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Abstract

Shadow detection is an important and challenging
problem in computer vision. Recently, single im-
age shadow detection had achieved major progress
with the development of deep convolutional net-
works. However, existing methods are still vulnera-
ble to background clutters, and often fail to capture
the global context of an input image. These global
contextual and semantic cues are essential for ac-
curately localizing the shadow regions. Moreover,
rich spatial details are required to segment shadow
regions with precise shape. To this end, this paper
presents a novel model characterized by a deeply
supervised parallel fusion (DSPF) network and a
densely cascaded learning scheme. The DSPF net-
work achieves a comprehensive fusion of global se-
mantic cues and local spatial details by multiple s-
tacked parallel fusion branches, which are learned
in a deeply supervised manner. Moreover, the
densely cascaded learning scheme is employed to
refine the spatial details. Our method is evaluated
on two widely used shadow detection benchmarks.
Experimental results show that our method outper-
forms state-of-the-arts by a large margin.

1 Introduction

Shadow occurs frequently in natural scenes. Patterns of shad-
ows provide important cues for estimating physical properties
of the scene e.g., light source [Lalonde er al., 20101, illumina-
tion conditions [Panagopoulos et al., 2012] and scene geom-
etry [Karsch et al., 2011]. Understanding regions of shadows
can also help to improve downstream vision tasks, such as
image segmentation [Ecins et al., 2014]. Moreover, removing
shadows from images has many applications in computation-
al photography [Guo et al., 2011; Qu et al., 2017]. Among
these tasks, shadow detection—identify regions of shadows, is
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a core step. We focus on the task of shadow detection from a
single image in this paper.

Finding shadows from a single image is very challenging.
The problem is fundamentally ill-posed, as scene geometry,
surface property and lighting conditions can not be recov-
ered from a 2D image. Early works made use of image pri-
or and physical models of illumination and colors [Finlayson
et al., 2009; 2006]. These model based methods will fail if
the underlie assumptions, such as Lambertian reflectance, are
violated in natural images. To address this challenge, sev-
eral recent works proposed learning-based approaches [Guo
et al., 2011; Zhu et al., 2011; Tumblin and Williams, 2011;
Khan et al., 2016; Vicente et al., 2018] for shadow detec-
tion. More recently, deep Convolutional Neural Networks
(CNN) [Krizhevsky er al., 2012] have been exploited, and
significantly advanced the performance [Vicente et al., 2016;
Nguyen et al., 2017] on public benchmarks.

Our method follows the same paradigm of learning deep
models for shadow detection, and forms the problem as
a dense binary labeling of pixels. Our work is differen-
t from [Vicente et al., 2016; Nguyen e al., 2017] by revis-
iting the idea of a fully convolutional network [Shelhamer et
al., 2017; Xie and Tu, 2015]. Specifically, we argue that both
global context and local appearance are encoded within the
hierarchy of a CNN. And we propose a novel architecture for
combining these cues for shadow detection. Unlike [Vicente
et al., 2016], we use a single network and do not use separate
models for global image prior and local patch appearance.
Unlike [Nguyen et al., 2017], we show that a binary entropy
loss can outperform the adversarial loss with proper design of
the network architecture. Fig 1 presents our results.

To this end, we propose a novel Densely Cascaded Deeply
Supervised Parallel Fusion (DC-DSPF) network for shad-
ow detection. Our DC-DSPF model equips an existing net-
work [Xie and Tu, 2015] with two key components: (1) the
deeply supervised parallel fusion; and (2) the densely cascad-
ed learning. These two components are combined to obtain a
better fusion of global context and local appearance in input
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Figure 1: Results of shadow detection from our proposed DC-DSPF
network. Our method can capture the fine details of shadow regions

images. The deeply supervised parallel fusion network seeks
to combine both multi-scale visual features across the hierar-
chy of the backbone network. The densely cascaded learning
scheme aims at integrating global contextual cues.

Specifically, our proposed Deeply Supervised Parallel Fu-
sion (DSPF) stacks multiple parallel fusion units [Pinheiro et
al.,2016; Wang et al., 2017b] on the backbone network. Each
unit is a backward fusion branch that progressively merges
feature maps from a previous unit (with the first one from the
backbone network), and generates a full resolution output at
the end. Loss functions are attached to all ends. By stack-
ing multiple fusion branches together, DSPF network outputs
multi-level feature maps, and learns to best fuse them in a
deeply supervised manner [Lee et al., 2015].

