
Improved FDCM in Laser Scanning Inspection 

System for Workpiece Deformation 
 

Yibin Huang, Yue Guo 

Institute of Automation, Chinese Academy of Sciences 

University of Chinese Academy of Sciences 

Beijing, China 

{huangyibin2014, guoyue2013}@ia.ac.cn 

 Kui Yuan 

Institute of Automation, Chinese Academy of Sciences 

University of Chinese Academy of Sciences 

Beijing, China

Abstract —Three-dimensional (3D) inspection based on machine 

vision is high-precision and efficient. In this paper, a laser 

scanning system using the triangulation measurement is designed 

to obtain dense point clouds of the workpiece surface, and the 

point clouds are projected to two-dimensional (2D) range images. 

Fast Directional Chamfer Matching (FDCM) is a reliable 

algorithm for object detection and localization, and it is improved 

to accelerate the time-consuming 3D registration. Although the 

author of FDCM greatly improved the directional chamfer 

matching, it remains very slow in practice. We mainly improved 

the line fitting process and distance transform in this algorithm, 

and they greatly accelerate the scanning process. Experimental 

results show that the scanning system with the improved algorithm 

can highlight the deformation of the workpiece in real time. 

 Index Terms—Fast Directional Chamfer Matching; 

inspection; laser Scanning; registration. 

I. INTRODUCTION 

Driven by the market, 3D machine vision quality control 

is becoming increasingly important [1]. 3D imaging device 

design and point cloud registration are the main research 

contents for scholars. 

3D imaging methods include laser line scanning, 

structured light, multi-view vision, time of light and so on. It is 

worth noting that the principle of laser line scanning is 

relatively simple, and this point cloud obtaining method has 

many advantages such as high-speed and high-precision, and it 

is not affected by light conditions. Therefore, it is widely used 

in the quality inspection in production lines, and the structure, 

the principle, and the calibration method of the laser scanning 

inspection system are mainly introduced in Section II. 

Many researchers has focused on how to align one point 

cloud to another. Specifically, the most popular registration 

algorithm is the ICP (Iterative Closest Point) [2]. In general, 

with a proper initial transformation matrix, good registration 

can be obtained using ICP. However, the solution of ICP may 

be easily trapped in local optimum, and this algorithm is time-

consuming. A large number of ICP variants were proposed by 

optimizing the iteration to shorten the registration time or 

finding an initial transformation matrix [3, 4]. Another widely 

used registration algorithm is the NDT (Normal Distribution 

Transform) [5]. In NDT, a simple description of the probability 

density distribution function model turns the registration 

problem to a typical optimization problem. NDT is faster than 

ICP, since it does not have to find corresponding points, but an 

initial transformation matrix is also required and sometimes the 

solution may be trapped in local optimum in NDT. Applying 

features in local or those in global for registration is also a trend 

[6, 7], but it is hard to adapt these algorithms to point clouds in 

different density, size, and noise or lack of features. 

Registration from a 2D range image is also common for a 

3D point cloud, and it improves the most time-consuming 

content in FDCM [8] which becomes a real-time 2D 

localization algorithm, then it is applied to the registration of 

the point cloud in section IV, which simplifies the complex 

registration, and the experimental result demonstrates the 

practicability of our method in laser scanning point cloud 

registration. 

II. LASER SCANNING INSPECTION SYSTEM 

The laser scanning inspection system consists of a linear 

laser projector, a charge-coupled device (CCD) camera and a 

moving platform. As shown in Fig.1, a world coordinate system 

is on the face of the moving platform which XW-OW-YW plane is 

right on the surface, and YW axis is parallel to the scanning 

direction. The laser-line projector is mounted upon the moving 

platform, and we do our best to make sure the light plane is 

almost parallel to the XW-OW-ZW axis.  

 

Fig. 1 Overview of the system. 
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A. Triangulation ranging 

Most of machine vision measurements are based on the 

triangulation theory. Specifically, the laser line (laser stripe) is 

projected to the image frame, as shown in Fig.2. Three 

coordinate systems are established: the world coordinate system 

we have discussed before, the image coordinate system u-o-v, 

and the camera coordinate system, which the origin OC is right 

on the focal point of the camera. 
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Fig.2 Triangulation ranging. 

