
Pattern Recognition 92 (2019) 13–24 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Spatiotemporal distilled dense-Connectivity network for video action 

recognition 

Wangli Hao 

a , c , Zhaoxiang Zhang 

a , b , c , ∗

a Center of Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese 

Academy of Sciences (CASIA) Beijing, 100190, China 
b Center for Excellence in Brain Science and Intelligence Technology (CEBSIT) Beijing, 100190, China 
c University of Chinese Academy of Sciences (UCAS) Beijing, 100190, China 

a r t i c l e i n f o 

Article history: 

Received 13 August 2018 

Revised 16 January 2019 

Accepted 2 March 2019 

Available online 9 March 2019 

Keywords: 

Two-stream 

Action recognition 

Dense-connectivity 

Knowledge distillation 

a b s t r a c t 

Two-stream convolutional neural networks show great promise for action recognition tasks. However, 

most two-stream based approaches train the appearance and motion subnetworks independently, which 

may lead to the decline in performance due to the lack of interactions among two streams. To overcome 

this limitation, we propose a Spatiotemporal Distilled Dense-Connectivity Network (STDDCN) for video 

action recognition. This network implements both knowledge distillation and dense-connectivity (adapted 

from DenseNet). Using this STDDCN architecture, we aim to explore interaction strategies between ap- 

pearance and motion streams along different hierarchies. Specifically, block-level dense connections be- 

tween appearance and motion pathways enable spatiotemporal interaction at the feature representation 

layers. Moreover, knowledge distillation among two streams (each treated as a student) and their last fu- 

sion (treated as teacher) allows both streams to interact at the high level layers. The special architecture 

of STDDCN allows it to gradually obtain effective hierarchical spatiotemporal features. Moreover, it can be 

trained end-to-end. Finally, numerous ablation studies validate the effectiveness and generalization of our 

model on two benchmark datasets, including UCF101 and HMDB51. Simultaneously, our model achieves 

promising performances. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Video-based action recognition is an intensively researched

eld in computer vision, with many approaches progressively

roposed that focus on aspects of hand-crafted representations

1–5] and deeply-learned representations [6–15] . Recent developed

wo-stream based methods further promote the action recognition

erformance to a new record [7,16–19] . 

However, most conventional two-stream based action recogni-

ion methods train the appearance and motion streams entirely

ndependently and there are no interactions between them ex-

ept at the last fusion layer. We argue that the lack of interac-

ions between appearance and motion paths yields sub-optimal

erformance. Although some work has established residual con-

ections among two streams [17] , multiscale information has not

een leveraged in their design. Thus, we explore the following

trategies to build the efficient hierarchical interactions between
∗ Corresponding author to: Center for Brain Inspired Intelligence, No. 95 Zhong- 

uancun East Road, Beijing 100190, China. 
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wo streams, in order to get improved action recognition perfor-

ance. 

Dense Convolutional Networks (DenseNet) [20] connect each

ayer to every other layer in a feed-forward fashion to yield an

fficient feature representation model. Specifically for each layer,

ts input is the feature maps of all preceding layers. In addition,

ts own feature maps are treated as the inputs for all subsequent

ayers. Benefiting from its particular structure, DenseNet exhibits

everal promising benefits, including mitigating the vanishing-

radient problem, strengthening feature propagation, encouraging

eature reuse and substantially decreasing the number of parame-

ers. 

Our model is partially inspired by the DenseNet and try to gen-

ralize dense-connectivity into spatiotemporal domain, via build-

ng block-level dense connections between appearance and motion

treams. Concretely, the input of the current block of appearance

enseNet is the fusion of two streams. One is the original input

rom the appearance stream. The other is the feature maps of all

receding blocks from motion stream. Their fusion is realized by

he multiplicative gate mechanism. We should note that, the block-
evel dense connection established here is unidirectional that from 

https://doi.org/10.1016/j.patcog.2019.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.03.005&domain=pdf
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motion stream to appearance stream, which is because the ap-

pearance stream dominate the motion stream during training [17] .

Block-level densely connected two-stream network permits effec-

tive spatiotemporal interaction at the feature representation layers.

Knowledge distillation [21] , a new emerging knowledge trans-

fer strategy, which is realized by transferring knowledge learned

from the teacher network into the corresponding student. Specif-

ically, the complementary information of network A to network B

can be seen as the knowledge that transferred from A to B . Con-

cerning action recognition scenario, we believe that the appear-

ance and motion streams contain mutual complementary informa-

tion. In addition, the fusion of two streams, a new distribution of

video data, also carries complementary information to both two

streams. Consequently, a new knowledge distillation module is de-

veloped, expecting to thoroughly fuse the complementary informa-

tion from appearance and motion streams. In detail, our knowledge

distillation module contains two students and a teacher, with each

student gaining complementary knowledge learned from the other

student and the teacher. Two students refer to the output of ap-

pearance and motion streams respectively. In addition, the teacher

refers to the final fusion of two-stream outputs. The proposed

knowledge distillation module allows two streams to interact ef-

fectively at the high level layers. The key differences between our

model and [21] are that, on the one hand, the knowledge distilla-

tion performed in our model is between two ConvNets with same

architectures (RGB DenseNet and Flow DenseNet) based on differ-

ent modalities of the same data (RGB modality and Flow modality

of the same video respectively). Whereas the distillation executed

in [21] is between two networks with different architectures (for

example, ResNet18 and ResNet34) based on the same data. Namely,

the distilled knowledge in [21] is based on different networks, but

in our model is based on different modalities. On the other hand,

our model performs mutual distillation between two student net-

works and knowledge distillation from the fusion of two streams

to each of them respectively, whereas the distillation in [21] only

from one network (teacher network) to the other (student net-

work). The key contribution on this point is that our distillation

can be seen as two students performing mutual learning and addi-

tionally learn knowledge from the teacher. These students and the

teacher can be seen as cohort and learn collaboratively, all mem-

bers become somewhat more similar by learning to mimic each

other, which will leads to better action recognition performance. 