Moreover, our densely cascaded learning scheme sticks t-
wo DSPF networks together. We concatenate the initial pre-
diction map of the first DSPF network and the original input
image as the input of the second one. We also connect the
multiple intermediate predictions generated by the parallel
fusion branches in the first DSPF network to the correspond-
ing intermediate predictions in the second one [Huang et al.,
2017]. In this case, multi-scale features in the previous D-
SPF network can be directly propagated to the next network.
Therefore, the densely cascaded DSPF network can learn to
better reason about the spatial context.

To verify our model, we conduct extensive experiments on
the standard benchmarks. Our method outperforms the state-
of-the-arts by a significant margin on the commonly used S-
BU [Vicente et al., 2016] and UCF [Zhu et al., 2011] datasets.

2 Densely Cascaded Network via Deeply
Supervised Parallel Fusion

This section presents our Densely Cascaded Deeply Super-
vised Parallel Fusion (DC-DSPF) model for shadow detec-
tion. We start by introducing HED which is the basis of our
model. Then we describe the key components of our pro-
posed DC-DSPF model.

2.1 HED for Shadow Detection

Our proposed network is derived from the HED [Xie and Tu,
2015]. Thus we start by introducing the HED network. Note
that we re-purpose HED for shadow region segmentation.
HED employs a deep CNN with multiple side outputs and
generates per-pixel binary predictions. Specifically, HED
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network computes multi-scale prediction maps at all side-
outputs and fuses these intermediate maps as the final output.
HED thus leverages multi-scale representations given by the
hierarchy of the network, and has been proven effective for
detecting image boundaries.

Formally, we denote the training samples as {(X,,,Y,)},
where n = 1, ..., N indexes the samples. X, is an input im-
ageand Y, = yj(."),j =1,...,[Xn|,y} € {0, 1} is its ground
truth shadow labels with pixel index j. We may drop the
subscript n when it is clear from the context. HED is fully
convolutional. And we denote the union of all convolutional
weights in base network as W. HED further attaches M side-
outputs to the network at each scale m. And we denote their
parameters as w = (w), ..., w™)), w(™) can be considered
as an individual linear classifier for features at scale m. For

each scale, HED computes P(y; = 1|X; W,w™) = a(&gm))

on its activation map A(™m) atall pixels with sigmoid function
o(.). Their outputs Y™ = o (A(™)) forms the multi-scale
outputs for shadow detection.

Fusion: These multi-scale side-output predictions are further
linearly combined to generate the output prediction, as

Y =0o(A) = o(Sh=1hm A™) (1)
with the fuse loss L jyse = (Y, Y) as the loss between Y and
Y. Therefore, the final loss function of HED is given by

Luep(W,w,h) = Lsige(W,w) + Lfuse(W,w, h) )

where Lg;q. (W, w) is the sum of all side-output loses, given
Loss Function: HED uses weighted cross-entropy loss for
each side-output, as a remedy to unbalanced samples. The
loss function is given by,

l(m)(VV, w(m)) = — fZjev, log P(y; = 1| X; W, w(m))
_ (1 - B)ZJEY, lOg P(y] = 0|X7 I/V7 ,w('m))7

where 8 = |Y_|/|Y|and 1 — 8 = |Y|/|Y]. Y} and Y_ are
the sets of mask and non-mask labels.

Enhanced HED network: We start with ImageNet pre-
trained VGG16 network [Simonyan and Zisserman, 2014] for
HED, and use an improved version from [Hou e al., 2017] for
shadow detection. Specifically, we add two additional convo-
lutional layers at each side output of HED. Moreover, we use
larger kernel size in higher layers as suggested by [Hou ez al.,
2017]. For the five blocks of HED, we set the kernel sizes of
the newly added convolutional filters as 3x3, 3x3, 5x5, 5x3,
and 7x7. We name this new version as Enhanced-HED and
use it as the backbone for our proposed method.

2.2 Densely Cascaded Network via Deeply
Supervised Parallel Fusion

The linear fusion of multi-scale outputs in HED does not fully
capture the rich interactions between global context and local
appearance. Thus, we propose a novel model that consists of
two key components: (1) a deeply supervised parallel fusion
network; and (2) a densely cascaded learning scheme.

