
A Review of Computational Intelligence for
StarCraft AI

Zhentao Tang†‡, Kun Shao†‡, Yuanheng Zhu†‡, Dong Li†‡, Dongbin Zhao†‡, Tingwen Huang§
†State Key Laboratory of Management and Control for Complex Systems,

Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190
‡University of Chinese Academy of Sciences, Beijing, China, 100049

§Texas A&M University at Qatar, Doha, Qatar, POBOX 23874
Email: {tangzhentao2016, shaokun2014, yuanheng.zhu, lidong2014, dongbin.zhao}@ia.ac.cn, tingwen.huang@qatar.tamu.edu

Abstract—After artificial intelligent (AI) scientists have con-
quered Go game, StarCraft has been the next biggest challenge.
A highly intelligent AI system that is able to beat human
professional players is expected. In this paper, we review the
recent development of computational intelligence (CI) in the field
of StarCraft AI. Successful applications of CI techniques are
analyzed and compared from different levels of AI functionality.
It should be noted that current StarCraft AI is highly dependent
on human experience and is far away from a completely
intelligent one. New frameworks and techniques are still expected
to improve the intelligence.

I. INTRODUCTION

In the history of computer games, StarCraft is probably
the most famous one. Screen shots are presented in Fig. 1.
It was first released by Blizzard Entertainment in 1998, and
had been sold more than 9.5 million sets in the following ten
years. StarCraft belongs to the category of real-time strategy
(RTS) games, in which players need to operate according to
real-time game states in order to beat opponents. The game
has three races, Terran, Protoss, and Zerg, and each of them
has their own advantages. Due to its popularity, StarCraft has
also attracted intensive interest from researchers of artificial
intelligence. Several competitions have been held every year
to stimulate the development of StarCraft AI, including IEEE
CIG, AIIDE, and SSCAIT StarCraft AI competitions [1].

At present, most StarCraft AI systems are developed based
on Brood War Application Programming Interface (BWAPI)1,
a free and open source C++ framework that is used to
interact with StarCraft: Brood War. With BWAPI, students
and researchers have the access to create AI bots to play the
game. For the game AI research, BWAPI also provides an ideal
environment to study the control of multiple units with differ-
ent difficulty levels. In addition to BWAPI, TorchCraft [2] is
presented to promote the machine learning study in this area.
TorchCraft is a library that enables state-of-the-art machine
learning research on raw game data by interfacing Torch with
StarCraft: BroodWar. More recently, DeepMind and Blizzard
jointly introduce StarCraft II Learning Environment (SC2LE)

This work is supported by National Natural Science Foundation of China (NSFC)
under Grants No.61573353, No.61603382 and No. 61533017, and National Priority
Research Project NPRP 9166-1-031, funded by Qatar National Research Fund, Qatar.

1http://bwapi.github.io/

Fig. 1. Game screen shots of StarCraft I and StarCraft II.

[3] and its Python component PySC22. This is a reinforcement
learning environment based on the StarCraft II game. Com-
pared with learning platforms in StarCraft I, SC2LE poses a
new grand challenge for reinforcement learning, representing
a more challenging class of problems than considered in most
prior work. SC2LE considers the observation, action, and
reward specification for the StarCraft II domain. Besides, a
suite of mini-games are also provided to focus on different
elements of StarCraft II gameplay. In some respects, SC2LE
offers a new and challenging environment for exploring deep
reinforcement learning algorithms and architectures.

Generally speaking, to design a complete StarCraft AI, one
has to solve a series of challenges, such as spatial and temporal
reasoning, opponent modeling, adversarial planning and mul-
tiagent collaboration. These tasks can be generalized into three
levels: strategy, tactics, and reactive control. Currently, most
StarCraft AI bots are designed based on human experience,
and bots can perform predesigned operations when certain
conditions are satisfied. Unfortunately, such approach makes
the system stubborn. Their intelligence is severely limited.

In recent years, with the fast development of computational
intelligence, advanced intelligent methods have been adopted
in the design of StarCraft AI, with the aim of gaining better
performance. Especially with the great success in board games
and video games, CI researchers have now put more effort
on the more complicated StarCraft challenges. New ideas and
new methods are put forward to increase the intelligence and
improve the performance of current StarCraft AI systems. It is
obliged to review the recent development and compare related

2https://github.com/deepmind/pysc2

1167978-1-5386-9276-9/18/$31.00 c©2018 IEEE

Computational Intelligence
in StarCraft AI

SC2LE, PySC2, BWAPI, TorchCraft,
SparCraft, JarCraft, GymCraft

Testbeds Competitions

AIIDE, CIG, SSCAIT

Search-Based
Algorithm

Supervised
Learning

Evolutionary
Computation

Reinforcement
Learning

Build Order

Micromanagement
Tactics

Micromanagement

Macromanagement

Winner Prediction

Gameplay

Build Order

Micromagement

Micromanagement

Macromanagement

Navigation

Mini-Games

Fig. 2. Main components of computational intelligence for StarCraft AI.

works in this field for researchers and practitioners.
The structure of this survey is organized as illustrated

in Fig. 2. The involved CI techniques include search-based
algorithms, supervised learning, evolutionary computation, and
reinforcement learning. In the context we will describe their
applications in different levels, including build order, strategy
recognition, winner prediction, gameplay, navigation, micro-
management, and mini games. The used platform and data
sets are also described.

