

(h)

(i)

(j)

(f)

Fig. 12. Filters and feature maps learned by VGG ScasNet. For better visualization, the vis
channels. In these features, colored regions denote strong responses and deep black
finetuning. (b) The 1st-layer convolutional filters (3� 3� 3� 64) with finetuning. (c) T
convolutional feature maps in the 2nd stage (201� 201� 128). (e) Feature maps output
aggregation approach (51� 51� 512). (g) Feature maps after our refinement st
(101� 101� 256). (i) Feature maps learned by inverse residual mapping H½�� (see Fig. 4
4.6. Comparison on benchmark test

To further evaluate the effectiveness of the proposed ScasNet,
comparisons with other competitors’ methods on the two chal-
lenging benchmarks are presented as follows:
hallenge OFFLINE VALIDATION SET. Categories from left to right: impervious surface
ces to colour in this figure legend, the reader is referred to the web version of this

uals are mapped to full channel range and combined in some cases to occupy all RGB
regions otherwise. (a) The 1st-layer convolutional filters (3� 3� 3� 64) without
he last convolutional feature maps in the 1st stage (400� 400� 64). (d) The last
ted by the encoder (51� 51� 512). (f) Feature maps after our multi-scale contexts
rategy (101� 101� 256). (h) Fused feature maps before residual correction
). (j) Fused feature maps after residual correction (101� 101� 256).



(a) Image (c) UZ_1 (d) ADL_3 (e) DST_2 (f) DLR_8 (g) ONE_7 (h) CASIA2 (Ours)(b) SVL_6

Fig. 13. Qualitative comparison with other competitors’ methods on ISPRS Vaihingen challenge ONLINE TEST SET. The label includes six categories: impervious surface (imp
surf, white), building (blue), low vegetation (low veg, cyan), tree (green), car (yellow) and clutter/background (red). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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(1) Vaihingen Challenge: On benchmark test of Vaihingen,5

Fig. 13 and Table 5 exhibit qualitative and quantitative com-
parisons with different methods, respectively. As shown in
Fig. 13, other methods, even though the elevation data is used,
are less effective for labeling confusing manmade objects and
fine-structured objects simultaneously. In contrast, our
method can obtain coherent and accurate labeling results.
Moreover, our method can achieve labeling with smooth
5 http://www2.isprs.org/vaihingen-2d-semantic-labeling-contest.html.
boundary and precise localization, especially for fine-
structured objects like the car. As Table 5 shows, the quantita-
tive performances of our method also outperform other meth-
ods by a considerable margin, especially for the car.

(2) Potsdam Challenge: On benchmark test of Potsdam,6 quali-
tative and quantitative comparison with different methods
are exhibited in Fig. 14 and Table 6, respectively. As shown
in Fig. 14, all the comparing methods obtain good results,
6 http://www2.isprs.org/potsdam-2d-semantic-labeling.html.

http://www2.isprs.org/vaihingen-2d-semantic-labeling-contest.html
http://www2.isprs.org/potsdam-2d-semantic-labeling.html


Table 5
Quantitative comparison (%) with other competitors’ methods on ISPRS Vaihingen challenge ONLINE TEST SET, where the values in bold are the best and the values underlined are
the second best. The names in brackets are the short names on the challenge evaluation website.

Method imp surf building low veg tree car Overall Acc.

SVL-features + DSM + Boosting + CRF (‘SVL_6’) 86.00 90.20 75.60 82.10 45.40 83.20
CNN + NDSM + Deconvolution (‘UZ_1’) 89.20 92.50 81.60 86.90 57.30 87.30

CNN + DSM + NDSM + RF + CRF (‘ADL_3’) 89.50 93.20 82.30 88.20 63.30 88.00
FCN + DSM + RF + CRF (‘DST_2’) 90.50 93.70 83.40 89.20 72.60 89.10

FCN + SegNet + VGG + DSM + Edge (‘DLR_8’) 90.40 93.60 83.90 89.70 76.90 89.20

SegNet + DSM + NDSM (‘ONE_7’) 91.00 94.50 84.40 89.90 77.80 89.80

Ours-ResNet (‘CASIA2’) 93.20 96.00 84.70 89.90 86.70 91.10

(a) Image (c) GU (d) UZ_1 (e) AZ_1 (f) RIT_2 (g) DST_2 (h) CASIA2 (Ours)(b) SVL_3

