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Abstract—Based on baseline is a smooth curve and under
the collected spectrum, a robust penalized quantile regression
with B-spline basis has been proposed to baseline estimation.
Then an iterative reweighted method has been adopted for
quantile regression optimization. Instead of man tuning the
hyperparameter in penalized quantile regression, augmented
Lagrangian method is applied to hyperparameter optimization.
Experiments on simulated and real data sets show that our
method is more effective in baseline correction than other
baseline estimation methods in simulated data set. For real
data set, the calibration results after the baseline correction
step are better than other preprocessing and baseline correction
methods.

Keywords-quantile regression; p-splines; iterative reweighted
least squares; augmented Lagrangian

I. INTRODUCTION
Since Fourier transform spectrometer is rapid and nonde-

structive, Fourier transform infrared spectroscopy has been
widely used in Chemometrics, food, wine and other re-
lated fields for sample components analysis [1]. Generally
speaking, the obtained Fourier transform infrared absorption
spectroscopy consists of the true sample spectrum, baseline
and noise. Baseline together with noise will significantly
deteriorate the performance of chemometric calibration al-
gorithms, so baseline correction and spectrum denoising is
an important preprocessing step for spectrum quantitative
analysis.
Baseline estimation can be dated back to late 1970s [2].

Up to now, there have several assumptions been imposed on
baseline: Firstly, from the frequency prospective, baseline
is in low frequency part while noise generally lives in the
high frequency part, low-pass filter has been constructed to
correct the baseline [3, 4]. Secondly, baseline is a smooth
curve which underlies the collected spectrum: it was fitted by
polynomials [5] and Bernstein polynomials were proposed
for extraction of baseline of NMR signals [6]. Last but not
the least, baseline points and spectrum peak points belong
to different clusters, which can be separated. In order to
separate the baseline points and peak points, Rooi proposed
a mixture model for baseline estimation. The baseline points

were characterized by a Gaussian distribution while the peak
points were subject to a uniform distribution. Using EM
algorithm, after the baseline points and peak points having
been separated, a penalized B-splines basis was used to
fitting the baseline [7]. The Gaussian mixture model was
also used for DNA sequence baseline correction in [8]. Since
baseline underlies the obtained spectrum, an asymmetrically
weighted least squares (asLS) with roughness penalty was
proposed for baseline estimation [9]. The weights for the
baseline points below the spectrum were set manually by a
constant which usually will overestimate the peak and there
were two parameters need to be optimized, [10] proposed
the adaptive iteratively reweighted Penalized Least Squares
(airPLS) and a partially balanced weighting scheme was also
proposed in [11] for baseline smoothing (arPLS). Besides,
based on the spectrum of the sample can be approximat-
ed by Voight lineshape, a method simultaneously fitting
the pure spectrum and baseline using sparse representation
(SSFBCSP) was proposed in [12] and a multiple spectral
baseline correction method which combined the information
of several spectral was used for Guotai wine baseline correc-
tion [13]. Simple Least squares regression corresponding to
the conditional mean value regression and the least squares
regression is sensitive to outliers and noise. Besides , in
order to obtain the regression equation for other quantiles,
quantile regression was proposed by Koenker and Bassett
[14] and it was first used for baseline correction in [15].
This article proposes a quantile regression with penalized

B-splines for baseline correction, where the B-splines are
used to represent the baseline. Instead of the primal-dual
interior or simplex method for solving quantile regression
problem, we propose the iterative reweighted least squares
to tackle the quantile regression, which has several advan-
tages: it is easy to implement than the linear programming
methods; iterative reweighted least squares usually gives
more accurate result. In order to avoid the optimization
of the regularization parameter in penalized B-splines, the
augmented Lagrangian method is also proposed for hy-
perparameter optimization. This paper is divided into the
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following parts: Section II provides the detailed introduction
for our algorithms; Section III displays our experiments
setting; The experiments results and discussion are shown
in Section IV; The final part is devoted to Conclusion.

II. PROBLEM FORMULATION

A. P-splines and Quantile Regression

Roughness penalty approach to problems in regression has
gained much popularity in recent years, especially in func-
tional data analysis (FDA) [16]. Considering the nonpara-
metric regression problem: given data pairs

, find a function such that

(1)

Where is the error term in th sample, which is usually
assumed normally distributed. Without constraint on , then
the error term can be zero just by interpolating the points us-
ing piecewise linear function. In order to find a compromise
between the fidelity of curve fitting and avoiding of rapidly
fluctuating curve, a penalty is posed on the curvature of ,
then the smooth penalty based regression becomes

(2)

the second derivative can be replaced by other higher order
derivatives. For computation convenience, the function is
represented by some basis functions usually. In functional
data analysis, the Fourier basis is used for periodic functions,
while B-spline basis is adopted for nonperiodic functions.
Assume that can be represented by B-spline basis

