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Abstract
Computer vision builds a connection between image processing and industrials, bringing modern perception to the automated
manufacture of magnetic tiles. In this article, we propose a real-time model called MCuePush U-Net, specifically designed
for saliency detection of surface defect. Our model consists of three main components: MCue, U-Net and Push network.
MCue generates three-channel resized inputs, including one MCue saliency image and two raw images; U-Net learns the
most informative regions, and essentially it is a deep hierarchical structured convolutional network; Push network defines the
specific location of predicted surface defects with bounding boxes, constructed by two fully connected layers and one output
layer. We show that the model exceeds the state of the art in saliency detection of magnetic tiles, in which it both effectively
and explicitly maps multiple surface defects from low-contrast images. The proposed model significantly reduces time cost
of machinery from 0.5 s per image to 0.07 s and enhances detection accuracy for image-based defect examinations.

Keywords Saliency detection · Surface defect · Convolutional network

1 Introduction

Magnetic tiles provide constant magnetic potential as a key
component of engines. Completing an automatic assembly
line for magnetic tile manufacturer is a fundamental prob-
lem regarding its productivity, while still it is subjected to
a few limitations. Surface defect detection is a core pro-
cess of filtering unqualified products; however, in rare cases,
the procedure can be finished automatically. It is recorded
that as much as three quarters of workers are employed to
examine product qualities in the magnetic tile factories in
Zhejiang Province, China, the largest production base of
magnetic tiles in the world. To relieve human labor, many
image processing techniques have been proposed to attempt
such inspection tasks; most of them are based on grayscale
value and gradient edge of images, wavelet [1], curvelet [2]
and shearlet [3,4] transformation. Deep neural network mod-
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els have become dominant on the surface defect detection,
promisingly achieving state-of-the-art performance on the
classification tasks [5–7]. Overall, these explorations have
proved computer vision a feasible solution on surface exam-
inations.

To further explore potentials, a computer vision perspec-
tive readily requires our specific analysis on the character-
istics of surface defect detection. In general, one magnetic
tile contains 4–6 curved surfaces that cause images to be dis-
torted. There have been several bottlenecks presented in the
automatic damage detection for magnetic tiles, mostly due
to the complexity of texture, the variety of defect shape, and
the randomness of illumination conditions on magnetic tiles
which likely develops into the noises of grayscale images.
The target defects usually separate in curve surfaces without
fixed patterns, such as blowhole, crack, break and fray, as
shown in Fig. 1 . These above-mentioned properties bring
much randomness to image detection tasks; thus, we must
overcome these inevitable challenges, especially when it
comes to building computer vision models for robust results.

In the magnetic tile industry, image-based surface detec-
tion mostly concentrates on minimizing the inference of
product texture. Embedding denoising techniques (e.g.,
wavelet [1], curvelet [2] and shearlet [3,4] transformation)
can effectively help extract desirable features, but simulta-
neously lead to long running time. Most notably, the average
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Fig. 1 Examples of https://github.com/abin24/Magnetic-tile-defect-
datasets magnetic tile surface defects, labeled with pixel-level ground
truth (GT)

processing time for each image is around 0.5 s, far frommeet-
ing the standard of real time. It is worth pointing out that the
performance of an experienced maintenance worker still by
far outweighs the machinery in terms of detection accuracy
and efficiency. Replacing manual detection on magnetic tiles
with automated surface inspection (ASI) [8] readily requires
significant improvement on computer vision model perfor-
mance.

Recent saliency detection models have been achieving
promising performance on related tasks [9–11], exceeding
in both feature extraction and running time. In fact, saliency
detection has been introduced in computer vision for many
years; hence, numerous state-of-the-art saliency detection
models derived from this concept have been proposed in
the past few decades. These models are designed to pre-
dict human fixations [12–14], driven by computer vision
applications such as image segmentation [15], image abstrac-
tion [16], image manipulation [17], object retrieval [18],
scene classification [9], 3D model simplification [19], or
only focused at detecting the saliency objects [11,20,21]. In
most cases, salient detection is merely distinct from seman-
tic segmentation due to their high similarities in architectures
and performance. Most distinguishably, the main purpose of
saliency detection is to extract the most high-level features
in the images. In terms of model selection for saliency detec-
tion, both detection accuracy and running time are two key
aspects as we mention above. A considerable method is to
standardize these models. Ali Borji, MingMing Cheng et al.
made remarkable contributions to such model evaluations
[22]. They qualitatively and quantitatively evaluate on 42
advancing saliency detection models mostly from top com-
puter vision conferences such as CVPR, ICCV, ECCV and
PAMI. They benchmark these models with respect to their
algorithm performance using six datasets—MSRA10K [23],
ECSSD [24], THUR15K [23], JuddDB [25], DUT-OMRON
[26] and SED2 [27]. This significant work displays an inten-
sive comparison among the 42 selected models not involved
in the deep artificial neural network by using natural scene

image datasets. We have adopted the evaluation metrics and
also compare some of the models in [22].

