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A General Cognitive Architecture for Agent-Based
Modeling in Artificial Societies

Peijun Ye

Abstract— Artificial Society is an analytical foundation of
various complex eco- and social systems. Such system is usually
implemented via multiagent approach. However, there is no
consensus on how to model the agent’s decision-making process,
since different application scenarios concentrate on different
facets. This, to some extent, hinders model reuse and system
integration. This paper proposes a general cognitive architecture
that attempts to adapt all the aspects of agent’s decision-making
in artificial societies, so that different programs and software
can be reorganized and integrated conveniently. To illustrate
its implementation, two simulations—emergent evacuation and
population evolution—are conducted. These tests clearly show
that the proposed architecture is able to support different agent-
based models. Problems that might be encountered, as well as
possible strategies, are also proposed in the end.

Index Terms— Agent-based modeling,
cognitive architecture (CA).

artificial society,

I. INTRODUCTION

HE past decades have seen extensive applications of

agent-based artificial society (ABAS), ranging from
computational demography [1], [2], urban transportation
research [3], [4], computational economics [5], [6], land use
planning [7], [8], and contagious disease propagation [9], [10]
to military simulation [11], [12]. Since proposed in the early
1990s, ABAS has gone beyond the social simulation and
becomes a fundamental analytical tool for complex eco- and
social systems [13]. By importing the computational models
of actual population, environmental and personal behaviors,
computer scientists, as well as specific domain researchers,
have (re)discovered the wheels of social orders. They are
endowed with the ability to focus on the heterogeneity of
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individuals with numerous possible combinations of character-
istics, rather than the traditional statistical models where per-
sons are homogenously calculated as numbers. Furthermore,
as social scientists are always facing the dilemma that certain
kinds of controlled experimentation are difficult, or sometimes
impossible, to implement, ABAS provides a feasible approach
for them. Thus, hypotheses regarding responses of individuals
to specific policies or social events can be tested and validated
at a much lower expense.

Probably, the idea of agent-based simulation may be traced
back to von Neumann and Burks [14], which aims to simulate
the interaction between individuals with autonomy and study
the global characteristics emerged from bottom-up, but the
formal terminology comes from artificial intelligence (AI) two
decades later [15]. Currently, three distinct types of agent
models have emerged in the field of ABAS. The first is called
the reactive agent, which is mostly used in production rule
systems [16], [17]. This type of agents usually contains a set
of rules that give responses to environment and stimulus. Intel-
ligence can be gained from the interactions with its peers and
without considering or even understanding its surrounded envi-
ronment. Although it seems relatively simple, reactive agent
has some advantages. As Maes [18] summarized, it reduces
the communication load and is suitable for data processing.
The second type is called the deliberative agent [19]. It con-
tains an internal mental state and generates its behavior plan
through the interaction with the environment. In contrast with
the reactive one, intelligence of the deliberative agent lies on
its ability of planning, reasoning, learning, and striving for
its desired states named goals. Obviously, deliberative agent
can simulate the decision cycle of humans but is much more
computational expensive. Therefore, a third type—the hybrid
agent—attempts to integrate the advantages of the former two.
In its decision cycle, the hybrid agent deliberatively achieves
a goal-oriented behavior plan and decomposes the plan into
several subplans. Such subplans associate with a set of rules
that can be fired. Some reflexive actions are directly contained
in the reactive layer.

Although both of the reactive and deliberative agents have
been used in ABAS, the latter is more suitable for the field
(a detailed discussion will be given later). To develop a delib-
erative agent, one has to deal with its computational model.
The so-called agent cognitive architecture (CA) has attracted
extensive studies for decades. Its objective is to understand
the functions in human cognitive process and simulate human
decision-making. Currently, most CAs are particularly for
the robot control in Al, but they can be applied in ABAS
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simulation as well. One problem of these architectures is that
they usually concern about special behaviors. This brings an
obstacle to merge and integrate different systems so that the
existing designs or programs can be reused. Thus, a general
architecture is required to direct the modeling of ABAS,
which elicits the motive of this paper. The contribution of
this paper is twofold: 1) to propose a general agent CA that
adapts all the aspects of agent behaviors in ABAS and 2) to
summarize current problems in ABAS and propose future
possible strategies.

The remaining part of this paper is organized as follows.
In Section II, we explain what is the CA and why it is essential
to construct ABAS. Section III will summarize some represen-
tative architectures. The focused aspects in ABAS modeling
are analyzed in Section IV, based on which our general archi-
tecture is presented. To support its implementation, Section V
presents two simulation experiments, emergent evacuation and
population evolution, to verify that the proposed architecture
can integrate different agent-based models (ABMs). Then,
in Section VI, we show the current problems in ABAS and
discuss their related possible strategies. Finally, this paper
concludes in Section VII.