Block-level densely connected two-stream networks coupled

with knowledge distillation module formed our final Spatiotempo-

ral Distilled Dense-Connectivity Network (STDDCN) for video ac-

tion recognition. STDDCN possesses some compelling advantages.

For example, STDDCN allows effective interactions among appear-

ance and motion streams at different level layers, which encour-

ages the acquisition of hierarchical complex spatiotemporal fea-

tures. Moreover, STDDCN can be trained end-to-end. 

To validate the performance of STDDCN, extensive ablative ex-

periments were performed based on two benchmark datasets,

UCF101 [22] and HMDB51 [23] ; and in summary our model ob-

tains promising action recognition results. 

Contributions of our paper can be summarized as follows: 

• We propose a novel Spatiotemporal Distilled Dense-

Connectivity Network (SDDN) for action recognition. 
• We propose to generalize dense-connectivity into spatiotem-

poral domain via building block-level dense connections be-

tween appearance and motion streams, permitting effective

spatiotemporal interaction at the feature representation layers. 
• We propose a novel knowledge distillation module, which is

composed of two students and a teacher, allowing appearance

and motion streams to interact effectively at the high level lay-

ers. 
• Our model obtains promising performance in action recogni-

tion on two benchmark datasets, including UCF101 [22] and

HMDB51 [23] respectively. 

The rest of this paper is organized as follows. Section 2 briefly

eviews some related works. In Section 3 , we describe our Spa-

iotemporal Distilled Dense-Connectivity Network (STDDCN) in de-

ail. Experimental results are presented in Section 4 and some dis-

ussions are illustrated in Section 5 . Finally, in Section 6 , we con-

lude the paper. 

. Related works 

In this section, we will review some works closely related to

ur STDDCN, including action recognition and knowledge distilla-

ion. 

.1. Action recognition 

Video-based action recognition has been extensively studied

nd can be roughly divided into three categories. 

The first category of action recognition approaches attempted to

xtract the spatiotemporal features from optical flow-based motion

nformation by crafting, including Motion Boundary Histograms

MBH) [24] , trajectories [2] and Histogram of Flow (HOF) [25] ,

r via spatiotemporal oriented filtering, such as Cuboids [26] ,

OEs [27,28] and HOG3D [29] . 

The second group of action recognition methods concentrated

n learning spatiotemporal features end-to-end, leveraging the

reakthroughs [30] in image classification with Convolutional Neu-

al Networks(CNNs) [31] . Among them, some work focused on the

se of unsupervised learning [32,33] . Other work explored to com-

ine the learned and hand-crafted features together [34] . Con-

ersely, an alternative 3D spatiotemporal ConvNet was proposed to

irectly learn both spatial and temporal filter kernels [8] . Another

esearch line focused on aggregating temporal information over ex-

ended time, such as temporal pooling of convolutional layers [35] ,

eighted averaging of video frames over time or longer convo-

utions across time [36] . Moreover, to further model the tempo-

al structure effectively, some researchers have incorporated LSTMs

nto their action recognition frameworks [4,37–40] . 

Taking inspiration from neuroscience, the third category of ac-

ion recognition methods introduced two-stream ConvNet architec-

ure [7,16–18] , to extract RGB and Flow information in parallel. The

nal action classification score was obtained by fusing the scores of

wo streams. In [16] , Wang et al. proposed Temporal Segment Net-

ork (TSN) for video-based action recognition, aiming at modeling

ong-range temporal structure underlying actions. To further im-

rove the action recognition performance, many extensions of two-

tream ConvNet [7] which investigate residual connections [17] and

onvolutional fusion [18] were proposed. Similar to our work, the

odel in [17] also builds connections among appearance and mo-

ion streams. Differently, our STDDCN leverages multiscale infor-

ation by dense-connectivity interaction. Moreover, STDDCN con-

ains a novel knowledge distillation module which allows appear-

nce and motion streams to interact more effectively. 

To better model the long-range temporal structure underlying

ctions, our model is built on the top of the promising TSN archi-

ecture [16] . 

.2. Knowledge distillation 

Recent work has also explored how to adopt additional in-

ormation (or ’knowledge’) to facilitate the training of the spe-

ific deep neural networks (DNN). In [41] , Bucila et al. first pro-

osed to utilize a single neural network to approximate an ensem-

le of classifiers. Recently, Hinton et al. developed a framework
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o distill knowledge [21] , in this scenario the predicted distribu-

ion, is distilled from a large teacher network into a smaller stu-

ent network. Also, Hu et al. develop a teacher-student architec-

ure to distill massive knowledge sources, containing logic rules,

nto DNNs [42,43] . To explore more diverse knowledge in interme-

iate feature maps, FitNets [44] and Attention Transfer [45] have

een developed. Moreover, a unique type of knowledge inside deep

etric learning model was also proposed [46] to train the student

etwork. 

In summary, knowledge distillation is an effective approach

o distill complementary information from a teacher network to

he student network, giving us clear grounds to introduce it into

ur model. For action recognition, appearance and motion streams

re known to contain complementary information. Moreover, the

usion of two streams in soft probability output layer can be

reated as a novel distribution of video data, which also carries

omplementary information to both two streams. Thus, we pro-

ose a novel knowledge distillation module and attach it to our

ramework, to realize the effective interactions among two streams

y thoroughly leveraging the complementary information among

hem. 