Deeply Supervised Parallel Fusion network: We propose
a Deeply Supervised Parallel Fusion (DSPF) network to re-
place the linear fusion in HED and better capture global and
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Figure 2: Overview of our DSPF network. Based on multi-scale feature maps of HED, DSPF network stacks multiple parallel backward fusion
branches. DSPF network thus outputs multiple intermediate predictions via these parallel fusion pathways, with each of them supervised by
its loss function. Accurate shadow segmentation is achieved by fusing these intermediate predictions (see links in red, blue, purple).
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Figure 3: A basic unit of a backward fusion module in our DSPF
network. This unit upsamples feature map from an upper layer and
concatenate it with the feature map from current layer.

local cues. Fig 2 presents an overview of our proposed DSPF
network. In order to combine global semantics with local ap-
pearance, DSPF network stacks multiple parallel fusion units,
and learns to produce multi-level intermediate predictions in
a deeply supervised manner. Then the final fusion of these in-
termediate predictions thus effectively combines both global
semantic cues and local spatial details of input images.

More concretely, our DSPF network contains three paral-
lel backward fusion branches. We observe that deeper layers
in HED encode rich global semantic cues, while lower layers
capture more local spatial details. To obtain a comprehen-
sive fusion of these hierarchical feature maps, and inspired
from [Pinheiro et al., 2016; Wang ef al., 2017b], we first u-
tilize a backward fusion branch Branch(!) to progressive-
ly combine these multi-scale features in a top-down manner.
This fusion pathway starts from the deepest block of HED,
and generates the first fusion map by transferring feature map
of this deepest HED block with a 1 x 1 convolutional layer.
The produced fusion map is then combined with the feature
map in adjacent HED block via a backward fusion module.
In this way, this branch progressively combines feature maps
in every two adjacent blocks of HED from deeper-level layers
to lower-level layers with the backward fusion module.

Specifically, we denote the fusion map from ¢th block as
F;. Thus, F;4; is the map from upper block with reduced
resolution. Our backward fusion module is given by,

Fipooion = Conv(Concat(F, Up(Fisty i) 3)

Lfusion ~
where Up(-) denotes the up-sampling of a feature map.

Concat(-) means the concatenation of two feature maps
which have the same resolution. Conw(-) refers to the 1 x 1
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convolution operation. We also show the details of this back-
ward fusion module in Fig 3. For these two adjacent fea-
ture maps, we first up-sample F;; to match the resolution
of F;, then we merge these two feature maps by concate-
nation. Finally, another convolutional layer is employed to
generate final fused feature map F; of current ¢th block.

fusion

Branch™ runs from deeper layers to lower layers until the
first block of HED by utilizing this backward fusion module
recursively. Thus feature maps in higher-level layers are pro-
gressively combined with features in lower-level layers via
these recursive fusion operations. Simultaneously, the fea-
ture resolution is also enlarged gradually. Global semantics in
deeper layers are thus gradually integrated with spatial detail-
s in lower layers. Hence, the final fusion map of Branch(")
achieves a good fusion of the multi-scale features across the
hierarchy of the base HED network. We can predict the ini-
tial response map y® utilizing this final fused map which
has the same resolution as the input image.

Branch™™ computes between every two adjacent block-
s at multiple stages in a top-down manner. These multi-
stage fusion maps also preserve multi-scale features, which
are beneficial to obtain a better fusion of global semantic-
s and local details in input images. We thus propose to s-
tack another backward fusion branch Branch(® to further
fuse these multi-stage fusion maps generated by Branch(!).
Branch® also runs in a top-down way and combines fea-
tures of every two adjacent blocks of Branch(Y) via the
backward fusion module until the last block of Branch(!).
Similar with Branch), Branch(?) produces the second re-
sponse map y® utilizing the final fusion map of this branch.
Furthermore, Branch(® also generates multi-scale fusion
maps at multiple stages. So we stack the third backward fu-
sion branch Branch(® for further fusion. Then we can ob-
tain the third prediction Y ®) using the final fusion map.