II. WHY IS THE COGNITIVE ARCHITECTURE?

Originally, the research of CA, to a large extent, comes from
Al but some of them have also been applied in ABAS or social
simulation. This field attempts to model the main factors
participated in our thinking and decision and concentrates
on the relationships among them. Generally, CA research is
an interdisciplinary field, ranging from psychology, neurol-
ogy, and philosophy to sociology, but in computer science
particularly, CA mostly refers to the computational model
simulating human’s cognitive and behavioral characteristics.
It is a most fundamental abstract framework with a deliberative
agent. Basically, there are several important characteristics that
make CA most appropriate for ABAS. They are elucidated in
the following.

The ultimate goal of CA study, which dates back to 1950s,
is to achieve human-level intelligence at the level of com-
putational model. Such intelligence might be realized in four
different patterns: systems that think like humans, systems that
think rationally, systems that act like humans, and systems that
act rationally [20]. Here, the “rationality” refers to achieving
consistent and correct conclusions (given its available infor-
mation) for arbitrary tasks. On the one hand, ABAS in most
cases concentrates on the evolution of social systems for a
period of time. The result emerges from massive individual
rational behaviors, not the “low-level” reflexive actions, which
are activated by specific stimuli. In this sense, the rational-
ity of individual behaviors just conforms to the definition
aforementioned. On the other hand, individual rational behav-
iors are correlated in the temporal dimension. For example,
to achieve a goal, people usually decompose it into subgoals
and take several steps sequentially. When the task is partially
completed, they are inclined to continue even though their
surroundings turn detrimental (of course, it depends on the
personality and endurance). At this point, people can bear the

negative impact and persist in conducting their original plans.
Obviously, deliberative agent is more appropriate than reactive
agent for such typical paradigm. And CA is the most suitable
framework to model such plan execution. Furthermore, CA
is able to simulate people’s internal deliberation, concerning
not only planning but also other functions, such as reasoning,
emotion, and learning, and their connections. Since rational
behaviors are the results of human decisions, they originally
stem from human’s deliberation in essence. Based on this
perspective, the generation of rational behaviors is naturally
modeled as the cycle—perception (or communication), think-
ing, and action—that is constantly repeated through the agent’s
whole “life.” Such cycle has already been implemented in
some CAs.

In application, CAs usually deal with relatively large intel-
ligent agent systems that have many heterogeneous parts and
subcomponents, which operate as a whole to solve multido-
main problems and tasks. Typically, they are built to control
artificial agents, which run both in virtual worlds and physical
robots acting in the real world. Without this framework,
the deliberative agent is not convenient to computationally
maintain its internal status, let alone conducting effective
thinking. It is also difficult for engineers to develop agent
programs without an explicit CA guidance. Although different
from the software architecture, CA can portray the decision-
making logics as a reference for the agent software design.

III. REPRESENTATIVE COGNITIVE ARCHITECTURES

Generally, the CAs used in ABAS can be categorized into
four types. The first is the production rule system [21]. It is
actually a primitive and decentralized structure originated
in 1970s. All knowledge of an agent is stored distributed
in the form of “If...Then...” rules. In each decision-making
cycle, the agent interprets its observed information from the
environment as the preconditions of particular rules. One of
the rules that match the interpretations is activated (also called
fired). Then, the action related to its postcondition is executed,
and the internal state is updated if needed. If there is more than
one rule that can be fired, a conflict resolution mechanism
is introduced to determine which to apply. Many algorithms
are designed for different goals, such as optimization of
time or computational resources [22]. If the interpretations
match no rule, the decision-making process will stop. The
action of a particular rule can be the firing of another rule and
thus constructs a forward chaining and simulates the reasoning
process. Usually, the knowledge base is divided according to
the problem domain as several subbases, among which the one
that maintains the data of current state or beliefs is called the
working memory (or short-term memory). The production rule
system is suitable for reactive agent and has low computational
complexity. It is widely applied, specifically in large-scale
simulations.