.3. Feature representation 

From the aspect of acquiring feature representation from mul-

iple sources, including multimodal, multi-layer, multivariate and

ulti-task, some works are related to our STDDCN. Specifically,

n [47] , Hong et al. proposed a new 3D human pose recovery

ethod, with feature extraction based on multimodal fusion (in-

luding representations from silhouettes and Mocap data). In [48] ,

ang et al. developed a novel type Multiple Instance Neural Net-

orks (MINNs) to learn bag representations for multiple instance

earning, including MI-Net, MI-Net with deep supervision (MI-Net-

S) and MI-Net with residual connections (MI-Net-RC) models re-

pectively. Among them, the feature representations of MI-Net-DS

nd MI-Net-RC are based on multi-layered information and ob-

ain better performance than that of MI-Net. Du et al. [49] pro-

osed a new hierarchical deep neural network (HDNN) to han-

le the multivariate regression problem, which was realized via

ransferring the original problem to multiple subproblems. In [50] ,

u et al.developed a promising image privacy protection method,

hich is based on the joint learning of deep CNN and tree classi-
Fig. 1. The basic pipeline of our Spatiotemporal Distilled Dense-C
er via multi-task learning strategy. Similar with above mentioned

ethods, feature representation of our method is also from mul-

iple sources. However, our feature extraction relies on different

odalities of the same data, including RGB and Flow modalities. 

. Spatiotemporal distilled dense-Connectivity network 

In this section, we will depict the proposed STDDCN in detail

the pipeline is presented in Fig. 1 ). STDDCN is mainly composed

f two densely connected block-level subnetworks and one knowl-

dge distillation module. The purpose of STDDCN is to explore ef-

ective hierarchical spatiotemporal interactions among appearance

nd motion streams derived from the source video. 

.1. Baseline architecture 

The baseline architecture of STDDCN is built on the top of Tem-

oral Segment Network (TSN) [16] , which aims at modeling long-

erm temporal structure. TSN contains two stream ConvNets, in-

luding appearance and motion stream ConvNets respectively. It

orks on a sequence of short clips sparsely collected from the

hole video, other than depending on frame stacks or single

rames. Each clip will obtain its own action recognition prediction

nd the fusion of these predictions form the final video-level pre-

iction. In detail, each short clip contains an RGB image for appear-

nce stream and a stack of L = 10 vertical and horizontal optical

ow frames for motion stream. 

Based on TSN, our model STDDCN establishes block-level dense

onnections from motion stream convNet to the appearance one,

or obtaining spatio-temporal interaction at the feature extraction

ayers. In addition, STDDCN also integrates a novel knowledge dis-

illation module for achieving high-level spatio-temporal interac-

ion. Specifically, the ConvNet adopted here is DenseNet [20] . Fig. 2

llustrates the architectures of TSN and STDDCN. 

.2. Dense-Connectivity across two ConvNets 

In a conventional TSN [16] based action recognition frame-

orks, the appearance and motion streams have no interactions

xcept the last fusion of their softmax prediction layer [16] . Thus,

ruly spatiotemporal features cannot be extracted in their design

ince their is a lack of earlier interactions among two streams dur-

ng processing. 
onnectivity Network (STDDCN) for video action recognition. 
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Fig. 2. Architectures of TSN and STDDCN. For simplicity, only one video snippet is presented. 

Fig. 3. Block-level dense-connectivity across two ConvNets. The inputs of the current block of appearance stream is the feature maps of all preceding blocks from the motion 

stream and the feature map of the former block of the appearance stream. 
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Dense Convolutional Network (DenseNet) [20] , a recently pro-

posed deep learning architecture, utilizes feature maps of all pre-

ceding layer as the current layer’s input. It surpasses other frame-

works in terms of relieving vanishing-gradient problem, enhancing

feature propagation and encouraging feature reuse. 

Consequently, we generalize the appealing dense-connectivity

of DenseNet into the spatiotemporal domain, hoping to build ef-

fective earlier interactions among appearance and motion streams.

The detailed structure of this module is presented in Fig. 3 ,

with block-level dense connections established among two-stream

DenseNets. Insights of this design are that, on the one hand,

block-level dense-connectivity can encourage spatiotemporal inter-

actions among two streams. On the other hand, it can guarantee

the information specificity of two streams in some extent. As de-

tailed above, connections built here are unidirectional from motion

stream to appearance stream. 

Concretely, block-level dense-connectivity built here can be for-

mulated as: 

X 

i +1 
R = f 

(
X 

i 
R 

)
+ G 

(
f (X 

i 
R ) , X 

i 
F 

))
(1)
here X i 
R 

and X i 
F 

denote the inputs for ith block of appearance and

otion ConvNets correspondingly. f indicates the original function

hat transfers the input of ith block to i + 1 th block in the corre-

ponding ConvNet, + denotes the elementwise addition. In Eq. (1) ,

lementwise addition is utilized to do information fusion, which

ims at injecting the information of preceding motion ConvNet lay-

rs X i 
F 

into the current appearance ConvNet layer X i +1 
R 

. G denotes

he multiplicative gate, which is employed to modulate the appear-

nce features by the motion signal, and can be depicted as: 

 

(
f 
(
X 

i 
R 

)
, X 

i 
F 

))
= f 

(
X 

i 
R 

)
∗
[
H 

i ( X F ) 
)]

(2)

here ∗ denotes elementwise multiplication and the modulation

s realized by it. The elementwise multiplication will force two

treams to interact in both feedforward and feedback passes (see

qs. (3) —(5) ). In addition, [ H 

i ( X F ))] indicates the concatenation of

ll preceding blocks’ feature maps of motion stream, which can be

epresented as 

H 

i ( X F ) 
)]

= 

[
H 

i 
1 

(
X 

1 
F 

)
, · · · , H 

i 
i 

(
X 

i 
F 

)]
(3)
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L = L s 1 + L s 2 (15) 
here H 

i 
j 

represents a weight matrix that transfer X 
j 

F 
to the same

ize with X i 
R 

. 

Eq. (1) illustrates that the input of the i + 1 block of appearance

onvNet is the integration of two streams. One is the input f (X i 
R 
)

rom the original appearance ConvNet and the other is the mul-

iplicative gate fusion of f (X i 
R 
) and feature maps of all preceding

locks [(X 1 
F 
) , · · · , (X i 

F 
)] from motion ConvNet. 