At this time, the point P on the stripe, which coordinate is 

(XW, YW, ZW), is projected to the point P’(u, v), thus the 3D 

coordinate can be estimated given the function: 

     , , ,W W WX Y Z f u v           (1) 

The point P in the camera coordinate system is (XC, YC, 

ZC), according to the principle of pinhole imaging, we have the 

equation as follows: 
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In this paper, to simplify our model, we assume that all the 

distortions in the image have been corrected. In (2), fu and fv 

are the focal lengths, and (u0, v0) is the optical central position, 

thus all the parameters are intrinsic parameters of the camera. 

(2) can be overwritten as: 

0( ) /C CX Z u u fu             (3) 

0( ) /C CY Z v v fv             (4) 

and the light plane can be decribed with: 

1 2 3C C CZ a a X a Y              (5) 

where a1, a2 and a3 are constants used to determine the light 

plane. Combine (3), (4), and (5), we get: 
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The transformation equation from the world coordinate system 

to the camera system can be defined as: 
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where the matrix [R|t] or M called extrinsic parameter matrix.  

(6) can be overwritten as 
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B. Light plane calibration 

Camera calibration is an important step in computer 

vision, and the most commonly used method is Zhang’s 

method, and Zhang also provides an open source camera 

calibration toolbox [9]. Specifically, about 20 good quality 

pictures of a planar checkerboard are taken, and the intrinsic 

parameters of the camera can be easily obtained with the 

toolbox, so we skip the details of this step. 

 

Fig.3 The intersection points of the checkerboard and the laser stripes. 
In Fig.3, we put a checkerboard under the camera and take 

two pictures (one with the laser projector on and the other with 

the projector off). Then we extract all the corner coordinates on 

the checkerboard and the laser stripe center line. Based on the 

projective geometry, corners including A, B, and D and an 

intersection C fix the constraint: 

/
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r
CB DB

                    (9) 

where r is the cross-ratio, and this constraint is called the 

invariance of cross-ratio. It means that r is always a constant, 

regardless of the line segment lengths of AC, CB, AD, and DB 

are measured on the world coordinate system or the image 

coordinate system. The image coordinate (u, v) of point C can 

be calculated through the intersection of the pink line and the 

red line (the laser stripe), then the world coordinate (XW, YW, ZW) 

of point C can be calculated with the (8). The extrinsic matrix 

M can be provided with the camera calibration toolbox. So the 

camera coordinate (Xc, Yc, Zc) of point C can be calculated with 

(7). There exists 19 intersections in an image, then we save 

these 3D coordinates and change the position of the calibration 

plate, repeat the steps described above several times, so we get 

dozens of 3D points. Fitting these points into a plane with the 

least square method, then we get a light plane, and parameters 
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of the plane a1, a2, and a3 in (5) are estimated. Finally, the 

function f in (1) can be defined with (1) - (8). 

The stripe center is extracted with the gray centroid 

method. When we are sampling data, 3D coordinates of the 

laser stripe center are recorded. XW and ZW are calculated using 

the above method, but YW is replaced by the current 

displacement of the platform. 

C. System performance 
To test the system accuracy, a set of Grade 0 (error within 

1μm) gage blocks are used, as shown in Fig.4. The 

measurements are repeated 20 times, and the mean height is 

calculated as the metric. The actual heights of block 1, block 2, 

and block 3 are h1=1.005 mm, h2=3.000 mm, and h3=10.000 mm, 

while the corresponding measurements are h1’=1.0025 mm, 

h2’=3.0036 mm, and h3’=10.0037 mm. To this end, the 

maximum measurement error is: 

max 3 1 3 1| ( ) ( ) | 0.0362err h h h h mm      , 

and the maximum measurement variance is 0.0011 mm. 

Therefore, the accuracy of the laser scanning inspection system 

is about 0.04 mm. 

 

Fig.4 Measurement accuracy test. 

The camera in use is Basler Aca-1600-20gm, which has a 

CCD sensor of 1600*1200 pixels. This camera supports reading 

ROIs (Region of Interest), and the frame rate can be increased, 

specifically, the frame rate of the camera can reach 70 fps 

(frames per second) although its designed frame rate is 20 fps. 

A 1600*196 light stripe image can be transformed to 3D data 

within 2 ms with an Intel i5-4core-3.3GHz CPU. In other words, 

the image processing speed can reach 500 fps if the frame rate 

is set fast enough. 