Practically, saliency detection models have an explosive
and wide range of applications on various models of sur-
face defect detection. For example, FT [28]-, MSS [29]-
and ITTI [30]-like models are used in steel strip surface
detection [31–33]; AC [34]-like models are used in weld
inspection [35]; and PHOT [36]-like models are used in
electronic chip inspection [37]. In this sense, it strongly
demonstrates the potential of saliency detection models on
surface defect inspection of magnetic tiles. However, in the
above-mentioned benchmark commitment, the correspond-
ing results may not serve as a universal solution for all
saliency detection problems. The salient features of the six
datasets are distinct from the case of surface defect detection
on magnetic tiles, because most images of the six datasets
are center surround, high contrast with image background,
and big in size. In some cases, bokeh occurs in the scenes
to emphasize target features. In fact, due to the distinguish-
able colors and positions of salient features, most models are
able to perform detection tasks exceedingly well. Therefore,
notably, the following factors should be taken into consider-
ation if the benchmark is applied to surface defect detection:

1. Defects are randomly distributed and occasionally touch
the boundaries of the images;

2. The colors of saliency features are very close to back-
ground; hence, grayscale images are used in industry.
The images have lower background–foreground con-
trast and fewer available information;

3. Most defects are tiny and likely lie among stripe textures.

In principle, saliency detection on surface defects shares
a lot of common theories on regular problems, while the
differences of datasets make the detection task distinguish
from conventional methodologies.

It is also worth noting that recent progress [13,38–43] on
the saliency detection field is mostly deep learning based.
For example, the caption-guided visual saliency, which is an
extension of ConvNets, can explicitly learn spatial heatmaps
from top-down inputs [38]; the adaptive-parameter multitask
network can be trained end to end to produce a numeri-
cal representation of salient objects [40]. Most significantly,
fully convolutional networks (FCNs) [44] have transferred
the trend from classification into segmentation. This method
produces a pixel-wise prediction for dense layers, in which it
offers a fully convolutional perspective of existing networks
and exceeds the state of the art. After FCNs, tremendous gen-
erative methodologies have been proposed to focus on the
segmentation task, and U-Net [45] is among these cutting-
edge models. In all, the revolutionary development of deep
artificial neural network has provided our work with a num-
ber of options.
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In the context, we explore if and how the saliency detec-
tion can be specifically applied to the surface detection of
magnetic tiles. We propose an easy-operated and effective
model that is structured by one U-Net embedded with the
image preprocessing technique called MCue saliency herein
and onePush network that defines the specific location of pre-
dicted surface defects with a bounding box. We also prove
the feasibility of saliency detection on the surface defect of
magnetic tiles.

This paper is organized as follows: In Sect. 2, we intro-
duce a saliency toolbox for surface defect detection and the
MCue saliency detection model customized for cracks and
blowholes. In Sect. 3, we illustrate the architecture and train-
ing details of our proposed model. In Sect. 4, we compare the
performance of saliency detection models with our proposed
model and then discuss the saliency of different defects.

2 Multi-cue saliency

2.1 Toolbox

We aim to design a toolbox that is accessible, readable,
realizable and transferable to the open-source community
and to address the surface defect detection problem in
industrial. There is tremendous computer vision research
in top conferences bringing great inspirations to our work.
The open-source community provides our toolbox with rich
resources, and the chances to intensively test recent state-of-
the-art algorithms and evaluate their performance on surface
defect saliency. With excessive experiment records, we care-
fully evaluate, select and integrate a set of models; then, we
produce an accessible public toolbox. A https://github.com/
abin24/Saliency-detection-toolbox saliency detection tool-
box is developed by embedding 14 algorithms which focus
on the saliency detection of surface defects. For the ease of
duplication, all the selected algorithms depend on OpenCV
only. It is further noteworthy that the task-relatedmodels have
low cost not only in time but also computational resources
due to free from a training process. To simplify operations,
these models do not contain hyperparameter setup, not nec-
essarily to adjust parameter back and forth to get satisfactory
predictions. Thesemetrics provide a quick preview for defect
type-orientated saliency, mostly referring to blowhole, crack
and fray.

The 14models in the toolbox are: ITTI [30] and BMS [14]
based on visual-attention mechanism; FT [28], LC [46] and
HC [47] based on global color rarity; AC [34] and MSS [29]
based on local color rarity; SR [48], Rudinac [49] and PHOT
[36] based on frequency domain; RC [47], SF [50] and GMR
[26] based on region or superpixel contrast; and MBP [51]
based on the fastminimumbarrier distance (MBD) transform
algorithm.