Fig. 14. Qualitative comparison with other competitors’ methods on ISPRS Potsdam challenge ONLINE TEST SET. The label includes six categories: impervious surface (imp
surf, white), building (blue), low vegetation (low veg, cyan), tree (green), car (yellow) and clutter/background (red). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table 6
Quantitative comparison (%) with other competitors’ methods on ISPRS Potsdam challenge ONLINE TEST SET, where the values in bold are the best and the values underlined are
the second best. The names in brackets are the short names on the challenge evaluation website.

Method imp surf building low veg tree car Overall Acc.

SVL-features + DSM + Boosting (‘SVL_3’) 84.00 89.80 72.00 59.00 69.80 77.20
CNN + DSM + SVM (‘GU’) 87.10 94.70 77.10 73.90 81.20 82.90

CNN + NDSM + Deconvolution (‘UZ_1’) 89.30 95.40 81.80 80.50 86.50 85.80
CNN + DSM (‘AZ_1’) 91.40 96.10 86.10 86.60 93.30 89.20

SegNet + NDSM (‘RIT_2’) 92.00 96.30 85.50 86.50 94.50 89.40

FCN + DSM + RF + CRF (‘DST_2’) 91.80 95.90 86.30 87.70 89.20 89.70

Ours-ResNet (‘CASIA2’) 93.30 97.00 87.70 88.40 96.20 91.10
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while more coherent and accurate results are achieved by our
method. In addition, our method shows better robustness to
the cast shadows. Meanwhile, as can be seen in Table 6, the
quantitative performances of our method also outperform
other methods by a considerable margin on all the categories.

As the above comparisons demonstrate, the proposed multi-
scale contexts aggregation approach is very effective for labeling
confusing manmade objects. Thus, our method can perform coher-
ent labeling even for the regions which are very hard to distin-
guish. Meanwhile, our refinement strategy is much effective for
accurate labeling. This results in a smooth labeling with accurate
localization, especially for fine-structured objects like the car. Fur-
thermore, both of them are collaboratively integrated into a deep
model with the well-designed residual correction schemes. As a
result, our method outperforms other sophisticated methods by
the date of submission, even though it only uses a single network
based on only raw image data. Other competitors either use extra
data such as DSM and model ensemble strategy, or employ struc-
tural models such as CRF.

To evaluate the performance brought by the three-scale test
(0.5, 1 and 1.5 times the size of raw images), we submit the single
scale test results to the challenge organizer. The evaluation results
are listed in Table 7. As can be seen, all the categories on Vaihingen
dataset achieve a considerable improvement except for the car. A
possible reason is that, our refinement strategy is effective enough
for labeling the car with the resolution of 9 cm. Moreover, there is
virtually no improvement on Potsdam dataset. Maybe for such a
high resolution of 5 cm, the influence of multi-scale test is
negligible.
Table 7
Quantitative comparison (%) between 3-scale test (0.5, 1 and 1.5 times the size of raw im

Benchmark Method imp surf buildin

Vaihingen 1-scale test (‘CASIA3’) 92.70 95.50
3-scale test (‘CASIA2’) 93.20 96.00

Potsdam 1-scale test (‘CASIA3’) 93.40 96.80
3-scale test (‘CASIA2’) 93.30 97.00

Table 8
Ablation experiments (%) on ISPRS Vaihingen challenge OFFLINE VALIDATION SET. ‘MSC’ den
denotes sequentially aggregating multi-scale contexts in a self-cascaded manner. ‘MSC +
manner and adding residual correction schemes in context aggregation, as shown in Fig
residual correction schemes in refinement process, as the rightmost part of Fig. 1 shows.