The second type of agent is based on the belief—desire—
intention (BDI) architecture, a classic framework for delibera-
tive agent. BDI is short for belief—desire—intention, which was
originally founded on ideas expressed by philosophers [23].
In contrast with the production rule system, BDI deems that
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each agent has its own “mental state,” which is the basis
for its reasoning. Belief is the personal information about the
world. It represents an agent’s recognition of its environment,
which may not be correct. Desires are the possible states
of affairs that an agent might like to accomplish. They are
the objectives that the agent pursues. Not all desires will be
acted upon by the agent, but they only provide options that
might impact its actions. An intention (also referred to as a
plan) is a commitment to a particular course of actions for
achieving a particular goal, which represents the state that
an agent wants to achieve. During each iteration of a BDI
system, the agent’s beliefs, usually in the form of the first-
order logic, are updated through its perceptions. Intentions
generated by reasoning are pushed into a stack. For the top
intension in the stack, all the plans with postconditions match-
ing the intension and with preconditions satisfying the agent’s
beliefs are accessed as the possible actions by searching the
plan library. The agent then selects the most relevant plan
according to its internal state. The whole process is viewed
as deliberation [24]. BDI has many extensions. One is the
emotional BDI, which accounts for the influence of emotions
in order to model human behavior properly [25], [26]. In this
architecture, internal emotions are represented as abstract
plans (called capabilities) and resources. Since the agent is
exposed to a limited area of the environment, it only has
partial information and may not be aware of all its resources
and its own capabilities. Capabilities need to be matched
against the agent’s ideas of ability and opportunity to become
specific plans. An emotional state manager is responsible
for controlling the resources and the capabilities used in the
information processing phases. All kinds of emotions decay
with time in arbitrary rates. Another framework is beliefs—
desires—obligations—intentions (BOID) [27]. In addition to the
mental attributes of BDI, it accounts for the obligations,
one of the social norms that models agent’s sociality. The
basic idea behind BOID is that a multiagent system needs
to endow its agents with the deliberation about whether or not
to follow social rules and contribute to collective interests.
Such deliberation is typically achieved through argumenta-
tion of obligations—customs must comply for the social
good [28], [29]. In decision-making, BOID is similar to BDI,
only different in the intention generation where agents also
account for internalized social obligations.

The third type is the normative model. Unlike the BOID
where behaviors are determined purely by internal motiva-
tors, such as beliefs and desires, the normative model treats
social norms as the external factors to the agent. Agents
are influenced and governed in their reasoning by the norms
cultivated in their surrounded “society.” Briefly, the questions
that how to computationally represent norms, how to model
the influence to the agent, what conditions will cause an
agent to adopt a new norm or violate a current norm have
been addressed extensively among scholars [30]. To name
a few, three of them are put forward. Deliberate normative
agent, actually developed earlier than BOID, suggests a mental
module to record the norms [31]. The reasoning cycle at its
core is similar to the BDI but the norm generalization is
a separate process, which starts with a recognition through

observation or communication. Then, the norms are estimated
according to the internal context, and the agent decides
which to comply and which to ignore. Another well-known
architecture is the EMIL-A agent, a research achievement
of an EU-funded FP6 project that attempts to simulate the
“two-way dynamics of norm innovation.” EMIL-A tries to
model both the top-down and bottom-up links in the norm
formation and considers the learning, internalization, and using
of the norms in decision-making [32], [33]. In each normative
reasoning cycle, two kinds of normative information may be
observed by the agent. They are the information related to
a previously recorded norm, which will be assimilated for
the update of the norm’s activation frequency, and the new
normative information, which will initialize a norm frame.
A third architecture is the normative agent, which models the
social aspect of norms as an explicit mental state [34]. At a par-
ticular time, a normative state contains a certain norms, such
as obligations, permissions, and prohibitions, which an agent
will refer to when constructing its plans. A classic reasoning
cycle consists of two phrases, that is, the plan activation and
norm declaration, which instantiates optional plan and norm
candidates, and the successive selection and execution, which
determines which candidate to perform. In summary, although
the normative models concentrate specifically in the sociality
that ABAS most concerns about, many of them have remained
rather abstract.