III. IMPROVED FAST DIRECTIONAL CHAMFER MATCHING 

A. Fast directional chamfer matching 
Workpieces on production lines always lack texture 

features, but their edge features are relatively stable. Based on 

this characteristic, Mingyu-Liu recommended us to use Fast 

Directional Chamfer Matching (FDCM) to estimate the poses 

of the workpieces [8]. FDCM is an algorithm improved from 

Directional Chamfer Matching (DCM). DCM matches the 

template and the query image based on the distance and the 

direction of edges. Let U={ui} and V={vj} be the template sets 

and the query image edge maps respectively, the chamfer 

distance between U and V is given by the average of distances 

between each point ui∈U and its nearest edge in V: 

1
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j
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n
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where n=|U|, and λ is a weighting factor, and ϕ(x) means the 

edge direction at x. To accelerate the algorithm, the general 

practice contains evenly quantizing the edge orientation into k 

directions and implementing distance transform to simplify the 

calculation. The matching process includes sliding the template 

to scan the entire query image and calculating the chamfer 

distance (dDCM) at each position, when the lowest score or the 

score below a certain threshold exists at such a position, it 

suggests that there is a target. The complexity of the DCM is: 

( ) (| |)O kn O V                (12) 

Based on DCM, Liu made the following improvements: 

1) Line segments expression: A RANSAC line fitting 

algorithm is used to approximate the template and the query 

edge image to line segments. If a set of points have cardinality 

n, and their linear representation have only m line segments, so 

only m memories are required to store points (m << n), and such 

an expression is much more concise. 

 

Fig.5 The distance transform tensor computation of DCM and FDCM. 

 (a) The set V in the query edge map (DCM) and line segments (FDCM). (b) 
Edges are quantized into discrete orientation channels. (c) Distance transform 

of each orientation. (d) Distance transform is updated based on the orientation 
cost. (e) The Distance transform is integrated along the discrete edge 

orientations. 

 

2) Integral distance transform: In Fig.5, every edge in (a) 

is split into k orientations in (b) and the corresponding 2D 

distance transform in (c) is computed. The orientation is 

regarded as the third dimension, and its cost is updated to the 

distance transform tensor in (d). At last, the integral distance 

transform along each orientation is computed in (e). When 

sliding line segments of the template on the query image, the 

cost dDCM can be computed as: 

1
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where the LU ={lj}j=1…m is the linear representation of template 

edge points U, IDT3V (x, ϕ) is the integral distance transform 

tensor at orientation ϕ;  sj, ej, and ϕj are the starting location, 

the ending location, and the orientation of the jth line segment 

lj respectively. (12) demonstrates that the integral distance 

transform accelerates the cost computation because it has only 

a few arithmetic operations. 
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3) Region search optimization: If the chamfer distance 

cost of a location is much larger than the cost of the target 

location, it is impossible to have a target within a certain nearby 

region. Skipping these regions can greatly accelerate the search 

process. A full search requires linear time, but the optimized 

region search only requires sub-linear time. 

Although FDCM can find the target in the sub-linear time, 

this method cannot work in real time. There are two time-

consuming steps including the line fitting and the distance 

transform tensor computation. Improvement of the algorithm is 

imperative. 

B.  Replace the line fitting method 
The line fitting method in FDCM is a variance of the 

RANSAC algorithm, and the fitting steps can be described as 

follows: 

1) Compute an edge image (for example, canny edges). 

2) Pick several points in the edge image randomly, and 

each point and its orientation define a line. 

3) The support of each line includes points in the edge 

that are closed to the line, and these points are connected. 

4) The line segment with the greatest support is retained 

if it has enough points. 

5) Repeat 1) - 4) on the remaining points until there are 

not enough points to support any new lines. 

The line randomly generated in step 1) that has too low 

probability to find a strong support leads to many false attempts, 

and the following steps will be very time-consuming.  

Line Segments Detector (LSD) [10] is a fast and robust 

line extraction algorithm. The main idea of LSD can be shown 

in Fig.6. The main task of LSD is to find line segments in a 

grayscale image where the gradient is strong. The key is to find 

the rectangular support regions where the elements share the 

same gradient direction or line support regions. If the line 

support region has enough elements, a line segment is detected. 