Based on the above formulation, gradient of the loss function L
uring its backward processing can be demonstrated as: 

∂L 

∂ X 

i 
R 

= 

∂L 

∂ X 

i +1 
R 

∂ X 

i +1 
R 

∂ X 

i 
R 

= 

∂L 

∂ X 

i +1 
R 

( 

∂ f 
(
X 

i 
R 

)
∂ X 

i 
R 

+ [ H 

i (X F )] ∂ G (. ) 
∂ X i 

R 

) 

(4) 

∂L 

∂ X 

i 
F 

= 

∂L 

∂ X 

i +1 
F 

∂ X 

i +1 
F 

∂ X 

i 
F 

+ f (X 

i 
R ) 

∂L 

∂ X 

i +1 
R 

∂ G (. ) 

∂ X 

i 
F 

(5) 

here G (.) indicates G ( f (X i 
R 
) , [ H 

i (X F )])) . 

Based Eqs. (4) and (5) , gradients passing through appearance

nd motion streams are not only adjusted by the information from

heir own stream, but also modulated by the other stream. Con-

retely, gradient of appearance stream is partially adjusted by the

otion information [ H 

i ( X F )], and the motion stream’s gradient is

artially modulated by the appearance information f (X i 
R 
) . 

.3. Knowledge distillation module 

To realize the interactions across appearance and motion

treams in the video at the high level layers, we propose a novel

nowledge distillation module. It contains two students and a

eacher. Specifically, the output probabilities of two streams are

reated as two students and the fusion of two streams’ output

s seen as the teacher. Specifically, one student is modulated by

he other student and the teacher. For simplicity, two students are

ubbed as stu 1, stu 2 and the teacher is represented as tea . Under

his setting, the knowledge distillation loss L s 1 for stu 1 can be rep-

esented as: 

 s 1 = β ∗ L dis t 
s 1 

+ (1 − β) ∗ L dis s 2 
s 1 

(6)

here L dis t 
s 1 

and L 

dis s 2 
s 1 

indicate the distillation losses from the

eacher tea and the other student2 ( stu 2) to student1 ( stu 1) respec-

ively. β is the hyperparameter controlling the strengths of two

oss terms. The definition of L dis t 
s 1 

and L 

dis s 2 
s 1 

are denoted as: 

L dis t 
s 1 

= α ∗ L 

(s 1 ,t) 
kl 

+ (1 − α) ∗ L 

s 1 
cro 

L dis s 2 
s 1 

= α ∗ L 

(s 1 ,s 2) 
kl 

+ (1 − α) ∗ L 

s 1 
cro (7) 

here L 

(s 1 ,t) 
kl 

indicates the Kullback-Leibler divergence about stu 1

nd tea and L 

(s 1 ,s 2) 
kl 

has the similar meaning. L 

s 1 
cro denotes the cross

ntropy loss for stu 1. α indicates the hyperparameter balancing the

trengths of two corresponding loss terms. Among them, L 

(s 1 ,t) 
kl 

nd L 

(s 1 ,s 2) 
kl 

can be formulated as: 

L 

(s 1 ,t) 
kl 

= D kl 

(
X 

s 1 , X 

t 
)

= D kl 

[
P 
(
Ȳ t /T 

)|| P ( ¯Y s 1 /T 
)

= 

∑ 

i ∈S 
P 
(
Ȳ t 

i 
/T 

)
log 

P 
(
Ȳ t 

i 
/T 

)
P 

(
¯Y s 1 
i 

/T 

)
 

(s 1 ,s 2) 
kl 

= D kl 

(
X 

s 1 , X 

s 2 
)

= D kl 

[
P 
(

¯Y s 2 /T 
)|| P ( ¯Y s 1 /T 

)
= 

∑ 

i ∈S 
P 

(
¯Y s 2 
i 

/T 

)
log 

P 

(
¯Y s 2 
i 

/T 

)
P 

(
¯Y s 1 
i 

/T 

) (8) 

here X 

s 1 , X 

s 2 and X 

t denote the input samples of stu 1, stu 2 and

ea networks respectively. ¯Y s 1 , ¯Y s 2 and Ȳ t represent the output
robabilities of the stu 1, stu 2 and tea networks correspondingly. T

ndicates the temperature parameter. S denotes the set of all train-

ng samples and i represents the index of the ith sample. P ( Z i ) can

e represented as: 

 (Z i ) = exp(Z i ) / 
∑ 

j∈S exp(Z j ) (9) 

he cross entropy loss L cro can be formulated as: 

L 

s 1 
cro = D cro 

(
X 

s 1 , Y s 1 
)

= −
∑ 

i ∈S 

( 

Y s 1 i ∗ log 
exp( ¯Y s 1 

i 
) 

1 + exp( ¯Y s 1 
i 

) 
+ (1 − Y s 1 i ) ∗ log 

1 

1 + exp( ̄Y s 1 
i 

) 

) 

(10) 

here X 

s 1 , ¯Y s 1 , S and i share the same meanings with those de-

ned in Eq. (8 ). Y s 1 
i 

indicates the target label for input sample X s 1 
i 

.