2.2 Saliency cue

We particularly get more insight into two main surface
defects ofmagnetic tiles, blowhole and crack, and intensively
analyze their characteristics on the grayscale raw images.
We find five important cues that can be useful for construct-
ing MCue saliency: (1) The reflective intensity of blowhole
and crack is weaker than their surrounding environment; (2)
Blowhole and crack have stronger corner and edge response,
inmost cases; (3) The gray values of defects are relatively sig-
nificant in a local area; (4) The texture in image background
is regular; (5) Human visual-attention mechanism can easily
detect these two defects.

Darker cue The surface microgeometry of magnetic tiles
changes once defects appear, causing the diffuse reflection of
microsurfaces to change as well. Accordingly, defects such
as blowhole and crack look darker than their surroundings.
However, regular binarization still cannot precisely partition
these defects because the illumination has not been normal-
ized in the images. We hence use the adaptive binarization
to calculate darker cue D, in which it defines as:

D =
{
1 if IR − I > t

0 otherwise
(1)

IR is mean filter blurred image of the raw image I in a R ∗ R
blur window, and t ≥ 0 is a constant threshold. When the
grayscale value of a pixel is smaller than the mean of the
R ∗ R local neighborhood, this pixel is considered darker
than the other.

Strukturtensor cue The different diffuse reflection between
the defect and non-defect area causes sharp edge or corner
around the defect. The corner or edge responses of defects
will be stronger than backgrounds. Harris [52] found that the
strukturtensor (ST) (structure tensor) can be used for detect-
ing corners and edges. Strukturtensor is theHessianmatrix of
the image. Strukturtensor of an anchor pixel (x, y) is defined
as:

M =
[
G F
F H

]
=

[
∂2 I
∂x2

∂ I
∂x · ∂ I

∂ y
∂ I
∂x · ∂ I

∂ y
∂2 I
∂ y2

]
(2)

Let λ1 and λ2 be the eigenvalues of M , then we get:

⎧⎪⎪⎨
⎪⎪⎩

λ1 = G+H+
√

(G−H)2+4F2

2

λ2 = G+H−
√

(G−H)2+4F2

2

(3)

Harris [52] proves that the edge responsewill occurwhen one
eigenvalue is large, while the other one is small, and the cor-
ner response happens if and only if both two eigenvalues are
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large. So let A = (λ1 − λ2)
2 represents the edge response of

the image, and B = |λ1 + λ2| represents the corner response
of an anchor pixel. with Eq. (3), and then, we get:

{
A = (G − H)2 + F2

B = G + H
(4)

Then, the definition of strukturtensor of the image is:

SST = N (Sal A) + N (SalB)

2
(5)

where Sal A andSalB are computed with Eq. 4, which repre-
sent the edge and the corner saliency map of an input image,
andN (·) represents the normalized operation of the saliency
map.

2.3 Cue fusion

In the third cue, we point out that the gray level of blowholes
and cracks is distinguishable from the surroundings, inwhich
the defect color easily grabs attention because of its rarity.
Thegray level of blowholes and cracks that is locally raremay
not be rare in the entire image. Capturing color rarity helps
precisely localize saliency features, consequently diminish-
ing the computational complexity for the network. ACmodel
is selected to perform this specific task. It computes the target
pixel quality and measures the Euclidean distance between
a selected pixel value and average pixel values of multiple
neighborhoods with different sizes. The color rarity of local
regions is thus obtained.

We also mention that according to the fourth cue we list,
the distribution of background texture follows fixed patterns.
Inmost cases, the texture is approximately parallel and heavy,
producing a lot of noise to the prediction. PHOT algorithm
has been integrated into the toolbox for the purpose of elim-
inating such the interference of background textures. BMS
model is to detect saliency objects by simulating the human
visual-attention system.

Based on the above-mentioned cues, we propose two
saliency cues called MCue and MCue2, respectively. They
are constructed as:

MCue = (DWD + 1.0) × (SBMSWBMS + SAC

+SST + SPHOTWPHOT )/m (6)

and

MCue2 = SBMS × (DWD + 1.0) × (SAC

+SST + SPHOTWPHOT )/n (7)

where SBMS , SAC , SST , SPHOT and D, respectively, repre-
sent the saliencymap of BMS, AC, Strukturtensor and darker

Fig. 2 Saliency map comparison. MCue2 has better fusion than MCue

cue.WD,WBMS ,WPHOT are theweights ofD, BMS, PHOT
saliency map, and m,n are the normalization constants. Fig-
ure 2 shows the results of multi-cue fusion.