The last type of the model, inspired by computational
psychology and neurology, is more complicated than the
previous three. To the best of our knowledge, it involves
many human cognitive components and applied in multiple
domains, ranging from robot control and pattern recogni-
tion to knowledge discovery. Here, we only give a glimpse
on several well-known ones, specifically state, operator, and
result (SOAR), connectionist learning with adaptive rule
induction online (CLARION), and adaptive control of thought-
rational (ACT-R). SOAR is short for “state, operator, and
result.” It treats agent’s decision achievement as a goal-
oriented search through problem spaces [35], [36]. Apart from
the perception and action modules, the architecture primarily
contains a working memory, a long-term memory, and a
decision procedure. Each execution cycle of SOAR starts by
adding inputs to the working memory to fire production rules.
Each fired rule suggests an operator, and the following decision
procedure selects one according to its knowledge information.
If no operator candidates are proposed, or there is no such kind
of knowledge for selection, SOAR will create an impasse and
recursively try the possible operators at random until the goal
state has been reached or all of the options are run out. The
trajectory of the problem solution will be learned as its expe-
rience. CLARION stresses the representational differences
and learning differences of the implicit and explicit knowl-
edge [37], [38]. CLARION is composed of four subsystems:
action-centered subsystem (procedural knowledge), nonaction-
centered subsystem (declarative knowledge, both semantic and
episodic), motivational subsystem (goal structure and drives),
and meta-cognitive subsystem (reinforcement learning, goal
setting, and filtering selection regulation). It integrates reac-
tive routines, generic rules, learning, and decision-making to
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develop versatile agents. ACT-R is a well-known architecture
and aims to understand how people organize knowledge and
produce intelligent behavior [39], [40]. ACT-R has several
modules, such as sensory modules for visual processing, motor
modules for action, an intentional module for goals, each of
which holds an associated buffer that is deemed as the agent’s
short-term memory (called “chunks,” but different from those
in SOAR). A long-term production memory records the past
effects of declarative chunks. In each cycle, the agent selects
the production with the highest utility and executes its actions.

It can be seen in the previous review that each type
of structures has its advantages and disadvantages. At first,
production rule systems have low computational complexity
but cannot simulate the complex behavior. Applications using
this type emerge in the early stage of social simulation and
only stay at a “game” level. One example is the famous
SugarScape [41]. At the opposite extreme, psychological and
neurological architectures are much more complicated than
others, which require expensive computations. Since ABAS
usually studies massive agents, this type is not as popular
as the other three limited by the computational resources.
Moreover, psychological and neurological architectures have
very little focus on social aspects, albeit they can reasonably
model human decision-making. This may not be a surprise,
as they mainly come from Al or neuroscience and tend to
reconstruct brain’s working process.

IV. GENERAL FRAMEWORK FOR AGENT MODELING

Though the BDI and normative models are prevalent and
take some cognitive aspects into account, they are lack of
systemic consideration. Basically, two categories of problems
are most concerned by ABAS. One is the short-term systemic
dynamics. Agent in this scenario usually has to make decisions
based on his own cognition in a limited time. Thus, he may not
be always right or optimal. The other is the long-term systemic
evolution. If existed, it also seeks potential equilibrium among
multiple agents. Agent in such situation plays much more
rationally, since he usually has enough time to deliberate
and decide. Thus, he mostly chooses his optimal strategy in
each cycle. From these classic missions of ABAS, this section
proposes a general architecture and then elucidates each of its
aspects. Reasoning logics in decision-making process based on
these modules are also explained in the following discussions.

The overall structure of an agent is shown in Fig. 1. The
modules in solid boxes are the data that store different types of
knowledge or information. The boxes surrounded by dashed
lines represent procedures that probably concerning specific
intelligent algorithms. Each arrow marks the operation to the
pointed module. Note that in the implementation of particular
cases, some of these modules can be omitted if the problem
only involves a part of its aspects, but for the universality,
we have explicitly put them here.

A. Perception and Actuation

Perception and actuation may be the most basic components
that an agent has. From robotics to software-defined agents,
they are the fundamental units that the agent entities can

complete their “observe and act” cycles. Each time, the agent
acquires his local environment through its sensors. Such
information is recorded as pieces of facts (probably in the
form of formal logics) and sent to update his memory. Here,
the perception refers to the observation of the environment
rather than other agents (which will be put in the interaction
module later), just like the local amount of sugar it sees in
SugarScape.

B. Learning

Learning is a process that an agent converts his received
information (from perception and/or interaction) into his
knowledge. Its primary output is to adjust the long-term
memory. Note that this adjustment is only based on local
observation or communication and thus is possibly incorrect.
Social norms, which can be viewed as a specific type of long-
term memory, are also obtained and updated through learning.
The agent’s learning style is influenced by emotion and
personality. For example, in the Baysian learning, the agent
will calculate his opponents’ previous strategy frequencies and
choose his best response that may be very different from
his historical measures. If the agent has an easy-to-change
personality, this shift seems natural; but if it is “stubborn,” the
transition may consider the past to a certain extent.

C. Working Memory and Long-Term Memory

These two parts contain the main beliefs of the agent and
form the foundation of his reasoning. Beliefs in the memories
are the internal view that the agent has about the world.
They are not required to correspond with reality. Rather they
could be outdated or distorted, but they are deemed absolutely
correct by the agent. Working memory can be switched to
the long-term memory when it is not relevant to the current
problem any longer. Similarly, when the agent encounters a
new problem, it will search the long-term memory and read
the concerned beliefs into his working memory. According to
the time and importance, beliefs in the two memories also
impact the agent’s attention.