These three intermediate shadow predictions Y(l), }7(2),
Y ®) generated by the corresponding branches Branch(),
Branch®, Branch® receive direct supervision from mul-
tiple loss functions. With the help of this deep supervision
scheme, these three intermediate predictions are enforced to
capture multi-level cues. Then we can obtain the final shadow
map by a weighted fusion of these these intermediate respons-
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Figure 4: Illustration of the densely cascaded learning scheme. The initial prediction of the first DSPF network is concatenated with the
original input image as the input of the second DSPF network. Moreover, the three intermediate responses (the three links in red, blue,
purple) of the first DSPF network are summed with the three corresponding predictions in the second DSPF network. In this case, the second
DSPF network learns refined the predictions by fusing these three summed intermediate response maps. Finally, the prediction of the second
DSPF network is further summed with the initial prediction from the first DSPF network as the final output for shadow detection.

es:

Y = WY 4 @y @ 4 @) @)
where the ”+” means the element-wise sum. The fusion
weights w w® w®) are learned in the training phase.
The loss function of DSPF network is given by

LDSPF = LB'ranch(l) + LBranch(2> + LB'ranch(3> + quse7 (5)

where the L. = (Y, f’) is the loss between ground truth
Y and prediction Y, the Lgranch® s> LBranch@ > LBranch®
are the losses for Branch(Y), Branch®, Branch® respec-
tively. Note that since there are more negative non-shadow
pixels than positive shadow pixels, as in HED [Xie and Tu,
20151, we use the weighted cross-entropy loss for all loss
functions. In this deeply supervised scheme, the final shadow
map Y learns to capture rich global semantic cues and local
spatial details in an input image.

Densely cascaded learning scheme: As shown in Fig 1,
global contextual cues are important to segment shadows
from noisy background in natural images. In order to make
the model robust to various backgrounds, we propose to in-
tegrate rich contextual cues of input images into our mod-
el. Inspired by auto-context [Tu and Bai, 2010; Li et al.,
2016], we propose a densely cascaded learning architecture
to stack multiple DSPF networks together. This densely cas-
caded learning scheme specifically densely connects multi-
ple intermediate predictions of a previous DSPF network to
the next DSPF network. For a trade-off between efficiency
and accuracy, we utilize two DSPF networks to form the final
model via this densely cascaded learning scheme. The whole
network is denoted as DC-DSPF network, and we present the
details in Fig 4.

Given an input image I, the first DSPF network produces
initial prediction map V', which is a weighted fusion of the
three intermediate predictions YW y@" y®)' The sec-
ond DSPF network is staked after the first one to introduce
contextual cues into our model. Specifically, Y is concate-
nated with original input image I as the input of this sec-
ond DSPF network. Moreover, these three intermediate pre-
dictions YU, Y@ v )" of the first DSPF network are
summed with three corresponding predictions Yy’ y®@”,
Y ®" in this second DSPF network respectively.

}—/(m) _ Y(m)/ 4 }A/(my/’m = 1, 27 3. (6)

Moreovef, the second DSPF network can obtain refined pre-
diction (Y) by
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Finally, Y is further summed with the initial estimation Y as
final output of our DC-DSPF network:

V=v+7. (8)

Through this densely connected cascade learning scheme,
multi-scale feature maps encoded in the first DSPF network
are effectively propagated to the second DSPF network. The
whole network thus implicitly learns the spatial contextual
cues in input images.

2.3 Implementation Details

We now describe our training details for DC-DSPE. All our
models are trained using Caffe [Jia et al., 2014] as backend.
We first train HED for segmenting shadow, using the pub-
lic implementation of HED [Xie and Tu, 2015]. The hyper-
parameters, including the initial learning rate, weight decay
and momentum, are set to le-8, 2e-4 and 0.9, respectively.
Our DSPF network is initialized from the trained HED net-
work. And our DC-DSPF is further trained on top of DSPF.
The hyper-parameters of DC-DSPF are set to 1e-8, 2e-4 and
0.99 respectively for the initial learning rate, weight decay
and momentum. All new convolutional layers are initialized
with Gaussian random distribution with fixed mean (0.0) and
variance(0.01). We apply random flipping for data augmen-
tation during training.

3 Experiments and Results

We introduce our benchmark on shadow detection, and
present two main results: (1) an ablation study of our method;
and (2) a comparison of our method to the state-of-the-art
methods. In addition, we demonstrate preliminary results of
using the detected shadow regions for shadow removal.

3.1 Datasets and Evaluation Metrics

Datasets: We evaluate our method on two widely used
benchmarks: SBU [Vicente et al., 2016] and UCF [Zhu et al.,
2011]. UCF dataset consists of 245 images. Moreover, SBU
dataset contains 4089 training images and 639 testing images.
SBU is currently the largest and most challenging dataset for
shadow detection. It covers various scenes including urban,
beach, mountain, roads, parks, snow, animals, vehicles, and
houses, and also contains various picture types including aeri-
al, landscape, and close range.

