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Abstract—Brain-computer interface (BCI) is a new 

technology aimed at providing efficient means to integrate the 

human brain and the environment. BCI has been considered as 

an important approach to help patients with movement 

difficulties. It has been widely studied for controlling external 

devices directly by recorded neuronal signals. Here we examine, 

by neural network simulation, how to apply BCI in order to 

facilitate trainings during the process of rehabilitation. 

Specifically, we trained a recurrent neural network to control 

movement. Then some of the neurons were disabled to mimic the 

situation of impaired motor cortex. Then two approaches of 

using BCI to retrain the network for functional recovery were 

tested. In the first one, BCI was used to interfere with the 

neurons remained intact in the motor cortex directly. In the 

second approach, BCI was used to influence the activity of motor 

cortex through non-invasively manipulating the activities of 

somatosensory cortex. In both approaches, functional recovery 

was satisfactory. These results shed new light on the possibility of 

using BCI to facilitate the rehabilitation of movement control 

after strokes or other brain injuries. 

Keywords—brain-computer interface, movement rehabilitation, 

movement control, recurrent network. 

I.  INTRODUCTION  

Brain-computer interface has been studied for a long time 
[1], which is a cross-disciplinary technology involving many 
fields, such as neuroscience, computational neuroscience, 
pattern recognition and mathematical modeling, etc. With the 
developments of neuroscience and computer technology in 
recent years, BCI has attracted much attention. BCI technology 
enables the brain to interact with either internal or external 
devices. For example, BCI system can read information stream 
from the brain while transforming such information as 
controlling signals to be used for the internal, e.g., muscles, or 
external, e.g., extra-skeleton, devices. Recently, researchers 
have been able to use this technology to help spin-injured 
monkeys to regain walking ability [2]. Despite exciting 

advances, the use of BCI in such situations are still facing two 
important limitations. The first is that invasive approaches, e.g., 
implanting micro-electrode arrays into the brain, are required 
to obtain high-resolution neuronal signal for controlling. The 
second one is that if non-invasive approaches such as scalp 
electroencephalography (EEG) is used to record neuronal 
activities, the spatial and temporal resolution of such signals 
would be too low to achieve real-time, precise controlling. To 
overcome these obstacles, here we examine how to use BCI 
not to directly control movement, but to facilitate the 
functional recovery of the injured neural circuits. 

The movement is directly controlled by the motor cortex in 
the brain. Once the system is damaged by e.g. stroke or other 
brain injuries, the movement control ability will be greatly 
impaired. These functional deficits usually require long-term 
excises and trainings to improve. There are two possible ways 
to recover the function of injured system by injecting 
controlling signals by BCI: (1) invasive stimulation, by which 
the controlling signals are fed directly to the remaining healthy 
neurons in the motor cortex and modulate their output, so that 
the impaired ability in the movement control due to the 
damaged neurons can be compensated. (2) non-invasive 
stimulation, by which the controlling signals to the motor 
neurons are originated from the sensorimotor cortex. The 
activities of the somatosensory cortex are in turn manipulated 
non-invasively by providing specific somatosensory 
stimulation controlled by BCI. Here we used a reservoir 
network to simulate the motor cortex, which corrects weights 
based on feedback from the motion trajectory and eventually 
can produce normal motion tracks autonomously. Then we 
disabled some of the neurons in the network to mimic the 
effect of brain injury. By exploiting the two methods 
mentioned above, we examined how to use BCI to recover the 
function of the network. Our model is introduced in section II 
and detailed analysis of the performance of invasive and non-
invasive stimulation are discussed in section III. Section IV 
provides the conclusion. 



 
Fig. 1. Human walking trajectory generated by a reservoir network. (A) The Basic structure of the reservoir network, which is divided into three layers: the input 

layer, the reservoir layer and the output layer. (B) The influence of different parameters on the accuracy of trajectory generation. (C) Examples of normal human 

walking trajectory generated by the reservoir network. The grey circles represent the 5 joints controled by the network. 

 

II. THE NETWORK MODEL 

The network model used in this study is the Echo State 

Network (ESN) [3], which has successfully solved many 

practical problems in the fields of pattern recognition, 

complex systems and the like. The core structure of ESN is a 

stable reservoir network with randomly-generated dynamical 

structures [4]. Typically, the input signal is fed into the 

structure, and then mapped to a higher dimension. An output 

module is trained to read the state of the reservoir and to 

provide output according to the desired signals, i.e. 

supervising signals. The structure of the neural network is 

shown in Fig. 1A. The reservoir network is often used to 

simulate neural system because of its simple structure and 

convenience in training. In this study, the ESN model was 

constructed as follows [5]: 
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where Win and Wf were fixed weights after random 

initialization, Wout was the weight needed to be trained, r was 

the output of the reservoir, and yout was the output of the 

whole network. In the following experiments, we used a new 

algorithm named orthogonal weights modification (OWM) 

recently introduced for continuously training neural networks 

[6] to adjust the weights within the reservoir. For the task of 

generating time series examined in the current study, the rules 

for updating the operators used in OWM algorithm were as 

follows: 
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where P was the projection matrix. r(t) was the output of the 

reservoir at time t, and   was the forgetting coefficient. I 

was a unit matrix. 

III. EXPERIMENTS 

A. Methods 

The data used and the general procedure of simulations for 
generating normal human walk trajectory were the same as in 
[5]. In brief, the data of joints motion for human were 
downloaded from the Carnegie Mellon University Motion 
Capture Library (MOCAP) (http://mocap.cs.cmu.edu/). Data 
were preprocessed by smooth filtering and interpolation (for 
details, see [5, 7]). The joint motion trajectories were 
generated by the reservoir network trained by OWM algorithm. 