Image pixel-wise addition interactively complements the
saliency regions fromeachoperating image; those regions are
thus strengthened.At the same time, the imagemultiplication
only strengthens the areas with high saliency probability in
both images, and areas with low saliency probability in either
image will be weakened.

We implement pixel-wise additions and multiplications
on image fusion, in which WD = WBMS = WPHOT = 3,
m = 4 and n = 5. The results are shown in Fig. 2. In the
test on ST, PHOT and AC, most of high probability den-
sity regions are correctly distinguished as surface defects,
but it still cannot map the entire defect shape. Therefore, we
use the image addition to complement these saliency maps.
PHOT saliency can precisely identify the defects according
to the high probability density of these regions, so we assign
WPHOT with a high value. Simultaneously, the direct multi-
plication likely leads to false detection because of the strong
restriction to darker cue D. We conduct image multiplica-
tion with a weight WD with additional 1.0 to loosen the
constraint of the darker cue. Figure 2 shows that BMS is able
to identify all the defects, while non-defect regions have high
values as well. Image multiplication diminishes these values
that are erroneously detected as defects. This is why MCue2
produces more accurate saliency maps than MCue. More
comparison details are displayed in Sect. 4.

3 U-Net-based saliency

Deep learning dominatingly drives advances on saliency
detection because of the state-of-the-art performance. In fact,
most architectures of cutting-edge saliency detection mod-
els [38–41] are generated from fully convolutional network
[44] (FCN). The architecture of FCNs is an encoder–decoder
structure because it takes the input of arbitrary size and pro-
duces correspondingly sized output. Multiple convolutional
layers are hierarchically structured, and each convolutional
layer is followed by a pooling layer. Desirable high-level
semantic features are captured when the convolutional layer
is down-sampled by the pooling layer. However, the pooling
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Fig. 3 An architecture overview of MCuePushU with three main com-
ponents: MCue, U-Net and Push network. Two MCue saliency maps
are cropped into 196*196, together with the corresponding 196*196
raw images, resized as new 98*98*3 inputs. U-Net pixel to pixel learns

features. The convolutional layer of U-Net is directly copied and arbi-
trarily cropped to attain a same size up-sampling layer. Push network
has two fully connected layers with the size of 4096*4096 and an output
layer. It highlights the most informative regions with a bounding box

process inevitably leads to information loss with respect to
feature localization.

U-Net [45] is a significant modification and an exten-
sion of FCNs, originally designed for biomedical cell image
segmentation. This elegant network not only avoids key
information loss but also enables the model to be learned
pixel to pixel and end to end. The encoder and the decoder of
U-Net are distinct from those of FCNs,where a convolutional
layer of U-Net is directly copied and arbitrarily cropped
to attain a same size up-sampling layer. Skipping the fixed
hierarchy connections helps repair detail information lost in
the pooling process. Such architecture has been applied in
many advancing saliency detection models for more accu-
rate saliency map.

3.1 Proposedmethodology

To identify surface defects of magnetic tiles, we propose a
saliency detection model MCuePush U-Net, which is illus-
trated in Fig. 3. The input layer is a 98*98*3 tensor including
one MCue2 saliency image and two raw images. 196*196
region of interest (ROI) is cropped from the MCue2 saliency
map and raw images and resized to 98*98 as the network
input. Practically, smaller networks run faster and need less
overhead, so an input size with 98*98 is used. The reason
of using three-channel input is twofold: first, it is easier to
store the training images on the disk through the storage for-

mat of the three-channel image; second, we have also test
two-channel (1-channel raw image with 1-channel MCue2)
input, and the two-channel input models are severely overfit-
ting. Thus, we decide to use the three-channel image as the
input of the model.

Softmax is selected as the activation function to present
a two-categorical distribution in the range [0, 1], which
produces scores, respectively, corresponding to the fore-
ground and background. Thus, the final output has two
independent channels in terms of two-dimensional scores.
In the MCuePushU, we particularly focus on the saliency
map/foreground, where its predicted probability is:

Pred = e f

e f + eb
(8)

where Pred is the score/predicted probability of foreground
and f and b is, respectively, the foreground and background
of output images.

To separate the foreground and background from the
above-mentioned scores, we use the Softmax classifier with
a cross-entropy loss, which has the form:

L = −
∑
p

(
L p log(Predp) + (1 − L p) log(1 − Predp)

)
(9)
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where we use L p to mean the ground-truth label of pixel p
and use Predp to represent the predicted value of pixel p.
The word “Push” in MCuePushU refers to an independent
structure that is distinct from U-Net, where we herein call
it Push network. In the Push network, two layers with the
size of 4096*4096 are fully connected together, followed by
an output layer, defining the specific location of predicted
surface defects with a bounding box.