Similar with L s 1 , the computation of L s 2 can be given as fol-

ows: 

 s 2 = β ∗ L dis t 
s 2 

+ (1 − β) ∗ L dis s 1 
s 2 

(11)

here L dis t 
s 2 

and L 

dis s 1 
s 2 

indicate the distillation losses from the

eacher tea and the other student stu 1 respectively. β is the hy-

erparameter controlling the strengths of two loss terms. The def-

nition of L dis t 
s 2 

and L 

dis s 1 
s 2 

are described as: 

L dis t 
s 2 

= α ∗ L 

(s 2 ,t) 
kl 

+ (1 − α) ∗ L 

s 2 
cro 

L dis s 1 
s 2 

= α ∗ L 

(s 2 ,s 1) 
kl 

+ (1 − α) ∗ L 

s 2 
cro (12) 

here L 

(s 2 ,t) 
kl 

indicates the Kullback-Leibler divergence about stu 2

nd tea and L 

(s 2 ,s 1) 
kl 

has the similar meaning. L 

s 2 
cro denotes the cross

ntropy loss for stu 2. α indicates the hyperparameter balancing

he strengths of two corresponding loss terms. Among them, L 

(s 2 ,t) 
kl 

nd L 

(s 2 ,s 1) 
kl 

can be formulated as: 

L 

(s 2 ,t) 
kl 

= D kl 

(
X 

s 2 , X 

t 
)

= D kl 

[ 
P 
(
Ȳ t /T 

)|| P ( ¯Y s 2 /T 
)

= 

∑ 

i ∈S 
P 
(
Ȳ t 

i 
/T 

)
log 

P 
(
Ȳ t 

i 
/T 

)
P 

(
¯Y s 2 
i 

/T 

) (13) 

 

(s 2 ,s 1) 
kl 

= D kl 

(
X 

s 2 , X 

s 1 
)

= D kl 

[ 
P 
(

¯Y s 1 /T 
)|| P ( ¯Y s 2 /T 

)

= 

∑ 

i ∈S 
P 

(
¯Y s 1 
i 

/T 

)
log 

P 

(
¯Y s 1 
i 

/T 

)
P 

(
¯Y s 2 
i 

/T 

) (13) 

here X 

s 1 , X 

s 2 , X 

t , ¯Y s 1 , ¯Y s 2 , Ȳ t , T, S and i share the same meanings

ith those defined in Eq. (8) . The cross entropy loss L 

s 2 
cro can be

ormulated as: 

L 

s 2 
cro = D cro 

(
X 

s 2 , Y s 2 
)

= −
∑ 

i ∈S 

⎛ 

⎝ Y s 2 i ∗ log 
exp 

(
¯Y s 2 
i 

)
1 + exp 

(
¯Y s 2 
i 

)+ 

(
1 − Y s 2 i 

)
∗ log 

1 

1 + exp 
(
Ȳ s 2 

i 

)
⎞ 

⎠ 

(14) 

here X 

s 2 , ¯Y s 2 , S and i share the same meanings with those de-

ned in Eq. (8) . Y s 2 
i 

indicates the target label for input sample X s 2 
i 

.

The final loss utilized for training the whole network is repre-

ented as: 
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Table 1 

Comparison results of different models on HMDB51 and UCF101. 

Dataset HMDB51 UCF101 

Split Split1 Split2 Split3 Split1 

Model TSN STDDCN TSN STDDCN TSN STDDCN TSN STDDCN 

RGB 52.55 58.56 49.02 56.01 49.61 57.19 84.00 86.23 

Flow 57.45 56.80 57.65 56.21 61.37 61.18 85.93 86.36 

Two 66.73 67.52 64.77 66.07 65.56 66.95 93.46 93.78 
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4. Experiments 

4.1. Datasets and implementation details 

Two popular benchmark datasets, including HMDB51 [23] and

UCF101 [22] , are utilized to verify the superiority of our pro-

posed STDDCN. UCF101 contains 101 action classes and 13, 320

video clips, whose evaluation scheme follows that of THUMOS13

challenge [51] . In addition, HMDB51 is collected from the realis-

tic videos that include various sources, such as web videos and

movies, which contains 6, 766 video clips and 51 action classes.

All our experiments follow the original evaluation scheme that uti-

lizing three training/testing splits, to validate the performance of

corresponding models. 

We use stochastic gradient descent algorithm (SGD) to train our

models, with a total mini-batch size 32. All models are first ini-

tialized by the pre-trained models based on ImageNet [52] . The

learning rate starts with 0.0 0 01 and then decreased to its 1 
10 per

12,0 0 0 iterations. The momentum is 0.9. The α and β are 0.1 and

0.9 respectively. We stop our training at 20, 0 0 0 iterations. In or-

der to avoid over-fitting, the following data augmentation strate-

gies are adopted, including location jittering, corner cropping, hor-

izontal flipping and scale jittering. Our experiments are executed

on TITANX GPUs. 

4.2. Experimental results 

4.2.1. Evaluation of proposed STDDCN 

To examine the performance of our developed model STD-

DCN, we compare it with the baseline model TSN [16] on

HMDB51 [23] and UCF101 [22] and other state-of-the-art mod-

els, with comparison results displayed in Table 1 . Specifically, in

Table 1 , RGB, Flow and Two indicate the action recognition accu-

racies of different models based on appearance ConvNet, motion

ConvNet and the fusion of two ConvNets respectively. The Con-

vNet utilized here is DenseNet121. In the following sections, with-

out statement, basic ConvNet is defaulted as DenseNet121. 

From Table 1 , we can see that the STDDCN yields consistent

better results than other model, which verifies the superiority of

STDDCN in all splits of HMDB51 and the first split of UCF101. On
Fig. 4. Comparison results based on models with different alpha, 
he other hand, our model performs worse than TSN when only

ow network is adopted. Reasons can be summarized as follows.

TDDCN jointly trains two branch networks, and the parameters

re iteratively updated to force the model to achieve the optimal

usion results. The one branch contributed more to the final fusion

ill obtain more emphasis and achieve better performance. From

able 1 , we can see that for HMDB51, the RGB network obtains bet-

er results than those of TSN, otherwise the flow network is worse.

n addition, RGB network also obtains superior performance than

ts Flow counterpart. Concerning UCF101, both RGB and Flow net-

orks obtains better results than those of TSN and two networks

chieve comparable performance. These results indicate that the

GB stream of HMDB51 contains more discriminant information,

nd both RGB and Flow streams of carry important cues. 