(3)

By the recurrence relation and formula for derivatives of
B-splines given by de Boor [17], the continuous penalty

is equivalent to the smooth of the representation
coefficient. Then (2) becomes

(4)

where is the difference matrix, the difference order is
usually set to and three. The B-splines with penalty is called
P-splines [18].
From the maximal likelihood point of view, the least

squared term is corresponding to the noise is Gaussian and
what we obtain is the conditional expectation of given ,
which is sensitive to outliers. To get robust estimator, the
absolute deviation has been adopted which corresponding to
the conditional median. In order to get the information of
other quantiles, Konerker proposed the quantile regression,
which can be formulated as an optimization problem:

(5)

where ,
is the positive part of , while

is the negative part of . The median regression
is corresponding to .

B. Iterative Reweighted Quantile Regression With Augment-
ed Lagrangian Optimization

Since baseline is running below the spectrum, we should
impose asymmetrically penalty for estimated points. For
points above the original spectrum, a large penalty should
be set, while for points under it, a small penalty should
imposed. From quantile point of view, the baseline is at the
low quantile part of the original spectrum.
Due to the smooth of baseline, it can be represented by

B-splines

(6)

Then the quantile regression with P-splines for baseline
correction can be described as follows:

(7)

After the representation coefficient is obtained, then the
baseline is estimated by .
Considering that

is not differentiate at zero. By using iterative reweighted
least squares and noting that , we can set the
asymmetric weight as

(8)

where is added by avoiding the divided by zero
problem. Then the quantile regression can be optimized by

(9)

In reality, the success of baseline estimation depends on
choosing the hyper-parameter properly. To avoid the
tuning of , we propose to paraphrase (9) as

(10)

where the inequality is applied element-wise. With augment-
ed Lagrangian optimization, (10) becomes

(11)

Let denote the diagonal matrix with on its
diagonal, (11) can be described as

(12)

where is the Lagrangian multipliers and is a penalty
parameter. We summarize the iterative reweighted quantile
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regression with augmented Lagrangian Optimization method
(IRQRAL) as follows:

Algorithm: IRQRAL

Step 1. Input single spectrum , penalty parameter , quan-
tile , order of difference matrix , B-spline basis matrix ,
maximum iteration number .
Step 2. Initialize 1 , relative error .
Step 3. Update , and :
3.1 ;
3.2 ;
3.3
3.4

Step 4 Reweight with (8).
Step 5. Check stopping criterion:
if ( − 1) or , stop; else

go to Step 3.
Step 6. Output baseline , representation coefficient
.

III. EXPERIMENTS
A. Dataset description
To evaluate the performance of the proposed method, one

simulated data and one real data set are used for quantitative
analysis. The simulated data consists of six Gaussian peaks
and a sinusoidal baseline and an exponential baseline are
added to the peaks respectively. Besides, a uniform random
noise is generated whose amplitude doesn’t exceed 0.01 of
the maximal height of the peaks. The real data is the corn
data set which consists of 80 NIR spectra of corn measured
on spectrometers mp5 and mp6 respectively and the spectra
were collected in the region of 1100-2498 nm. There are
four components have been measured: moisture, oil, protein,
starch. In our experiment, the mp5 data set is adopted to
compare the calibration result of our method with other
preprocessing methods after the baselines being corrected.

B. Model evaluation
For simulated data set, the true baseline is known, we can

use root mean squared error (RMSE) to find the optimal
parameters. In our experience, the quantile and
the order of difference matrix can always give desired
results. Since whatever we choose , the IRQRAL algorithm
will converge, so we fix . The RMSE is computed by

(13)

where is the true baseline, is the estimated baseline and
is the length of simulated data.
Since the true baselines for real data set are unavailable,

the quantitative results of spectra after the baselines having
been corrected are used to metric the success of baselines

estimation. We split the data set into training set and test set.
Firstly, each response component is sorted, then the second
of every four is taken as test set, the others are treated as
training set; then leaving one out cross validation is used
for calibration. In order to avoid over fitting, a criterion
based on testing the significance of incremental changes in
PRESS with an F-test [19] is used for the choice of the
number of latent variables. In this work, a 95% confidence
interval is employed. Finally, the root mean squared error of
prediction (RMSEP) is used to evaluate the performance of
each method.

IV. RESULTS AND DISCUSSIONS

A. Simulated data sets
With respect to simulated data with sinusoidal baseline

and exponential baseline, the estimated baselines by our
algorithm are shown in Figure 1. The asLS, airPLS, arPLS,
SSFBCSP baseline correction methods and the iterative
reweighted quantile regression for baseline estimation with-
out augmented Lagrangian optimization (IRQR) are used to
compared with our method, the parameters of each method
are optimized by grid search. The RMSE for each baseline
correction method are detailed in Table I and Table II
respectively.
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Figure 1. (a) Original spectrum (blue) and estimated baseline (red) for
peaks with sinusoidal baseline. (b) Original spectrum (blue) and estimated
baseline (red) for peaks with exponential baseline.