We apply the Euclidean algorithm to compute the loss.
Given the ground-truth central coordinates (xL, yL), width
wL and height hL of predicted defects, the loss function is
formulated as:

LPush = ||ex , ey, ew, eh ||
= (xL − xPred)

2 + (yL − yPred)
2

+ (wL − wPred)
2 + (hL − hPred)

2

(10)

The label (xL, yL, wL, hL) includes the location information
of bounding box, which is generated from the ground truth of
raw images. xPred , yPred , wPred , hPred represent the central
coordinates, width and height of predicted bounding box.

Push network can only deal with those images which
have one defect, we do not update the network when the
training images have more than one or no defect regions.
Besides, in most case, defects will appear no more than once
in a 196*196 ROI. Push network forces the most down-
sampled layer to learn the highest-level image semantics in
MCuePushU with a bounding box. It retrieves information
including the location and the size of surface defects. In this
designed architecture, the encoder gradually embeds themost
high-level information, while the decoder dedicatedly repairs
key information loss and improves prediction accuracy. Push
network plays a crucial role to help U-Net approach to desir-
able saliency.

3.2 Implementation details

In the training phase, ROI is cropped from training images
and their corresponding MCue2 saliency maps. Only the
ROIs with the defect regions are used for training in con-
sideration of the severe unbalance of the defect pixels and
background pixels. In the testing phase, a size of 196*196
sliding window is used on the test images and their MCue2
saliencymaps, ROI is down-sampled as a 98*98 input, and an
output image is up-sampled back to 196*196. Full-resolution
saliency maps can be obtained by scanning the whole test
images, and overlap parts will be assigned by the pixel-wise
sum. The Push network can be abandoned in the testing
phase, because the bounding box is not the ultimate desired
result; besides, it also releases a considerable computation
workload of the fully connected network.

Fig. 4 MLS deformation data augmentation

Labeling pixel-level ground truth, most notably for
grayscale images of magnetic tiles, requires tremendously
heavy workload. It hence seems implausible to attain a great
deal of such data, causing the training process more chal-
lenging. This limitation leads a consideration of strong data
augmentation to serve our saliency network.

There have existed enormous techniques for data augmen-
tation, and the most commonly seen methods include image
rotation, flip, crop and transpose. It is worth noting that data
augmentation on single small dataset possibly causes over-
fitting. To prevent the model from overfitting, we introduce
a distinct data augmentation, which is an image deformation
method using moving least square (MLS) [53]. As shown in
Fig. 4, with 5*5 grids and Delaunay triangulation, the image
is divided into 50 even triangular pieces, and the apexes of
the triangles will be randomly shifted 0–40 pixels to build a
target Delaunay mesh. The affine transform matrix of each
triangle from the source Delaunay mesh to the target Delau-
naymesh is computedwith theMLS, and then, the imagewill
be piecewise deformed with these 50 matrixes. Smooth local
affine deformation images can be obtained by this image aug-
mentation method. In the process, raw images, together with
the corresponding ground-truth labels and MCue saliency
maps, are used for augmenting. Each training image is aug-
mented into 12 images using MLS; then, 196*196 ROIs are
cropped, 30 times data size of themselves with regular aug-
mentations, including rotation, translation, zoom and shear
transform. We thus attain around 31,000 images along with
ground-truth labels for network training.

Stochastic gradient descent (SGD) with momentum has
been used as the optimization algorithm in U-Net, where we
set momentum term to be 0.9 and learning rate to be 0.0001,
and mini-batch size is set as 8 due to the limited graphics
memory.Multiple losses are involved in the network, because
MCuePushU is trained as a whole, simultaneously minimiz-
ing the loss functions of U-Net and Push network. One single
epoch consists of 400 iterations. However, during the opti-
mizing process, the loss function of Push network converges
less significantly than that of U-Net. On account of that both
loss functions of U-Net and Push network are optimized in
the first 250 iterations,while only the Push network continues
updating in the following 150 iterations.

As we allude, saliency defect detection is essentially a
binary classification problem, in which images are separated
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into twoclasses: foreground andbackground. It isworthwhile
to mention that most cases the saliency maps are very tiny;
therefore, pixels of the foreground class are far less than of
the rest one. When the foreground pixels are mistakenly cat-
egorized, loss values may not be updated any longer because
the decrement is too small. Thus, the optimization is stuck in
wrong local minimum. It may occur that output images ulti-
mately turn into all black. In such cases, users should restart
the training process to re-initialize parameters. The runtime
for 42,000 iterations is 10h on the laptop equipped with Intel
i7 7th GEN CPU, 8G RAM and one GTX 1050ti Graphics.