It is a very feasible method that starts searching the line support 

regions from gradient maximum. Therefore, it is necessary to 

sort the gradient values after the gradient image is computed. A 

pseudo sorting method is used by throwing gradient values into 

a series of uniformly distributed bins, and it reduces the sorting 

complexity from O(nlog(n)) to linear time. 

 

Fig.6 Line support regions search 

(a) Grayscale image. (b) Gradient image, short line segments are the gradients 

of the corresponding pixels, the red rectangular region is a line support region 
suggest that there is a line segment. 

C.  Angular Voronoi diagram 
The continuous angle is quantified into k discrete 

orientations. In each orientation, a distance transform image, a 

3D distance transform image, and an integral distance transform 

image are calculated. So 3*k times pixel traversal of the query 

image is required. The author of FDCM suggests that 60 

orientations are sufficient. However, 180 times pixel traversal 

is very time-consuming. In addition, the angle discretization 

will lose some angle accuracy.  

Instead of dividing the angle into k discrete orientation, we 

calculate an angular Voronoi diagram. The angle of a pixel is 

assigned by the inclination angle of its closest line segment. In 

Fig.7 (c), the Voronoi diagram is computed, different color 

regions represent different angles. In the matching process, the 

distance between the template and point sets in the query image 

can be obtained from the 2D distance transform tensor, the 

angular cost can be computed by the template line and the 

Voronoi diagram, the chamfer distance can be computed by: 
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where pi means the ith point belonging to the line lj , ϕj is the 

orientation of lj, DT and VD are the distance transform image 

and Voronoi image respectively. Only two tensors are 

necessary, making our method k*3/2 times faster than 

FDCM. 

 

Fig.7 Distance transform and angular Voronoi diagram 

D.  Line based matching 
The matching process of DCM is a brute force search. For 

a r*c query image with k directions, there are r*c*k candidate 

locations, and the number of locations often reaches millions, 

although such a number is reduced in FDCM by skipping some 

nearby regions, it is still large. Since the line segment is a stable 

feature, lines that have similar length to the template are 

searched. 

Firstly, sort the lines of the template and those of the query 

image from long to short respectively. Template lines are 

rotated and translated such that the longest template line 

segment is aligned with one line segment in the query image 

which has similar length, as shown in Fig.8. The template is 

translated to that position and the cost is evaluated to decide 

whether there is a target. If no targets are found with the longest 

line segment of the template, then a new search begins using the 

second longest counterpart. If there is a target, it is usually 

found before the fifth longest line segment is used. The number 

of candidate locations drops from millions to thousands (even 

dozens). 
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The running time depends on how complex the 

background is and what size the image is. We compare the 

consumed time using our method and that using the code of 

FDCM provide by the author [11]. Our method runs 24 times 

faster than FDCM does in this case, as listed in TABLE I. If the 

background is cleaner, the processing speed of our method can 

reach 30 fps. 

 

Fig.8 Line based matching. 
Find the line segments which similar to the template (left). The cost is lower 

than the threshold and the target is found (right). 

TABLE I 
COMPARISONS OF THE RUNNING TIME 

Algorithm Line fitting Distance transform Matching 

FDCM 978.834 889.371 62.448 

This paper 28.755 5.456ms 48.464 

 

Our algorithm requires no training processes, it only needs 

a template image. In general, only a global chamfer distance 

threshold is needed to be changed after replacing the template. 

As shown in Fig.9, the target can be detected and localized 

under the partial occlusion (a), in the cluttered background (b), 

and in bad illumination (c). It is also suitable for the objects with 

only a few line segments, for example, the mouse in (d). 

Therefore, the improved FDCM is robust and usable. 

 

 

Fig.9 The matching performances of our method. 

IV. REGISTRATION 

The object defect to be inspected in this paper is the 

deformation of the workpiece. The workpiece is a very thin 

metal sheet for a cellphone, and it is easy to be deformed during 

die casting. Only by comparing with the standard piece or its 

CAD model, can we know whether the workpiece is qualified. 

The point cloud registration can be described as: 

3 3[ | ]target sourceC R t C             (14) 

where Csource and Ctarget are the source point cloud and the target 

point cloud respectively; R3 and t3 are the rotation matrix and 

translation matrix from the source point cloud to the target point 

cloud. The target of the registration is to estimate this two 

matrix. 