Model imp surf building low v

IoU F1 IoU F1 IoU

Baseline 76.74 86.84 82.33 90.31 67.77
+MSC 75.67 86.15 86.38 92.70 66.56

+MSC+SC 77.13 87.38 87.01 93.05 68.80
+MSC+SC+CReC 80.10 88.95 87.72 93.26 68.92

+MSC+SC+CReC+Ref 80.61 89.26 89.06 94.21 70.57
+MSC+SC+CReC+Ref+RReC 82.70 90.53 89.54 94.48 69.00
4.7. Model analysis

To evaluate the performance brought by each aspect we focus
on in the proposed ScasNet, the ablation experiments of VGG Scas-
Net are conducted. Table 8 lists the results of adding different
aspects progressively. The encoder (see Fig. 1) which is based on
a VGG-Net variant (Chen et al., 2015) is taken as the baseline. As
it shows, compared with the baseline, the overall performance of
fusing multi-scale contexts in the parallel stack (see Fig. 2(c)) only
improves slightly. By contrast, there is an improvement of near 3%
onmean IoU when our approach of self-cascaded fusion is adopted.
Moreover, when residual correction scheme is dedicatedly
employed in each position behind multi-level contexts fusion,
the performance improves even more. These improvements fur-
ther demonstrate the effectiveness of our multi-scale contexts
aggregation approach and residual correction scheme. As can be
seen, the performance of each category indeed improves when suc-
cessive refinement strategy is added, but it doesn’t seem to work
very well. However, when residual correction scheme is elabo-
rately applied to correct the latent fitting residual in multi-level
feature fusion, the performance improves once more, especially
for the car.

To evaluate the effect of transfer learning (Yosinski et al., 2014;
Penatti et al., 2015; Hu et al., 2015; Xie et al., 2015), which is used
for training ScasNet, the quantitative performance brought by ini-
tializing the encoder’s parameters (see Fig. 1) with pre-trained
model (i.e., finetuning) are listed in Table 9. As it shows, the perfor-
mance of VGG ScasNet improves slightly, while ResNet ScasNet
improves significantly. These results indicate that, it is very diffi-
cult to train deep models sufficiently with so small remote sensing
age) and 1-scale test on ISPRS Vaihingen & Potsdam challenge ONLINE TEST SET.

g low veg tree car Overall Acc.

83.90 89.40 86.70 90.60
84.70 89.90 86.70 91.10

87.60 88.30 96.10 91.00
87.70 88.40 96.20 91.10

otes aggregating multi-scale contexts in a parallel stack shown in Fig. 2(c). ‘MSC + SC’
SC + CReC’ denotes sequentially aggregating multi-scale contexts in a self-cascaded
. 2(b). ‘Ref’ denotes adding refinement. ‘Ref + RReC’ denotes adding refinement and

eg tree car Avg.

F1 IoU F1 IoU F1 mean IoU mean F1

80.79 72.62 84.14 40.71 57.86 68.04 79.99
79.92 73.92 85.00 40.80 57.95 68.67 80.34
81.52 74.98 85.70 46.35 62.98 70.90 82.13
81.68 75.15 85.81 56.07 71.48 73.59 84.24
82.75 76.39 86.62 61.34 76.04 75.59 85.78
81.66 76.17 86.47 76.89 86.93 78.86 88.02



Table 10
Complexity comparison (%) with the state-of-the-art deep models.

SegNet FCN-8s DeconvNet Deeplab-ResNet RefineNet Ours-VGG Ours-ResNet

Model size 112M 512M 961M 503M 234M 151M 481M
Time 17s 11s 18s 47s 21s 11s 33s

Table 9
Quantitative comparison (%) between with and without using finetuning technique of the encoder part on ISPRS Vaihingen challenge OFFLINE VALIDATION SET. The model used to
initialize the encoder part is pre-trained on PASCAL VOC 2012 (Everingham et al., 2015). ‘w/o’ denotes without using finetuning, ‘w/’ denotes using finetuning.

Model Finetuning imp surf building low veg tree car Avg.