4 Experiment

4.1 Dataset and evaluationmetrics

Datasets A total of 1344 images are photographed, with the
ROI of magnetic tile cropped and then classified into six
datasets in terms of their defect types. The six datasets are
named as: Blowhole, Crack, Fray, Break, Uneven (caused
by grinding process) and Free (no defects); each has pixel-
level labels. To simulate the manufacturing process in real
assembly line, for one given magnetic tile we collect images
under multiple illumination conditions.

Blowhole and Crack impact the quality of magnetic tiles
the most: There are plenty of common features between the
two defects; the color of them is darker than the surround-
ings. Uneven has the utmost difficulty to detect due to the fact
that its color and texture are highly semblable to the back-
ground. Fray has similar color and texture as dark surface
dirt, shown in the 6th row of Fig. 1. However, the dirt does
not affect the functionality of magnetic tile. These defects,
especially Uneven and Fray, bring unexpected challenges
even for human beings.

According to the above-mentioned characteristics of
Blowhole and Crack, we merge the images of these two
defects into one dataset, namely Blowhole&Crack. We also
assemble all the datasets into another one called All for the
purpose of model evaluation. 50% randomly selected images
of the datasets are used for training the models, and the rest
for test.

Evaluation Metrics We compare the saliency map with
corresponding ground truth to quantitatively the evaluate
saliency models. Notably, one crucial process of evaluation
is to transform saliency binarization into binarization mask,
using either fixed or adaptive threshold methods. The fixed
threshold method uses a series of uniform distributed thresh-
old, while the adaptive threshold TAdv is formulated by:

TAdv = 2

W × H

W∑
x=1

H∑
y=1

S(x, y) (11)

where W and H are the width and height of saliency map S,
respectively.

To get the measure of model performance, we use
precision–recall (PR) curve and receiver operating charac-
teristic (ROC) curve as two important factors. PR curve turns
saliencybinarization into binarizationmaskwith a set of fixed
thresholds, compares the mask with ground truth and records
the precision and recall rate. The form of precision and recall
rate with respect to mask M and ground truth G is:

Precision = |M ⋂
G|

|M | Recall = |M ⋂
G|

|G| (12)

F-measure puts precision and recall into the samemeasuring
metric, which is defined as:

Fβ = (1 + β2)Precision × Recall

β2Precision + Recall
(13)

wherewe set β2 = 0.3 to paymore attention to precision.We
also record the maximum FMax

β from PR curve and compute

F Adp
β using adaptive binarization.
ROC curve is also widely used to evaluate saliency mod-

els, which records true-positive rate (TPR) and false-positive
rate (FPR). The form of T PR and FPR follows:

T PR = |M ⋂
G|

|G| FPR = |M ⋂
Ḡ|

|Ḡ| (14)

Mean absolute error (MAE) is defined by (15). It summa-
rizes model performance in ways that disregard the direction
of over- or under-prediction, in which it punishes the model
that mistakenly identifies background as foreground. How-
ever, there exists a drawback in this measurement. When
image background is much larger than the foreground, the
model will classify a whole image into the background. In
such case, MAE still returns positive feedback. At the same
time, the pixel number of background far exceeds foreground,
causing PR curvemore informative than ROC. Therefore, Fβ

contains more information than area under ROC (AUC) that
represents the area below ROC curve, because Fβ is related
to PR while AUC to ROC.

MAE = 2

W × H

W∑
x=1

H∑
y=1

|S̄(x, y) − Ḡ(x, y)| (15)

4.2 Model improvement

MCue model Our focus lies on the comparison between
MCue2 and MCue. The experiment demonstrates that in
most aspects MCue2 performs better than MCue, though
there is only a few difference between their fusion meth-
ods. For example, compared with MCue, Fig. 2 shows that
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Fig. 5 Model comparison of PR curve (a) and ROC curve (b) on the
Blowhole&Crack dataset

MCue2 is closer to ground truth; Fig. 5 reveals that both
the PR and ROC curves of MCue2 have dominant perfor-
mance; Table 1 also displays that MCue2 get higher scores
in most terms. Conspicuously, MCue2 outperforms all the
other models except for deep neural network (U-Net) on the
Blowhole&Crack dataset, which is shown as the first four
columns in Table 1.

MCuePushU We use MCuePush U-Net, namely MCue-
PushU, to compare with the original U-Net and deformable
U-Net.

Deformable U-Net [54] is built upon U-Net architecture,
using deformable convolutional kernels [55] that adaptively
learn spatial sampling locations with different sizes. The
model does not need data augmentation because it learns
spatial invariance features during the training process [54].
Deformable U-Net attains better results than standard U-Net
in the biological image segmentation task.