D. Norm, Emotion and Personality, and Property State

The three modules are the reflection of the agent’s inter-
nal states. Norm refers to a collection of constraints that
imposed significant impacts on one’s behavior to adapt to
cultural or expectations of the whole society or an organiza-
tion. These constraints are neither in the legislative level nor
obligatory. But an agent will probably receive a punishment
such as being isolated by others if it does not comply with
them. For example, shaking hands to express a friendly attitude
after sports is a widely used social norm. Almost every
athlete adopts this behavior. Otherwise, he will incur drastic
critics and successive detriments in his future career. Norm
can be acquired by directly teaching from others as well
as learning from the interactions. Emotion and personality
are another two factors influencing one’s decision. Emotion
refers to temporary feelings characterized by intense mental
activity and a high degree of pleasure or displeasure, while
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Fig. 1. General agent CA.

personality means the individual style or pattern of behavior.
The two aspects are distinct from each other in that emotion
plays a more influential role in decisions with limited time
and uncertainty, whereas personality determines the long-term
strategies. In this sense, personality is more ‘“rational” than
emotion. Since ABAS not only focuses on the final equilibrium
in the long run but also is usually applied to investigate
the dynamics of a particular social phenomenon in a short
period of time, which may probably involve agents’ temporary
actions, emotion is incorporated to consider its effects. As the
previously mentioned Baysian learning example, emotion and
personality may affect the learning process. The basic emotion
contains anger, disgust, fear, happiness, sadness, and surprise.
In addition, personality is represented in various forms, such
as dominance, influence, conscientiousness, and steadiness.
Emotion can be dynamically updated through the agent’s per-
ception and physical state. Personality is not as erratic as the
emotion. However, it is the personality that greatly determines
the heterogeneity of individuals. The module property state
includes one’s physical conditions and social characteristics.
In contrast with the norm and personality which lie on the
psychological and cognitive levels, they can be viewed as a
low level of state the agent has. Property state is determined
by the actuation and the actual situation of environment. It also
impacts the agent’s reasoning and emotion in turn. A fatigue
physical condition may give the agent a stressful mood.

E. Reasoning

Reasoning is perhaps the most central part of the decision-
making. As can be seen in Fig. 1, it is a procedure based
on multiple inputs. Beliefs in the working memory and long-
term memory are the foundation of reasoning, while the norm,
emotion and personality, and property state impose constraints
on this process. Many decision algorithms or mechanisms can

be adopted in the reasoning module. One of the most repre-
sentative instances may be the utility maximization algorithm,
which is very popular in economic studies. For a specific
problem, the agent gives each solution candidate a utility
value according to the current percept, the knowledge stored in
long-term memory, and constraints from other modules. If a
candidate does not satisfy some “hard” constraints such as
violating a compulsive norm or cannot be conducted by the
restriction of current physical conditions, its utility will set
to be zero, and thus, this solution will be excluded from the
agent’s considerations. Finally, the candidate with the highest
utility will be selected as the determination. It needs to be
pointed out that the procedure explained before is a high-
level reasoning, and its output is not concrete actions but
motivations, which will be discussed in the following.

F. Motivation and Attention

Motivation includes the purposes that an agent pursues in
various aspects. It can be seen as a concrete form of desires.
In the daily life, one may concentrate on multiple problems of
different fields, as he is endowed with multiple social roles.
He may expect to complete a project as well as he can,
and also look forward to keeping a compatible relationship
with the customers. For each field, one pursuit (or some near
optimal alternatives) is maintained in the motivation module
until it is fully achieved. The motivation can be dynamically
adjusted, as the reasoning result may change in different
cycles. Attention reflects an agent’s focus or the degree of the
importance of the problems he tackles. In our model, attention
is updated by the beliefs in memories according to their time
(such as a deadline) and significance. Attention acts on the
motivations derived from the reasoning procedure and arranges
the motivations in a specific sequence, usually by attaching
each a utility of importance. The motivation with high utility
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will be arranged at the top position and will be conducted in
priority with its plans.

G. Planning

After the motivation generated and sorted, each motivation
will be realized through a series of activities or actions
named a plan. A motivation can be further decomposed into
submotivations, and their corresponding activities are linked
as an activity chain. A plan is constructed by dynamically
computing or by searching the preliminarily established plan
library. Similar to other procedures, planning can use many
classic algorithms. For instance, an agent in traffic simulation
can use dynamic programming to calculate his travel route
according to his known congestion information.