.2.2. Evaluation of Alpha ( α) and Beta ( β) in Knowledge Distillation 

KD) module 

To validate the effects of α and β in KD module, we perform ac-

ion recognition with various α and β ranges from 0.1 to 0.9 with

tep size 0.2 in KD module. Results are exhibited in (a) and (b) of

ig. 4 . As alpha increases, the action recognition performance de-

rades. In addition, we also report the result of model that does

ot perform knowledge distillation which α = 0 . From (a) of Fig. 4 ,

e can see that the model with α = 0 . 1 obtains the best result in

ll splits of HMDB51, again validating the effectiveness of knowl-

dge distillation module. In addition, as shown in (b) of Fig. 4 , al-

hough beta β has no obvious trend of changing in a certain di-

ection, it obtains promising result with β = 0 . 3 in all splits. Thus,

and β are defaulted as 0.1 and 0.3 respectively in the following

xperiments. 

.2.3. Evaluation of Temperature (T) in KD module 

Besides α and β , temperature T is also an important parame-

er in KD module. To examine the effects of T , we compare models

ith different T ranges from 2 to 5 on HMDB51 and UCF101. Re-

ults are shown in (c) of Fig. 4 . The impact of temperature T to

ction recognition is not obvious with its value ranges from 2 to

. Moreover, T with value 4 offers the best performance in most

ases. Thus, T is defaulted as 4. 
beta and temperature values in the KD module on HMDB51. 
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Fig. 5. Different connection approaches across two ConvNets. 

Table 2 

Comparison of different connection models on HMDB51 and UCF101. 

Dataset HMDB51 UCF101 

Split Split1 Split2 Split3 Split1 

Model Dir_Con Den_Con Dir_Con Den_Con Dir_Con Den_Con Dir_Con Den_Con 

RGB 52.94 58.76 50.98 55.03 53.59 56.67 84.87 86.33 

Flow 57.32 57.65 55.56 56.21 60.13 60.52 85.97 86.50 

Two 66.08 67.04 63.39 64.64 65.16 65.29 92.59 93.22 
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.2.4. Evaluation of dense connection 

To explore the effects of dense connections between appear-

nce and motion streams, comparisons are made among the fol-

owing models, including Direct_Connect and Dense_Connect (Pre-

ented in Fig. 5 ). Note that, these models have no knowledge distil-

ation module. Concerning Direct_Connect model, it integrates fea-

ure maps of the current block from motion stream into the cor-

esponding block of the appearance stream, as shown in (a) of

ig. 5 . While for Dense_Connect model, it fuses feature maps of

ll preceding blocks, as shown in (b) of Fig. 5 . Comparison results

re presented in Table 2 , with Direct_Connect and Dense_Connect

odels dubbed as Dir_Con and Den_Con respectively for simplicity.

Table 2 shows that the results of Dense_Connect model are uni-

ormly better than those of Direct_Connect model, which validates

he effectiveness of dense connection. 

.2.5. Evaluation of knowledge distillation (KD) 

To examine the effectiveness of proposed knowledge distillation

odule, we make comparisons among the following three variants,

ontaining Distill_s, Distill_t and Distill_st (Illustrated in Fig. 6 ).
pecifically, Distill_s indicates the model that two student Con-

Nets performing mutual learning. In another word, each student

s taught by the knowledge learned from the other student. Dis-

ill_t refers the model that two student ConvNets are only taught

y the teacher ConvNet correspondingly. In addition, Distill_st de-

otes the model that each student is not only modulated by the

ther student but also by the teacher. Detailed comparison results

re exhibited in Table 3 . In Table 3 , Distill_s, Distill_t and Distill_st

ubbed as Dis_s, Dis_t and Dis_st correspondingly. 

Table 3 demonstrates that Dis_st model achieves uniformly bet-

er results than those of Dis_t and Dis_s models, which indicates

hat the proposed knowledge distillation module with two stu-

ents and a teacher is optimal. 

.2.6. Evaluation of the computational time 

To further validate the efficiency of our model, we have com-

ared the computational time (training and testing time) of dif-

erent models, which is presented in Table 4 . In Table 4 , TSN-RGB

ndicates the individual RGB stream network in TSN framework,

nd TSN-Flow denotes the Flow stream counterpart, other models
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Fig. 6. Different knowledge distillation models. 

Table 3 

Comparison of different distillation models. 

Dataset HMDB51 UCF101 

Split Split1 Split2 Split3 Split1 

Model Dis_s Dis_t Dis_st Dis_s Dis_t Dis_st Dis_s Dis_t Dis_st Dis_s Dis_t Dis_st 

RGB 60.00 58.17 58.56 55.56 53.20 56.01 57.65 55.62 57.19 84.94 84.99 86.23 

Flow 56.47 57.12 56.80 55.82 57.06 56.21 61.57 60.33 61.18 86.29 86.42 86.36 

Two 66.67 67.45 67.52 65.09 64.70 66.07 65.49 65.29 66.95 93.74 93.41 93.78 

Table 4 

Comparison of computational time for different models. 

Model TSN-RGB TSN-Flow TSN Dir_Con Den_Con Dis_s Dis_t Dis_st 

Train_time(s) 0.386 0.395 0.781 0.803 0.808 0.807 0.809 0.810 

Test_time(s) 0.187 0.193 0.380 0.378 0.381 0.379 0.380 0.380 

Table 5 

Comparison of models with different connection directions on HMDB51. 

HMDB51 UCF101 

Split Split1 Split2 Split3 Split1 

Model A ← M A → M A ↔ M A ← M A → M A ↔ M A ← M A → M A ↔ M A ← M A → M A ↔ M 

RGB 58.56 51.34 51.31 56.01 47.32 41.24 57.19 48.24 40.59 86.23 83.60 84.02 

Flow 56.80 59.54 59.28 56.21 56.93 56.21 61.18 57.84 51.31 86.36 90.52 89.23 

Two 67.52 60.23 59.89 66.07 58.10 57.45 66.95 58.36 51.99 93.78 90.65 89.62 

Table 6 

Comparison of various DenseNet on HMDB51 and UCF101. 