We firstly explored the effect of different network 
structures and parameters on the accuracy of motion 
generation. Specifically, we considered the size of the network, 
the forgetting coefficient   and the gain factor of the network. 

The gain factor can be understood as the maximum eigenvalue 
of the internal connection matrix Win. The influence of these 
factors is illustrated in Fig. 1B and the appropriate parameters 
were selected from the regions with small enough errors. The 
data shown in Fig. 1B were the averaged results over 10 
repeating experiments. The examples of normal human 
walking trajectory generated by the reservoir network with 
chosen parameters are shown in Fig. 1C. The motion of the leg  



 

Fig. 2. Simulation of using BCI to facilitate fcuntional recovery after motor cortex demage. (A) MSE of the output trajectory after various degrees of damage. (B) 

The schematic diagram of the system using invasive stimulation approch. (C) The schematic diagram of the system using non-invasive stimulation approch. In B 

and C, red arrows represent synapses trained using OWM  algorithms, while black neurons represent demaged neurons. 

 

Fig. 3. Exemplar of a desieble motion trajectory of one joint point and the corresponding trajectories generated by the network in various conditions. D 

represents the desirable trajectory and G represents the generated trajectory. (A) The desirable trajectory (dotted line) and the one generated by the network 

(solid line) in a normal situation . (B) The desirable and generated trajectories after the damage. (C) The trajectories after BCI-aided invasive stimulation. (D) 

The trajectories after BCI-aided non-invasive stimulation. 

joints (gray ones) was directly controlled by the reservoir 
network and the trajectory of normal gesture of a walking 
person was used to train the network. After the training, the 
network did show a near-perfect match with the supervising 
signals. The motion trajectory of one exemplar joint is shown 
in Fig. 3A. The black dotted line is the desirable motion track 
while the yellow solid line is the one generated by the network. 

Next, we explored the influence of the proportion of 
damaged neuron on the accuracy of the generated trajectory. It 
can be seen from Fig. 2A and Fig. 3B that even a small 
proportion of damaged neurons could lead to severe 
impairments in movement control, and the error increased 
rapidly as the damage ratio increased. In the following 
experiments, we chose the condition in which 2% of neurons 

were damaged, corresponding to large errors in generating the 
disable trajectory (Fig. 3B). 

To examine how to use BCI to facilitate the functional 
recovery after such damage, we proposed two methods. We 
first tested the method of invasive stimulation (Fig .2B), in 
which the BCI was used for directly sending controlling 
signals to manipulate the activities of remaining neurons in the 
motor cortex. Specifically, the feedback signal used by the BCI 
consisted of the error stream between the actual output of the 
reservoir network and the desired trajectory. In other words, 
the state of the whole system was manipulated by injecting 
controlling signals calculated by BCI in such a way that the 
outputs of the remaining neurons compensate the impairments 
caused by the damage. Our results showed that this approach 



achieved satisfactory functional recovery (Fig. 3C), with the 

mean square error (MSE) between the desirable and generated 
trajectories reduced by 75.26%. However, such an approach 
requires direct manipulating of neuronal activities in the motor 
cortex, which can be only achieved by invasively implanting 
microelectrodes to deliver currents to the neurons. 

Then, we tested the approach of non-invasive stimulation 
(Fig .2C), in which the errors between the desirable trajectory 
and the actual one was used as the controlled signals to 
manipulate an additional network coupled with the damaged 
one. In this scenario, the additional network mimicked the 
somatosensory cortex, which has reciprocal connections with 
the motor cortex. The key idea to recruit the somatosensory 
cortex is that its activities can be manipulated non-invasively 
through applying specific somatosensory stimulation, which 
was modeled in the present study as adjusting the weights that 
inject error signals to different neurons in the somatosensory 
cortex. We found that such an approach yielded similar 
functional recovery compared with the first one, i.e. the 
invasive approach (Fig. 3D). The MSE was reduced by 
69.53%. 

B. Network Parameters 

The network was trained to control five joints of one leg 
(the gray leg in Fig. 1C). The simulation time step was 0.1. In 
the normal situation, after training for 20 epochs (one epoch 
was the motion trajectory of one cycle processed), the network 
performance was assessed based on three consecutive epochs 
autonomously generated. The parameters used for the motor 
cortex network were the following: network size 500, network 
connection sparsity 0.3, internal gain factor 1.5, the learning 
rate   0.3, and   5.0.  

For the simulation shown in Fig. 2B and C, the network 
size of the control unit was 100, the network connection 
sparsity was 0.3, and the internal gain factor was 1.5. For 
training the control unit in the invasive stimulation approach, 
the learning rate   was 0.05 and   was 1.0. For training the 

control unit in the non-invasive stimulation approach, all the 
parameters were kept the same as mentioned above, except 
that   was 6.4. In Fig. 3B-D, the learning rate  in the 

controlled network after the damage was set to 0.005. For the 
recovery condition, the network was trained by 10 epochs 
without damage, followed by the training of 10 epochs after 
damage. Then the performance was assessed with the same 
method used for the normal condition, i.e., based on three 
consecutive epochs autonomously generated. 

IV. CONCLUSIONS 

In the present work we simulated the functional deficits in 
motion control mimicking the impairments after brain injuries. 
Then we explored two approaches of using BCI to facilitate 
rehabilitation. Both of them exhibited significant effects in 
improving the ability of motion control. Specifically, one of 
the approaches demonstrated the potential of using BCI in a 
non-invasive way for functional recovery. These results, 
serving as a proof of concept, shed new light on the possibility 
of using BCI to facilitate the rehabilitation of movement 
control after strokes or other brain injuries. 
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