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mean IoU mean F1

VGG ScasNet w/o 80.55 89.23 87.23 93.18 67.18 80.06 73.94 84.88 71.35 82.88 76.05 86.05
w/ 82.70 90.53 89.54 94.48 69.00 81.66 76.17 86.47 76.89 86.93 78.86 88.02

ResNet ScasNet w/o 78.78 88.92 85.99 92.30 59.03 75.57 72.34 84.49 60.36 75.73 71.30 83.40
w/ 85.86 93.76 92.45 96.19 76.26 87.62 83.77 90.61 81.14 89.81 83.90 91.60
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datasets, especially for the very deep models, e.g., the model based
on 101-layer ResNet. Therefore, the ScasNet benefits from the
widely used transfer learning in the field of deep learning.

To further verify the validity of each aspect of our ScasNet, fea-
tures of some key layers in VGG ScasNet are visualized in Fig. 12.
For clarity, we only visualize part of features in the last layers
before the pooling layers, more detailed visualization can be
referred in the Appendix B of supplementary material. As shown
in Fig. 12(a) and (b), the 1st-layer convolutional filters tend to learn
more meaningful features after funetuning, which indicates the
validity of transfer learning. As Fig. 12(c) and (d) indicate, the layers
of the first two stages tend to contain a lot of noise (e.g., too much
littery texture), which could weaken the robustness of ScasNet.
That is a reason why they are not incorporated into the refinement
process.

As can be seen in Fig. 12(e), the responses of feature maps out-
putted by the encoder tend to be quite messy and coarse. However,
as shown in Fig. 12(f), coherent and intact semantic responses can
be obtained when our multi-scale contexts aggregation approach is
used. Moreover, as Fig. 12(g) shows, much low-level details are
recovered when our refinement strategy is used. The boundary
responses of cars and trees can be clearly seen.

Fig. 12(h), (i) and (j) visualize the fused feature maps before
residual correction, the feature maps learned by inverse residual
mapping H½�� (see Fig. 4) and the fused feature maps after residual
correction, respectively. As Fig. 12(h) shows, there is much infor-
mation lost when two feature maps with semantics of different
levels are fused. Nevertheless, as shown in Fig. 12(j), these defi-
ciencies are mitigated significantly when our residual correction
scheme is employed. That is, as Fig. 12(i) shows, the inverse resid-
ual mapping H½�� could compensate for the lack of information,
thus counteracting the adverse effect of the latent fitting residual
in multi-level feature fusion.

Table 10 compares the complexity of ScasNet with the state-of-
the-art deep models. The time complexity is obtained by averaging
the time to perform single scale test on 5 images (average size of
2392� 2191 pixels) with a GTX Titan X GPU. As it shows, ScasNet
produces competitive results on both space and time complexity.
5. Conclusion

In this work, a novel end-to-end self-cascaded convolutional
neural network (ScasNet) has been proposed to perform semantic
labeling in VHR images. The proposed ScasNet achieves excellent
performance by focusing on three key aspects: (1) A self-
cascaded architecture is proposed to sequentially aggregate
global-to-local contexts, which are very effective for confusing
manmade objects recognition. Technically, multi-scale contexts
are first captured on the output of a CNN encoder, and then they
are successively aggregated in a self-cascaded manner; (2) With
the acquired contextual information, a coarse-to-fine refinement
strategy is proposed to progressively refine the target objects using
the low-level features learned by CNN’s shallow layers. Therefore,
the coarse labeling map is gradually refined, especially for intricate
fine-structured objects; (3) A residual correction scheme is pro-
posed for multi-feature fusion inside ScasNet. It greatly corrects
the latent fitting residual caused by the semantic gaps in features
of different levels, thus further improves the performance of Scas-
Net. As a result of these specific designs, ScasNet can perform
semantic labeling effectively in a manner of global-to-local and
coarse-to-fine.

Extensive experiments verify the advantages of ScasNet: (1) On
both quantitative and visual performances, ScasNet achieves
extraordinarily more coherent, complete and accurate labeling
results while remaining better robustness to the occlusions and
cast shadows than all the comparing advanced deep models; (2)
ScasNet outperforms the state-of-the-art methods on two chal-
lenging benchmarks by the date of submission: ISPRS 2D Semantic
Labeling Challenge for Vaihingen and Potsdam, even not using the
available elevation data, model ensemble strategy or any postpro-
cessing; (3) ScasNet also shows extra advantages on both space
and time complexity compared with some complex deep models.
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