We can see that our method is better than the other
methods and quantile regression with augmented Lagrangian
optimization is generally outperforms the one without it.
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Table I
RMSE FOR EACH ESTIMATION METHOD OF SINUSOIDAL BASELINE

Methods Optimal Parameters RMSE
asLS λ = 104 p = 10− 6 0.0043
airPLS λ = 106 0.0015
arPLS λ = 105p = 10− 3 0.0019
SSFBCSP λ1 = 106 λ2 = 0 01 7 83 × 10− 4

IRQR λ = 1011 3 4458 × 10− 4

IRQRAL τ = 0 01 2 6320 × 10− 4

Table II
RMSE FOR EACH ESTIMATION METHOD OF EXPONENTIAL BASELINE

Methods Optimal Parameters RMSE
asLS λ = 103 p = 10− 5 0.0026
airPLS λ = 106 0.0011
arPLS λ = 105p = 10− 3 0.0017
SSFBCSP λ1 = 106 λ2 = 0 01 5 55 × 10− 4

IRQR λ = 1012 τ = 0 01 3 2574 × 10− 4

IRQRAL τ = 0 01 1 9131 × 10− 4

B. Corn data set
The original spectral and the estimated baselines, the

baseline corrected spectral by our algorithm are displayed
in Figure 2. In Figure 2(a), we can see that corn data set
spectral have severe baseline drift, which will adversely
influence the calibration and prediction results conducted
on it. While seeing from Figure 2(b), our method has
successfully corrected the spectral to zero baseline.
To evaluate the performance of our method, spectral

preprocessing methods include multiplicative scatter cor-
rection (MSC) [20], standard normal variate (SNV) [21],
extended inverse scatter correction (EISC) [22], extended
multiplicative signal correction (EMSC) [23] and baseline
correction methods consist of asymmetrically least squares
(asLS), multiple spectral baseline correction (MSBC) and
simultaneous spectrum fitting and baseline correction using
sparse representation (SSFBCSP) are used to get trans-
formed spectral. The transformed spectra are mean centered
before calibration. The RMSEP for moisture, oil, protein,
starch are detailed in Table III. For oil component, no
methods give desired results. But our algorithm gets better
results in other three components and is better than the
method without augmented Lagrangian optimization.

C. Discussion
Since our quantile regression problem is just an iterative

weighted least squares problem, the Augmented Lagrangian
method which can update the dual variables and penalty
parameter gradually and the experiments show the desired
result. Besides, for the generation of B-splines matrix, the
location of knots of B-splines can be set the same as wave
number of spectrum, but it may generate many redundant
B-spline basis to represent the baseline. Set the location
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Figure 2. (a) The estimated baselines (green) and original spectra. (b)
Baselines corrected spectra.

Table III
RMSEP FOR EACH METHOD

Moisture Oil Protein Starch
NO 0.1280(6) ∗ 0.0718(5) 0.1778(10) 0.3654(8)
MSC 0.1467(6) 0.0855(4) 0.1812(8) 0.4102(6)
SNV 0.1466(6) 0.0855(4) 0.1813(8) 0.4096(6)
MSBC 0.1203(8) 0.0932(8) 0.1305(15) 0.3359(8)
asLS 0.0957(6) 0.0839(6) 0.1741(11) 0.3292(7)
EISC 0.1730(5) 0.0929(3) 0.1883(4) 0.4256(3)
EMSC 0.1683(5) 0.0948(3) 0.1883(3) 0.4072(3)
SSFBCSP 0.1108(9) 0.0944(7) 0.1303(8) 0.3329(8)
IRQR 0.0804(8) 0.0849(4) 0.1441(9) 0.3261(7)
IRQRAL 0.0763(8) 0.0876(7) 0.1289(9) 0.3201(8)

∗The values in parentheses refer the number of latent variables.

of knots optimally, which can improve the computation
efficiency.

V. CONCLUSION

The proposed method uses the iterative reweighted
quantile regression and augmented Lagrangian optimization
for the baseline estimation, which can free us of the
parameter optimization used by other baseline estimation
methods. And since the quantile regression is more robust
than the least squares, this baseline estimation method
can not only be used for the Gaussian noise situation,
but also for other heterogeneous and dependent data error
circumstance.

283



ACKNOWLEDGMENT
This work was supported by the Natural Science Founda-

tion of China (Grant NO.61571438) and Science Foundation
Research Project of Beijing, China (Grant NO.1152001).