Protocol: Following the evaluation protocol of [Vicente et
al., 2016], we train our models on SBU training set, and eval-
uate the trained models on SBU testing set and UCF testing
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Figure 5: Visual comparison between shadow detection results
of DC-DSPF and Triple-Fusion-DSPF. With the densely cascaded
learning architecture, DC-DSPF captures rich contextual cues and
accurately corrects the easily misclassified regions.

DC-DSPF

set. Note that testing on UCF dataset is a more challenging
set as it requires a method to generalize across datasets.
Metric: We employ the Balanced Error Rate (BER) as the
main evaluation metric, given by

1 TP TN
BER’1_§<TP+FN+TN+FP)’ ®)

where T P,FFN,TN,and F'P are true positives, false nega-
tives, true negatives, and false positives, respectively. BER is
widely accepted due to the unbalanced nature of shadow data:
there are much fewer shadow pixels than non-shadow ones in
natural images. We also report separate per-pixel Error Rates
(ER) for shadow and non-shadow pixels.

3.2 Ablation Study

We first evaluate different components of our method to better
understand the proposed model. All results for our ablation
study is trained on SBU training set and reported on SBU
testing set. Specifically, we compare the following methods
and their results are summarized in Table 1.

HED and Enhanced-HED: HED and Enhanced-HED are
the backbone for our network, thus we report their results as
the baseline. Compared to HED, Enhanced-HED significant-
ly reduces the error of BER by 0.9. This result confirms the
benefit of larger receptive field as suggested in [Peng et al.,
2017] and [Hou et al., 2017].

DSPF Network: Based on Enhanced-HED, we further add
our Deeply Supervised Parallel Fusion architecture (DSPF).
We also vary the number of backward fusion branches from
1 to 3, denoted as Single/Double/Triple Fusion DSPF. Sin-
gle fusion reduces the error of Enhanced-HED by 0.3 BER.
Double and triple further reduces the error of Single-Fusion-
DSPF by another 0.2 and 0.5, respectively. These results
demonstrate that (1) the proposed backward fusion branch is
highly effective; and (2) stacking multiple fusion branches
helps to improve the performance.
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| Methods | BER
HED/ HED 6.9
Enhanced-HED Enhanced-HED 6.0
Single-Fusion-DSPF 5.7
N]Ztsvf)(ik Double-Fusion-DSPF 55
Triple-Fusion-DSPF 5.2
Deep Triple-Fusion-PF 5.6
Supervision Triple-Fusion-DSPF 5.2
DC-DSPF DC-Triple-Fusion-DSPF | 4.9

Table 1: Ablation study on SBU testing set with different network
architectures. The combination of the proposed parallel fusion (D-
SPF) and the cascaded learning produces the best result. Our full
model reduces the BER by 2.0 compared to the strong baseline of
HED.

DC-DSPF

Figure 6: Visual comparison between DC-DSPF , the baseline HED
and state-of-the-art stackedCNN, scGAN. DC-DSPF significantly
improves the segmentation quality, captures more fine details of
shadow regions and suppresses most noises from background.

Deep Supervision: We also test the effectiveness of deep su-
pervision. Specifically, we take the Triple-Fusion-DSPF net-
work, remove its losses for the intermediate prediction out-
puts at the first two backward fusion branches, and supervise
the whole network only with the loss of the third backward
branch. This network, called Triple-Fusion-PF (without su-
pervision), is significantly worse than Triple-Fusion-DSPF
(0.4 drop in BER). The result shows the superiority of the
deeply supervised learning [Lee ef al., 2015].

DC-DSPF Network: Finally, we combine our best mod-
el (Triple-Fusion-DSPF) with densely cascaded learning
scheme. This DC-Triple-Fusion-DSPF network further re-
duces the error rate by 0.3, reaching a BER of 4.9. To further
understand this gap, we visualize the results of both methods
in Fig 5. This result supports our design of cascaded learning.

3.3 Comparison to State-of-the-art Methods

We further compare our model of DC-DSPF network with
three state-of-the-art shadow detection methods: StackedCN-
N [Vicente et al., 2016], scGAN [Nguyen et al., 2017], and
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SBU UCF
Per-Pixel ER BER Per-Pixel ER
Shad. | Non Shad. Shad. | Non Shad.