To testify the availability of our proposed components
based on MCue and U-Net, we conduct the experiments,
respectively, on Push, MCue U-Net (herein called MCueU)
and Push U-Net (herein called PushU). The hyperparameters

are set into the same in the experiment comparison, including
input size, kernel amount, batch size, learning rate and iter-
ation number. Data augmentation is still applied to increase
the dataset variance.

In the analysis of PR and ROC curves, Fig. 5 evidently
reveals that MCuePushU is dominant over all the other mod-
els; the performance of PushU and MCueU is both slightly
better than U-Net. In Table 1, the scores of MCuePushU
drive exceeding advances in contrast to the rest, while the
deformable U-Net gets very poor results on account of over-
fitting, as shown in Fig. 6. Notably, this network has wrongly
classified a large amount of background pixel into the fore-
ground class. In addition, the processing time of deformable
U-Net is around 0.7 s per image, 10 times longer thanMCue-
PushU that only needs 0.07 s per image. McuePushU is also
much faster than the average speed 0.5 s of wavelet [1],
curvelet [2] and shearlet [3,4].

4.3 Model performance on defect datasets

In this section, we focus on exploring the saliency of the
surface defect by intensive and comprehensive comparisons
with respect to MCue model. We compare the performance
of MCue model with 14 models in the toolbox. At the same
time, we also investigate RBD [56], FES [57], MC [58], GC
[16], GU [16] and DRFI [59]. Notwithstanding their good
saliency performance, the open-source code of these models
may not be readily duplicated because they are not based on
C++. Additionally, GC and GU contain a great number of
contents that are irrelevant to saliency, making the project
transferring process complicated. For the ease of transfer,
most cases we select C++-based algorithms; these models
hence have not been integrated into the toolbox.

Figure 5 shows that, in the analysis of Blowhol&Crack
dataset, thePRandROCcurves ofMCueoutweigh allmodels
that are not deep learning based. BMS, AC, PHOT, SR and
Rudinac perform secondly only to U-Net. Notably, MCue
dominates over all the othermodels inROC.Figure 7displays
the saliency detection results. FT, AC, LC, HC and MSS
models satisfactory saliency performances for the reason that
they take local or global saliencies into consideration. Some
models, such as MC, RBD, GMR, RC and SF, are region and
superpixel based, in which they usually cannot identify the
difference between blowhole and crack. Frequency domain
analysis-based models such as SR, Rudinac and PHOT are
good at blowhole detection, even for the smallest ones, while
thesemodels are usually not capable of detecting entire crack
shapes.

The saliency results on the Fray dataset are shown in the
last two rowsofFig. 7. The shape of fray is significantly larger
than of blowhole and crack. When fray appears in the middle
without hitting the image boundaries (as shown in the fourth
row), the saliency map of the region- and superpixel-based
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Table 1 Model performance comparison on different datasets: Blowhole&Crack, Fray and All