Dataset HMDB51 UCF101 

Split Split1 Split2 Split3 Split1 

Den121 TSN STDDCN TSN STDDCN TSN STDDCN TSN STDDCN 

RGB 52.55 58.56 49.02 56.01 49.61 57.19 84.00 86.23 

Flow 57.45 56.80 57.65 56.21 61.37 61.18 85.93 86.36 

Two 66.73 67.52 64.77 66.07 65.56 66.95 93.46 93.78 

Den161 TSN STDDCN TSN STDDCN TSN STDDCN TSN STDDCN 

RGB 54.44 58.89 51.93 56.92 52.22 56.41 86.84 87.47 

Flow 57.58 57.84 57.19 58.43 59.93 61.11 88.08 87.65 

Two 69.28 70.20 67.23 68.95 68.43 69.34 94.12 94.79 
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share the same meanings in the above section. From Table 4 , we

can see that the training time of all our model variants (Dir_Con,

Den_Con, Dis_s, Dis_t, Dis_st) are a little more than that of the

TSN. This is because although the whole parameters of our models

are comparable with that of TSN, the connection allows our model

to interact not only in its forward pass but also in its feedback

pass, which leads to more training time. Moreover, the training

time of Den_Con model is a slightly more than that of Dir_Con

one, which is due to more connections existing in the Den_Con

model. In addition, the training times of Dis_t, Dis_t, Dis_st models

are almost the same with Den_Con model, as no more computa-

tions are introduced by them. Concerning the test time, our mod-
ls (Dir_Con, Den_Con, Dis_s, Dis_t, Dis_st) are comparable with

hat of TSN, which is because there is no feedback interactions

eeded to perform in the test phase. We should note that the time

n Table 4 refers to the computational time for one batch. 

.2.7. Evaluate the direction of dense connection 

As stated above, dense connections between two streams are

rom flow stream to appearance stream. Reasons can be found in

iterature [53] . Concerning our specific dense-connectivity, effects

f the directions of dense connection also be validated, with re-

ults presented in Table 5 . Specifically, in Table 5 , A ← M, A → M

nd A ↔ M indicate models with dense connection from motion to
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Fig. 7. STDDCN with ResNet basic network. 

Table 7 

Comparison of various ResNet models on HMDB51 and UCF101. 

Dataset HMDB51 UCF101 

Split Split1 Split2 Split3 Split1 

Res101 TSN STDDCN TSN STDDCN TSN STDDCN TSN STDDCN 

RGB 51.57 54.77 51.57 52.94 53.27 53.27 86.00 87.49 

Flow 58.56 59.28 55.49 57.19 60.26 60.46 87.26 87.76 

Two 68.17 68.32 64.59 65.31 66.14 66.66 93.91 94.52 

Res152 TSN STDDCN TSN STDDCN TSN STDDCN TSN STDDCN 

RGB 55.42 56.80 53.92 56.60 53.86 56.60 87.57 88.44 

Flow 57.97 58.30 56.99 57.65 60.72 61.11 87.52 88.33 

Two 69.81 70.08 67.29 68.12 67.86 68.98 93.92 94.67 
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Table 8 

Comparison with current state-of-the-art methods on UCF-101 and HMDB51 

dataset. 

Model UCF101 HMDB51 

IDT [2] 85.9 57.2 

IDT(higher-dimension) [54] 87.9 61.1 

MIFS(L = 3) [55] 89.1 65.1 

TDD [56] - 63.2 

KVMF [57] - 63.3 

VGG16 + Images on Web [58] 83.5 - 

Two-stream(fusion by averaging) [7] 86.9 - 

Two-stream(fusion by SVM) [7] 88.0 59.4 

Fusion Two-stream [18] 91.8 64.6 

Action-transformations [59] - 63.4 

Two-stream(VGG-16) [16] 91.4 - 

LRCN(weighted average) [60] 82.9 - 

C3D(1 net + SVM) [8] 82.3 - 

C3D(3 net + SVM) [8] 85.2 - 

C3D + IDT [8] 90.4 - 

T-CNN [61] 87.5 - 

FstCN(averaging fusion) [62] 87.9 58.6 

FstCN(SCI fusion) [62] - 59.1 

Asymmetric 3D-CNN(RGBF) [12] 87.7 61.2 

Asymmetric 3D-CNN(RGB + RGBF) [12] 89.5 63.5 

Asymmetric 3D-CNN(RGB + RGBF + IDT) [12] 92.6 65.4 

TSN [16] 93.46 65.69 

TSI3D [63] 93.4 66.4 

Our 93.78 66.87 

i  

s  

a  

s

ppearance stream, appearance to motion stream and the combi-

ation of them respectively. Table 5 reflects models A ← M achieves

he best results among three models, which verifies the effective-

ess of connection direction from motion to appearance stream.

his is consistent with previous findings in [53] . 

.2.8. Evaluation of model with various depth 

To assess whether STDDCN can generalize well to models with

arious depths or not, we report the results of STDDCN based on

ensetNet, including DenseNet121 and DenseNet161 (dubbed as

en121 and Den161), in Table 6 . Table 6 illustrates that STDDCN

chieves uniformly better results than those of TSN in all cases,

hich verifies the generalization capacity of STDDCN in terms of

odel depth. In addition, STDDCN with deeper architecture offers

etter results in action recognition. 

.2.9. Evaluation of model with diverse architecture 

To further validate the generalization capacity of STDDCN

n terms of network architectures, we generalize STDDCN to

esNet101 and ResNet152 (dubbed as Res101 and Res152). Specif-

cally, similar with DenseNet, ResNet101 and ResNet152 are also

omposed of several blocks. Thus, the STDDCN is generalized to

esNet via the following steps. First, the block-level dense con-

ections are established between appearance ResNet and motion

esNet. In addition, the proposed knowledge distillation module is

ntegrated into the final fusion layer. Fig. 7 illustrates the architec-

ures of generalized STDDCN based on ResNet101 and ResNet152.

omparison results are displayed in Table 7 . 