H. Interaction

Interaction refers to the communication and information
exchange with other agents. Since ABAS mostly studies group
dynamics and systemic behaviors, it is a very important facet
that deserves extensive research. This is because the interac-
tion among heterogeneous agents reflects the sociality, and
complex social phenomena also emerge from the interactions.
Usually, the interaction is implemented by passing messages
among different agents. The received messages from other
agents (actively or passively) are sent to working memory and
learning procedure. And the information that the agent would
like to “tell” or “show” his “friends” is dispatched through the
interaction module. Protocols developed by the Foundation for
Intelligent Physical Agents (FIPA), an international organiza-
tion that is dedicated to promoting the interoperability of intel-
ligent agents by openly developing specifications, are often
adopted to guarantee efficient and regular communications.

In the ABAS simulation, each agent constantly repeats
the decision-making process, which starts with observation
and interaction. The received messages from other agents are
unpacked in the interaction module and sent to the working
memory and learning procedure. The perception from the
environment is sent to these two components as well. Inputs
of such two channels will update the working memory that
concerns about current problems. The learning procedure,
influenced by the emotional and personality, gives new knowl-
edge to update the long-term memory and the social norms.
After the module update, the agent will check his norm,
emotion and personality, and current state to conduct reasoning
based on his memories and generates multiple motivations.
The motivations are sorted according to the attention, which
means that the most concentrated one is arranged at the top of
the motivation queue and will be processed in priority. Each
motivation is used as the input of planning. The generated
plans will send the information that the agent wants to express
to others to the interaction module and will be executed via
actuation. Finally, property state may be updated after the
actuation.

V. IMPLEMENTATIONS

To illustrate the proposed architecture, this section gives two
representative simulation scenarios—emergent evacuation and
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population evolution. The former can be deemed as a “game,”
such as the famous SugarScape, while the latter tries to study
a more practical social trend. These experiments aim to show
how different ABMs can be organized and integrated by the
architecture given in Fig. 1.

A. Emergent Evacuation

The objective of the evacuation experiment is to study
the systemic short-term evolutionary dynamics by simulat-
ing behaviors of a heterogeneous crowd. Therefore, agent’s
computational model needs to consider the factors that affect
personal short-term decisions, such as time constraints, emo-
tions, fatigue, and so on. Specifically, perception, learning,
working memory, long-term memory, emotion and personality,
property state, reasoning, motivation, attention, planning, and
actuation are implemented in the ABM. In the initialization,
500 agents are stochastically scattered in an area, which
contains several buildings [Fig. 2(a)]. Every agent attempts
to avoid buildings and evacuate to a safe point as fast as
he can, but it depends on the impact of others and his
own “physical” states. There are two safe points, located in
the top-left corner and bottom-right corner. In each cycle,
an agent percepts its surrounded environment by observing:
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TABLE I
MODULES IN EVACUATION EXPERIMENT

Module Implementation Rule
WDM_Vel < Others’ Vel
Perception Observe others’ targets and buildings in his sight | WM_Tar < Others’ target points;
nearby_obstacles < buildings nearby
tarl_num < WM _Tar for target 1;
Learning Calculate agent number for each destination tar2_num < WM _Tar for target 2;
impact < max (tarl_num,tar2_num)
Working Memory Current surrounded agents and buildings -

Long-Term Memory Memorized route already passed

Emotion & Personality | Agent’s self-confidence

1(tired)-3(energetic)

Property State Fatigue level O(least confident)-9(most confident)

IF obDest! = currDest && confidence < impact
Reasoning Determine destinations and building avoidance THEN currDest < obDest;

IF nearby_obstacles! = Null THEN avoid buildings
Motivation Achieving destination and avoid buildings -
Attention Sort the motivations avoid butldings > achieving destination
Planning Determine velocity according to fatigue level vel < {currVel.x  fatig, currVel.y = fatig}
Actuation Conduct actions and update internal state IF fatig =1THEN fatig < 3 ELSE fatig < fatig —1

LTMem < LTMem + loc

1) the velocity and target point of others within his sight
range and 2) buildings if there are some. This information
is stored in his working memory and sent to the learning
module to calculate the number of agents that selects each
destination. Then, the agent will perform a simple reasoning to
determine which safe point he will choose or whether he will
change his destination. The reasoning is influenced by three
impacts: the learning results, his emotion and personality, and
his property state, which represent social impact, subjective
intention, and physical constraints. The emotion and person-
ality includes a self-confidence level that shows his “persis-
tence” or “pliableness.” The property state here mainly refers
to his fatigue level. It provides restrictions in the reasoning and
subsequent planning. The results of reasoning—achieving the
latest destination and avoiding buildings nearby—are his two
motivations. Note that agent considers the building avoidance
only when he observes some buildings in sight. And this
motivation, sorted by the attention mechanism, is prior to the
destination achievement. Then, the agent will determine the
actions in the planning process according to the sequential
motivations. The actions are finally executed via the actuation
component and the property state as well as the long-term
memory is updated. Implemented modules are summarized
in Table I, and the final result (average of ten experiments)
is shown in Fig. 2(b).