REFERENCES
[1] P. R. Griffiths and J. A. De Haseth, Fourier transform infrared

spectrometry. John Wiley & Sons, 2007, vol. 171.

[2] G. A. Pearson, “A general baseline-recognition and baseline-
flattening algorithm,” Journal of Magnetic Resonance (1969),
vol. 27, no. 2, pp. 265–272, 1977.

[3] A. K. Atakan, W. Blass, and D. Jennings, “Elimination of
baseline variations from a recorded spectrum by ultra-low
frequency filtering,” Applied Spectroscopy, vol. 34, no. 3, pp.
369–372, 1980.

[4] I. W. Selesnick, H. L. Graber, D. S. Pfeil, and R. L. Barbour,
“Simultaneous low-pass filtering and total variation denois-
ing,” IEEE Transactions on Signal Processing, vol. 62, no. 5,
pp. 1109–1124, 2014.

[5] F. Gan, G. Ruan, and J. Mo, “Baseline correction by im-
proved iterative polynomial fitting with automatic threshold,”
Chemometrics and Intelligent Laboratory Systems, vol. 82,
no. 1, pp. 59–65, 2006.

[6] D. E. Brown, “Fully automated baseline correction of 1d
and 2d nmr spectra using bernstein polynomials,” Journal of
Magnetic Resonance, vol. 114, no. 2, pp. 268–270, 1995.

[7] J. J. de Rooi and P. H. Eilers, “Mixture models for baseline es-
timation,” Chemometrics and Intelligent Laboratory Systems,
vol. 117, pp. 56–60, 2012.

[8] L. Andrade and E. S. Manolakos, “Signal background esti-
mation and baseline correction algorithms for accurate dna
sequencing,” Journal of Signal Processing Systems, vol. 35,
no. 3, pp. 229–243, 2003.

[9] P. H. C. Eilers and H. F. M. Boelens, “Baseline correction
with asymmetric least squares smoothing,” 2005.

[10] Z.-M. Zhang, S. Chen, and Y.-Z. Liang, “Baseline correction
using adaptive iteratively reweighted penalized least squares,”
Analyst, vol. 135, no. 5, pp. 1138–1146, 2010.

[11] S.-J. Baek, A. Park, Y.-J. Ahn, and J. Choo, “Baseline
correction using asymmetrically reweighted penalized least
squares smoothing,” Analyst, vol. 140, no. 1, pp. 250–257,
2015.

[12] Q. Han, Q. Xie, S. Peng, and B. Guo, “Simultaneous spectrum
fitting and baseline correction using sparse representation.”
Analyst, vol. 142, no. 13, pp. 2460–2468, 2017.

[13] J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, and J. Tan, “Asym-
metric least squares for multiple spectra baseline correction,”
Analytica chimica acta, vol. 683, no. 1, pp. 63–68, 2010.

[14] R. Koenker and G. Bassett, “Regression quantiles,” Econo-
metrica, vol. 46, no. 1, pp. 33–50, 1978.

[15] Ł. Komsta, “Comparison of several methods of chromato-
graphic baseline removal with a new approach based on
quantile regression,” Chromatographia, vol. 73, pp. 721–731,
2011.

[16] J. O. Ramsay, Functional data analysis. Wiley Online
Library, 2006.

[17] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor,
and C. De Boor, A practical guide to splines. Springer-Verlag
New York, 1978, vol. 27.

[18] P. H. C. Eilers and B. D. Marx, “Flexible smoothing with b-
splines and penalties,” Statistical Science, vol. 11, no. 2, pp.
89–121, 1996.

[19] D. M. Haaland and E. V. Thomas, “Partial least-squares
methods for spectral analyses. 1. relation to other quantitative
calibration methods and the extraction of qualitative informa-
tion,” Analytical Chemistry, vol. 60, no. 11, pp. 1193–1202,
1988.

[20] P. Geladi, D. MacDougall, and H. Martens, “Linearization
and scatter-correction for near-infrared reflectance spectra of
meat,” Appl. Spectrosc., vol. 39, no. 3, pp. 491–500, 1985.

[21] R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal
variate transformation and de-trending of near-infrared diffuse
reflectance spectra,” Appl. spectrosc., vol. 43, no. 5, pp. 772–
777, 1989.

[22] N. B. Gallagher, T. A. Blake, and P. L. Gassman, “Appli-
cation of extended inverse scatter correction to mid-infrared
reflectance spectra of soil,” Journal of chemometrics, vol. 19,
no. 5-7, pp. 271–281, 2005.

[23] H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scatter-
ing and light absorbance separated by extended multiplicative
signal correction. application to near-infrared transmission
analysis of powder mixtures,” Analytical Chemistry, vol. 75,
no. 3, pp. 394–404, 2003.

284