Dataset Blowhole&Crack Fray All

Model AUC MAE FMax
β F Adp

β AUC MAE FMax
β F Adp

β AUC MAE FMax
β F Adp

β

FT 0.710 0.073 0.056 0.162 0.575 0.218 0.216 0.160 0.899 0.093 0.039 0.058

GMR 0.420 0.675 0.058 0.095 0.595 0.494 0.448 0.025 0.815 0.662 0.035 0.018

HC 0.780 0.119 0.057 0.223 0.555 0.252 0.212 0.160 0.909 0.137 0.041 0.067

LC 0.717 0.056 0.038 0.209 0.568 0.211 0.215 0.161 0.898 0.079 0.041 0.064

MBP 0.625 0.435 0.067 0.202 0.716 0.279 0.418 0.142 0.797 0.439 0.082 0.047

MSS 0.760 0.019 0.029 0.279 0.527 0.180 0.248 0.160 0.894 0.041 0.042 0.077

RC 0.837 0.174 0.112 0.241 0.720 0.273 0.315 0.158 0.921 0.182 0.050 0.069

ITTI 0.712 0.339 0.012 0.205 0.660 0.356 0.242 0.175 0.915 0.324 0.042 0.065

FES 0.504 0.042 0.031 0.125 0.627 0.175 0.388 0.103 0.840 0.065 0.032 0.030

MC 0.633 0.361 0.204 0.267 0.630 0.343 0.460 0.154 0.843 0.425 0.052 0.052

RBD 0.558 0.130 0.053 0.142 0.577 0.221 0.327 0.090 0.855 0.144 0.045 0.044

GU 0.338 0.446 0.126 0.016 0.351 0.501 0.242 0.139 0.744 0.491 0.095 0.022

GC 0.313 0.446 0.146 0.001 0.364 0.464 0.269 0.112 0.712 0.488 0.098 0.018

DRFI 0.695 0.340 0.074 0.274 0.541 0.351 0.256 0.110 0.878 0.374 0.046 0.064

Rudinac 0.930 0.036 0.140 0.004 0.606 0.187 0.254 0.212 0.934 0.057 0.063 0.076

SR 0.877 0.047 0.090 0.296 0.478 0.190 0.212 0.178 0.919 0.065 0.048 0.080

PHOT 0.898 0.008 0.185 0.268 0.597 0.173 0.212 0.158 0.926 0.030 0.062 0.074

SF 0.520 0.143 0.029 0.157 0.618 0.251 0.322 0.130 0.849 0.174 0.038 0.046

AC 0.923 0.098 0.223 0.261 0.643 0.225 0.226 0.174 0.932 0.122 0.063 0.073

BMS 0.938 0.071 0.193 0.419 0.510 0.213 0.212 0.156 0.925 0.097 0.069 0.093

MCue 0.974 0.032 0.490 0.331 0.628 0.189 0.212 0.129 0.942 0.058 0.100 0.074

MCue2 0.968 0.007 0.560 0.268 0.576 0.174 0.212 0.185 0.935 0.032 0.113 0.081

U-Net 0.948 0.002 0.732 0.531 0.880 0.064 0.793 0.250 0.956 0.027 0.174 0.113

Deform 0.967 0.009 0.306 0.495 – - – – – – – –

MCueU 0.942 0.002 0.77 0.535 – – – – – – – –

PushU 0.978 0.003 0.731 0.527 0.923 0.056 0.808 0.270 0.966 0.022 0.164 0.114

MCuePushU 0.985 0.002 0.795 0.549 – – – – – – – –

The highest score of each index is marked in bold, the second in bold italic and the rest of top 5 in italic

models (GMR, MC, RBD, RC and SF) is satisfactory, while
the results turn into blurred and ambiguous if fray stretches
into image boundaries (as shown in the third row). It is worth
noting that MPB, a model that based on minimum barrier
distance, generates very similar results with those models
that are region and superpixel based. In Table 1, statics based
on the Fray dataset is consistent with the above-mentioned
conclusions, in which GMR,MBP, RC andMC get some top
5 scores. We also notice that center bias has introduced a lot
of randomnesses because surface defects may appear in any
location. In the worst case, the output of FES model only
contains center bias without detecting desirable objects.

In Table 1, the last four columns present the scores on
All dataset. The statics reveals that DRFI, RBD, MC, GMR
cannot generate good results in our case, which is contrary
to the study of Borji’ [22] where these models are the top
ones on natural image dataset. A reasonable interpretation

Fig. 6 The improvement of the MCuePushU. White bounding boxes
in the images are false alarms, and MCuePushU has fewer false alarms

is saliency models generated from natural images which are
not applicable for industrial production.

MCue is particularly designed on basis of the Blow-
hole&Crack dataset, so we do not test MCuePushU on other
datasets because it has integrated MCue. Another deep neu-
ral network model is PushU, which is developed on Fray
and All dataset. It places emphasis on the network atten-
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Fig. 7 Model performance on different defect datasets

Fig. 8 False detection of PushU on All dataset, especially for uneven
surface caused by grinding process, and dark surface dirt

tion with black bounding boxes. The models performance is
superior to U-Net in all aspects. However, on the all dataset
PushU still fails to detect some defects as shown in Fig. 8.
For example, the dirt on the magnetic tile is actually non-
defect, while PushU cannot correctly distinguish it. In fact,
these undetectable defects only take a few proportions of
magnetic tiles, so such influence can be ignored. Practically,
our models have promising application in the magnetic tile
industry.

5 Conclusion

We explore the potential of image saliency in the industrial
application: magnetic tile defect detection. The Blow-
hole&Crack particularly draws our attention due to its crucial
impact on the magnetic tile manufacturing. We propose a
customized model named MCuePushU; this model summa-
rizes a set of dominant cues, then fuses them into the deep
neural network U-Net through image arithmetic and finally
embeds a Push network to highlight the predicted defects

with bounding boxes. Experiments demonstrate that MCue-
PushU achieves state-of-the-art saliency performance aswell
as meets the demand of real-time inspection process, exceed-
ingly outperforming all the other models tested in this article.

The experiment also corroborates the assumption that the
performance ofmodels varies in terms of datasets. BMS,AC,
PHOT, SR and Rudinacmodels exceed other models on the
Blowhole&Crack dataset; frequency domain analysis-based
models show strength in tiny defect detection; superpixel-
based models can accurately map large center-surround
features. These facts can provide useful guidance for auto-
mated production of magnetic tiles.

There still exist some defects that ourmodels fail to detect.
In future, we will focus on the improvement of algorithms to
further satisfy comprehensive defect detection.
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