StackedCNN || 11.0| 9.6 12.5 13.0] 9.0 17.1
scGAN 9.1 | 7.8 10.4 115 7.7 15.3
DSC 5.6 - - 8.1 - -
HED 69| 7.0 6.9 95| 7.7 114
DC-DSPF || 4.9 | 4.7 5.1 79 | 65 9.3

Methods BER

Table 2: Comparison to state-of-the-art methods on SBU and UCF
testing sets. DC-DSPF consistently outperforms previous methods.
Methods | SBU | UCF
PSPNet 8.6 11.8
Amulet 15.1 15.2
SRM 7.3 9.8
HED 6.9 9.5
Our DSPF | 4.9 7.9

Table 3: Comparison to state-of-the-art dense labeling methods for
semantic segmentation (PSPNet) and saliency detection (Amulet, S-
RM). Results are reported on SBU and UCF testing sets. Even sim-
ple HED already outperforms PSPNet, Amulet, and SRM. Our DC-
DSPF further reduces the BER.

DSC [Hu er al., 2018] on SBU and UCF testing set. More-
over, we include the HED network as a baseline. The results
are presented in Table 2.

Surprisingly, the baseline of HED already outperform-
s stack-CNN and scGAN. Our DC-DSPF further improves
the performance of HED and outperforms the state-of-the-
art methods. For BER, DC-DSPF obtains a significant error
reduction by 46% and 31% than scGAN on SBU and UCF
dataset, respectively. Moreover, our method can consistently
reduce the error in shadow pixels (40% on SBU and 16% on
UCF) and detect more none shadow pixels (51% on SBU and
39% on UCF) in comparison to sScGAN. Our DC-DSPF also
obtains a clear error reduction than previous best performing
DSC by 0.7 BER on SBU and 0.2 BER on UCF.

We also present visual comparison between the results
of our method and the state-of-the-art methods as shown in
Fig 6. DC-DSPF preserves rich contextual cues and achieves
more precise estimation on the easily misclassified regions
where global cues should be taken into consideration.

Moreover, similar to [Hu et al., 2018], we also com-
pare our DC-DSPF with methods for semantic segmenta-
tion (PSPNet [Zhao et al., 2017]) and saliency detection (A-
mulet [Zhang er al., 20171, SRM [Wang et al., 2017al) on
the task of shadow detection in Table 3. Even the baseline
HED significantly surpasses PSPNet, Amulet, and SRM on
SBU and UCF. Our DC-DSPF further increases the perfor-
mance gap. The results demonstrate the superior performance
of our method. Furthermore, these results also suggest the
fundamental difference in the modeling of semantic segmen-
tation, saliency detection and shadow detection. These three
tasks are all formulated as dense labeling of pixels. How-
ever, the modeling of these tasks differs significantly. Se-
mantic segmentation requires the reasoning of global context
between objects and scene components [Zhao et al., 2017].
This is not required for saliency detection and shadow detec-
tion. In comparison to saliency detection [Zhang et al., 2017,
Wang et al., 2017al, shadow detection focuses on the local
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Figure 7: Qualitative examples of single image shadow removal us-
ing shadow masks produced by our method.

properties of image regions (e.g., colors and textures) and
does not require explicit modeling of objects.

3.4 Results of Shadow Removal

Finally, we make use of our output shadow mask for the ap-
plication of shadow removal in a static image. We employ
the method in [Corina B. et al., 2011]-a simplified version
of [Guo etal.,2011]. As [Corina B. et al., 2011] denotes that
shadow detection remains a challenge for obtaining shadow-
free images. The performance of shadow detection results
directly influences the quality of shadow removal results. We
supply the shadow mask generated by our DC-DSPF network
and original image as the input of this method, and produce
the shadow-free results. Qualitative examples are shown in
Fig 7. These examples suggest that our precise shadow de-
tection enables good shadow removal results.

4 Conclusion

In this work, we consider the challenging problem of shad-
ow detection. We propose a novel DC-DSPF network that
combines a DSPF network and a densely cascaded learning
architecture. The DSPF network stacks multiple parallel fu-
sion branches, and learns a comprehensive fusion of global
semantic cues and local spatial details in a deeply supervised
way. Moreover, the densely cascaded learning scheme help-
s to capture rich contextual cues. Experimental results show
that our DC-DSPF network significantly outperforms state-
of-the-art methods on major benchmarks.
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