B. Population Evolution

Different from the emergent evacuation “game,” population
evolution experiment is much more realistic. The aim is to
reproduce and further predict the population scale and its
spatial distribution, so that we can investigate the systemic
long-term dynamics or equilibrium. Agent in this test scenario
is much more “rational.” Specifically, his decision process is
not suffered from time constraints. Thus, he always selects his
optimal strategy in the decision cycle. The test scenario is Chi-
nese population evolution. Fertility, mortality, and interprovin-
cial migration are considered in our experiment. To illustrate
the proposed architecture, perception, working memory, social

norm, property state, reasoning, and actuation are implemented
in the ABM. Our initial population is synthesized according to
the 2000 national census data and located in each province [42]
[Fig. 3(a)]. The scale factor is 10000, which means actual
10000 people are mapped as one agent in simulation. In each
cycle, female agent who is between 20 and 50 and has no child
will have a chance to get a child. The probability is calculated
from the birth rate of that year. Each agent above 50 may die
and be dropped out in simulation. Migration takes place among
people under 50 years old. It mainly depends on three aspects:
wage level, distance between current location and destination,
and registration place. In agent’s decision-making, he will
compare the local average wage with that of each province.
If the local wage is lower than others, he will get the impetus to
go to the richer area. The greater the wage gaps, the stronger
the impetus for emigration. In addition, if the agent is not
registered in his current province, he will get extra impetus
to go to his registration place. This can be viewed as a social
norm (but not a legislation), since many people are familiar
with their homes. The extra impetus is quantified by the
distance between two provinces. The implemented modules
are summarized in Table II, and the total population result
(average of ten experiments) is shown in Fig. 3(b).

VI. CURRENT PROBLEMS AND POSSIBLE DIRECTIONS

Up to now, ABAS has been playing a primary role in the
complex system study, and it is winning high expectations
in various fields. Unlike the traditional mathematical method
where crowds are analyzed through a unified formula, ABAS
allows researchers to introduce individual heterogeneity. This
flexibility, however, has brought several downsides as well.
To put ABAS more practical, these problems are required to
be solved carefully.

First, assumptions of ABMs are sometimes deemed arbitrary
and disconnected from the literature [43]. This is because
ABM aims to simulate the internal drive of human deci-
sions. It attempts to illuminate the generation of individ-
val behavior from the source of mentality and cognition.
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TABLE II
MODULES IN POPULATION EVOLUTION EXPERIMENT
Module Implementation Rule
Perception Collect wage levels of each province WM_Wage < Aver_Wage
Working Memory | Wage levels of each province

Social Norm Registration impact factor: reg

O(not impact)-1(totally impact)

Property State

Current province, gender, age, registration province, etc. | -

salary[dest]—currSalary

Reasoning Compute utilities and decides whether to have a child Uldest] < wag currSalary +reg - e M/dist
Emigrate and create a new agent;
Actuation die in a chance; update internal state IF migration THEN update current province
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[ 4000-6000 [ >10000
.1 6000-8000 [ | NoData

(@)
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Fig. 3. Population evolution experiment. (a) Initial distribution. (b) Total

population result.

Usually, such factors seem obscure and bring many difficulties
to the formal model construction. One of solutions for the
dilemma may be the quantification of individual behavior
via social experiments. This quantification may not be quite
accurate but provides a relatively operational way to con-
struct computational models. A well-known example comes
from Berg et al. [44], who reported an investment game that
became the prototypical trust game in the subsequent works.
They conducted the experiment by endowing two players with
$10 each. In stage 1, the first mover decides how much money
to pass to an anonymous second mover. All money passed
are tripled. In stage 2, the second mover decides how much
to return to the first mover. In the original experiment, out
of 32 first movers, 30 sent positive amounts and only 2 sent
0, whereas out of 28 players who received amounts greater

than $1, 12 returned $0 or $1 and 12 returned more than
their paired player sent them. So, the results clearly departed
from the Nash equilibrium outcome that would be reached
by perfectly rational and selfish players. This experiment has
been replicated many times since then, showing that these
results are quite robust. It is now widely accepted that trust and
reciprocity are fundamental aspects of human social behavior,
and the results can be used to achieve explicit computational
models.