ICP and NDT handle registrations in the 3D space, which 

are proved to be relatively slow. Applying 2D shapes to 3D 

registration is also a practical approach. 2D shapes or features 

that have lower dimensions and less data lead to a much faster 

registration. 3D point clouds can also be transformed to the 2D 

range image, and [12] demonstrates how to transform point 

clouds generated from a laser scanner to a range image. The 

Range image is also known as the depth image, the pixel value 

in the range image means the distance from the scene to a 

reference frame, and the reference frame in this paper is the 

plane in the world coordinate system (ZW=0). The range image 

is shown as a pseudo color image in Fig.10. 

In [13], 2D points on the contours in the range image is 

used to perform ICP registration, since contour points are far 

less than the whole point cloud, our registration is much faster. 

Shape Base Matching (SBM) is widely used in 2D matching or 

registration [14], the shape (contour) of the template is used for 

the image matching. Qin proposed a Contour Primitives of 

Interest Extraction (SPIE) method [15], which extracts some 

line segments and some circular arcs to conduct the 2D pose 

estimation. 

 

   Fig.10 The reference workpiece and one to be inspected 
 

There exist two workpieces in Fig.10: the left piece is a 

qualified one used as the reference (target image) and the right 

is a workpiece to be inspected (source image). Now we compare 

these methods to our method discussed in the previous section. 

The differences of these methods are shown in TABLE II 

TABLE II 
COMPARISON OF REGISTRATION ALGORITHMS. 

Method Features used Time (ms) drawback. 

ICP 1011188 3D points, initial 

transform matrix 

8650.993 Time-consuming 

NDT 1011188 3D points, 
initial transform matrix 

3554.329 Time-consuming 

2D ICP 6892 2D points, initial 

transform matrix 

39.374 Noise sensitivity 

SBM 9698 2D points 431.824 Mix direction 

SPIE 4 line segments 95.101 Human-computer 

interaction 

This paper 36 line segments 86.505 -- 
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The number of 3D points is very large, so ICP and NDT 

will be too slow to use, as shown in TABLE II. 2D ICP 

mentioned in [13] use only 1/150 points of 3D ICP, making it 

very fast. Since the occlusion of the difference imaging 

direction or existence of defects, the contours of the workpiece 

have some noises. A bad registration result is obtained using 2D 

ICP due to these noises. In Fig.11 (a), we draw the source 

contours (white lines) to the reference range image with the 

transform matrix of 2D ICP. Because of the different contours 

in the black box, a bad registration occurred. As shown in 

Fig.11 (b), SBM will mix the direction when the template is 

nearly symmetric, and it the slowest method in 2D registration 

among these algorithms. SPIE extracts some of the typical line 

segments or circular arcs of the template artificially. If the 

template is nearly symmetrical, the direction may also be 

ambiguous. Our method is faster than SPIE and is robust to 

noises. 

Due to the existing installation errors and the uneven 

platform, a fine registration step is necessary. This fine 

registration selects only dozens of points from three locations 

where the deformation almost never happens. In this case, 

locations in the target point cloud we used are the black circles 

in Fig.11 (d), and locations of the source point cloud can be 

computed by the transform matrix we get in the 2D registration 

step. 3D ICP is further used, and the transform matrix is refined. 

At last, the deformation of the workpiece can be inspected by 

computing the distance after aligning the source point cloud to 

the target point cloud. The difference image is shown in Fig.12, 

and the middle part is a bulge, and such a deformation is very 

obvious in the difference image. Besides, all the inspection 

steps can be finished within 100 ms. 

 

Fig.11 Registration results. 

 

Fig.12 Inspection result. 

V．CONCLUSION  

A high-precision laser scanning inspection system is 

designed and the system precision is 0.04 mm. We improve the 

FDCM algorithm by replacing the line fitting algorithm with 

LSD, replacing the complex integral distance transform with a 

distance transform image, and using an angular Voronoi 

diagram. These improvements greatly simplify the two most 

time-consuming FDCM processes. Line segments based search 

also replaces the sliding window search, reducing millions of 

candidate locations to thousands of them. Experimental results 

show that 2D registration is much faster than 3D registration, 

and the improved FDCM is more stable than other 2D matching 

and registration algorithms. 
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