From Table 7 , we can see that our model consistently surpasses

he baseline model TSN, which validates the generalization capac-
ty of STDDCN on various architectures. Moreover, results of ba-

ic architecture with ResNet152 are superior to those of ResNet101,

gain verifying the superiority of deeper model when performing

pecific tasks. 
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Table 9 

Comparison of different spatiotemporal connection models. 

Model STR [17] STM [53] Our(Den121) Our(Den161) Our(Res101) Our(Res152) 

HMDB51 66.4 68.9 66.51 69.49 66.43 69.03 

UCF101 93.4 94.2 93.78 94.79 94.52 94.67 
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4.2.10. Compare with other spatiotemporal architecture 

Similar with our model, previous works [17,53] build resid-

ual connections among appearance and motion streams, called

Spatiotemporal_ResNet and Spatiotemporal_Multiplier respectively.

Our models differs from them in two folds. On the one hand,

dense-connectivity in our STDDCN can leverage multi-scale infor-

mation. On the other hand, STDDCN attaches a novel knowledge

distillation module which can build effective spatiotemporal at the

high level layers. Comparison results are shown in Table 9 (Spa-

tiotemporal_ResNet and Spatiotemporal_Multiplier are dubbed as

STR and STM in the table). Table 9 illustrates that our model ob-

tains better results than Spatiotemporal_ResNet, verifying the su-

periority of our model. 

4.2.11. Compare with the state-of-the-Art methods 

In this section, we compare the STDDCN with recent proposed

state-of-the-art approaches, with results presented in Table 8 .

Table 8 shows that when compared with the models based on

trajectory features (IDT), two streams, C3D, TSN and some other

methods, our model achieves the best performance, which fur-

ther validates the spatiotemporal feature obtained by efficient spa-

tiotemporal interactions is essential to the action recognition. 

5. Discussions 

5.1. Dense-Connectivity via multiplicative gate is vital 

Most conventional two-stream based action recognition ap-

proaches train the appearance and motion streams independently.

Few of them consider the interactions between two streams except

the last fusion layer. Thus, truly spatiotemporal features cannot be

extracted in their design. Targeting to tackle this problem, block-

level dense-connectivity across appearance and motion streams are

built to encourage earlier spatiotemporal interactions. Specifically,

feature maps of all preceding blocks from the flow stream are inte-

grated into the current block of appearance stream, via multiplica-

tive gate. This unidirectional fusion design is attribute to that spa-

tial stream dominates motion stream during training. Experimen-

tal results validate that models with dense-connectivity is superior.

Reasons can be summarized as several folds. Firstly, multiplicative

gate encourages network fusion from the first-order expanded to

the second-order. Secondly, during both forward pass and gradient

backward, appearance and motion representations are all modu-

lated by signals from two paths, allowing two streams to interact

effectively. Moreover, feature representation can be enhanced since

all preceding blocks with multi-scale information have been lever-

aged. 

5.2. Knowledge distillation with students and teacher is optimal 

The developed knowledge distillation module is comprised of

two students and a teacher. Concretely, two students refer to the

output probabilities of appearance and motion streams, and the

teacher represents the fusion output of two streams. To verify

the effectiveness of the proposed knowledge distillation module,

three variants are developed, including Distill_s (modulate one stu-

dent only by knowledge learned from the other student), Dis-

till_t(modulate one student only by knowledge learned from the

teacher) and Distill_st(modulate one student by knowledge learned
rom both teacher and the other student simultaneously). Experi-

ental results reveals that Distill_st yields the best results when

ompared to the Distill_s and Distill_t. Reasons can be summa-

ized as follows: appearance and motion streams contain mutual

omplementary information to each other. On the other hand, the

usion of two streams, can be seen as a new distribution of data,

hich also carries complementary information to both appearance

nd motion streams. Specifically, concerning a student in Distill_st,

he knowledge transferred to it not only from the other stream, but

lso from the new distribution of data derived by the fusion of two

treams. Conversely, Distill_s and Distill_t only leverage one kind of

omplementary information either from the other student or from

he new distribution of data. Thus, knowledge distillation module

ith two students and a teacher leverages the most complemen-

ary information underlying appearance and motion streams and is

ptimal. 

.3. STDDCN Can generalize well 

To verify the generalization capacity of our model STDDCN

n terms of different network depths and structures, STDDCN

s executed based on the following basic models. They are

enseNet (with two variants of different depths: DenseNet121 and

enseNet161) and ResNet (with two variants of different depths:

esNet101 ResNet152) respectively. Experimental results show the

erformances of STDDCN are uniformly better than those of the

aseline model TSN, under different network depths and structures

ettings, which validates the excellent generalization capability of

TDDCN. Moreover, experimental results also verify the superiority

f deeper networks in performing action recognition. 

. Conclusions 

This paper proposes a novel Spatiotemporal Distilled Dense-

onnectivity Network (STDDCN) for action recognition, which is

omprised of two densely connected subnetworks and a knowl-

dge distillation module. The block-level dense-connectivity among

ppearance and motion streams encourages effective spatiotem-

oral interaction at the feature representation layer. Moreover,

nowledge distillation module, which consists of two students and

 teacher, facilitates the spatiotemporal interaction at the high-

evel layers by thoroughly leveraging the complementary informa-

ion underlying two streams. In summary, STDDCN allows effec-

ive hierarchical spatiotemporal interactions between appearance

nd motion streams. Moreover, it can be trained end-to-end. Abla-

ive studies based on the benchmark datasets UCF101 and HMDB51

erify the effectiveness and generalization of STDDCN. Experimen-

al results validate that STDDCN obtains superior action recogni-

ion performance, when compared to the conventional two-stream

ased action recognition approaches. Future works will explore

ore effective interaction strategies across appearance and motion

treams for improved action recognition. 
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