Second, ABM often exhibits too many degrees of freedom
and is therefore nonfalsifiable [45]. Basically, this problem
arises from the fact that ABM belongs to the category of
microscopic models. In contrast with the analytic model,
ABM incorporates many microscopic decision factors. And
these factors may vary from person to person. This elicits
the question that how to testify the model. To the best of
our knowledge, the solution relies on both social experiments
and collaborations among researchers from different areas.
On the one hand, social experiments can determine whether a
cognitive or psychological attribute has contribution to human
decision-making, as the investment game cited before. They
show solid evidence that the investigated factor is or is not
included in the decision process. On the other hand, micro-
scopic decision factors from different facets of individuals
are studied by different disciplines. They can be integrated
via collaborations of various scholars. Actually, high degree
of freedom is one of the advantages that ABM has. Due to
this flexibility, heterogeneity can be introduced with relatively
fewer individual variables compared with analytic models.
It avoids researchers to solve complicated equations and also
enables us to study micro- and macroabnormal behaviors that
may not appear in reality. Therefore, we merit a stronger
prediction power but suffer from the high degree of freedom.

Third, ABM often lacks a sound empirical grounding and
is often limited to some ad hoc calibration [46]. Similar to
the second critique, this is a main deficiency that skeptics
claim, and it is also caused by the microscopic property of
ABM. The heterogeneity not only comes from the difference
of personal decision factors but also the various levels of
the same factor. However, those parameters are implicit to
us and cannot be investigated in a large scale. This brings
an obstacle to endow the model with a solid ground. To solve
this problem, two directions may be promising. One is also the
social experiments, which is already explained before. As the
amount of money sent and received in the investment game,
the values can be converted into normal ones and used as rela-
tive reward parameters. However, since extensive experiments
are not feasible, the parameter values achieved in this way
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only represent the surveyed people and can be seen as prior
knowledge. Thus, a more important approach to accurately
calibrate the parameters is to use the overall statistical data.
This requires seeking a relationship between the micromodel
parameter and the macrostatistical distribution, so that the
parameter value can be estimated through the overall features.
As computational model is deterministic (random variables can
be represented by their expectations), such kind of functions
is not difficult to find.

Fourth, ABM is oftentimes poorly documented and hardly
replicable [47]. This issue seems quite technological. Since
ABAS attracts much more concentrations from different fields
these days, a great amount of the literature has emerged. It is
necessary to systematically collect the research achievements,
especially classic models. Correspondingly, many algorithms
are also developed to solve multidomain problems. Although
most of them involve randomness to simulate stochastic behav-
iors, they are indeed replicable. What needs to be clarified here
is that the replication does not refer to the accurate repetition of
each metric, but rather their statistical approximation. Mostly,
if an ABM can reproduce the trend of historical data, it should
be deemed as reasonable. Thus, researchers are encouraged
to open their algorithms as well as source codes, so that
achievements can be replicated and systematically categorized.

Fifth, writing an ABM requires quite a lot of program-
ming skills; code is often not reusable and projects are not
incremental [48]. When implementing an ABM such as the
proposed architecture in this paper, advanced programming
skills are essential. It is because a good ABAS simulation
model involves many modules and complicated communica-
tions. Moreover, projects and programs are usually isolated
and cannot be reused. Based on the general guidelines and
protocols published by FIPA, various multiagent platforms and
agent-oriented programming language can be bridged. This
facilitates the ABAS development by enabling researchers and
engineers to concentrate on their agent function design without
considering many trivial implementation details, but we can go
further. Besides making the syntax of two programs compat-
ible when they are integrated, it is more important to keep
their semantics consistent. It requires a general architecture
concerning multidomains and a common knowledge base to
guarantee that a particular symbol in the two systems has
identical meaning. The proposed architecture in this paper can
play the role for the first stage of pursuit. If the existing agent
programs or the new developed ones are (re)organized in a
general architecture, they are more convenient to be integrated.

VII. CONCLUSION

ABAS has been playing a vital role in a complex social
system analysis. It is applied in computational demography,
transportation simulation, urban land use planning, compu-
tational economics, military computation, and many other
domains. However, there is not a decision-making architec-
ture concerning most facets of human complex behaviors,
which brings an obstacle to merge and integrate different
systems and programs. This paper proposes a general CA in
ABAS and elucidates the agent’s decision-making logics. Two
simulations, emergent evacuation and population evolution,

are presented to show that the proposed architecture is able
to support different ABMs. Current problems of the agent-
based modeling are summarized, and possible solutions are
proposed in the end. Generally, social experiments, calibration
via statistical distributions, common knowledge base, and
collaborations among various fields are main factors that can
put ABAS more practical in the future.
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