II. SEARCH-BASED ALGORITHMS

Search-based algorithms have long been used in board game
AI. Unfortunately due to the complexity of the long-term
planning and requirement of real-time operation in StarCraft,
search-based algorithms are difficult in dealing with such com-
plex decision-making, strategy planning and unit management.
Nevertheless, researchers and engineers have successfully ap-
plied search-based techniques into the AI bots or smaller-scale
subproblems, like simulation of combat and micromanagement
of units. To satisfy the real-time requirement, search-based
methods have to evaluate the result of each strategy and
decision very rapidly and immediately.

A. Micromanagement

In micromanagement, AI needs to operate a squad of own
units to fight against a squad of enemy units during a combat.
Actions for each unit should be issued within every 55ms. For
the limitation of vast state and action space, there is no search
algorithm fast enough to be applied in full game environment
successfully. However, hierarchical search is considered an
efficient way to tackle the problem of large scale search space.
[4] proposes Hierarchical Adversarial Search (HAS), which
has a 3-layer version of the model. The top layer selects a set
of goals to win the game, the middle layer generates feasible
decisions and plans to achieve those goals, and the last layer

evaluates those policies and commands the individual unit to
execute those behaviors for the win. HAS outperforms state-
of-the-art search-based algorithms such as Alpha-Beta based
search [5], UCT based search [6], and Portfolio Search [7] in
large-scale combat scenarios, in which up to 72 fighting units
per player are engaged.

Recent years, a few approaches try to overcome the real-
time limitation by using abstract scripts and game states. [8]
proposes Puppet Search, which is an adversarial and look-
ahead search approach based on scripts. It innovatively selects
a combination of a script and decisions to represent a move to
be executed next. The part of script executes the move in the
actual game and the other part of the abstract representation
of the game state which can be applied by an adversarial tree
search algorithm. Puppet Search has been implemented in a
complete StarCraft bot and it matches or outperforms the state-
of-the-art bots from the 2014 AIIDE StarCraft competition [9].
Puppet Search has also been tested in 𝜇RTS, an abstract RTS
game, and achieves a similar performance to other scripted and
search-based agents in small scale, while outperforms them in
large scale [10].

Game-tree-based search algorithms are conventional ap-
proaches for two-player games. However, this kind of algo-
rithms requires a forward model to evaluate the state represen-
tation. In [11], the authors focus on the simulation of combat
for two-player attrition in games. They present three forward
models, Target-Selection Lanchester’s Square Law Model (TS-
Lanchester2), Sustained DPF Model (Sustained), and Decreas-
ing DPF Model (Decreasing), that can be integrated into Monte
Carlo tree search framework to play StarCraft. In order to
deal with the enormous branching factors, the game state and
action sets are abstracted as High-Level State Representation
and High-Level Actions, and a mapping between low-level
states and high-level states can be used by a game-tree-

1168 IEEE Symposium Series on Computational Intelligence SSCI 2018

based search algorithm to generate actions for each unit. The
experiment results show that the combat models achieve better
performance and are much faster than handcraft low-level
models likes SparCraft.

B. Build Order

Search-based approaches are also used in build order op-
timization [12]. Build order is an essential component of
macromanagement. It decides which kind of economy or
production strategy to be adopted and what type of units to be
produced. Build order optimization has been integrated into
Build Order Search System (BOSS) [12] to find concurrent
action sequences of buildings and units in the shortest time
span. BOSS uses heuristics knowledge and abstractions to
speed up the search for approximative solution in StarCraft.
Experiment results show that BOSS is fairly comparable to
professional StarCraft players in real-time.

III. SUPERVISED LEARNING

Replay data from human players provide valuable training
samples for AI systems. Based on supervised learning (SL),
it is possible to learn intelligent models without heavy human
hand-crafted rules. SL refers to the technique that relies on
labeled data and itself includes a number of methods. More
data mean more chance to obtain a well-performed model.
Motivated by that, a lot of groups have released various replay
data sets successively, including Facebook [13] and Google
DeepMind [3].

A. Micromanagement

Micromanagement is the basic unit control task for RTS
games. [14] proposes a Bayesian model which is a distributed
sensor-motor model for units control locally. Bayesian Pro-
gramming is adopted into this model, and inverse program-
ming is used as a fusion model for computing the com-
plete inference in real-time. Authors implement two different
Bayesian-based AI, BAIPB (Bayesian AI picking best) and
BAIS (Bayesian AI sampling). The results show that BAIPB
and BAIS both outperform the built-in AI in 12 and 36 ranged
units, and BAIS is way better than BAIPB in both small and
large armies.

B. Tactics

Tactics is to consider where, when, and how the the two
sides will attack opposite units and structures. A generative
Bayesian model [15] is used to predict attacks and take
tactical decisions, especially considering uncertainty in en-
emy locations and technology tree. The model uses 7649
uncorrupted 1vs1 replays, and has lower-level heuristics from
units observations. It makes most of the strategic inference
and updates the parameters through supervised learning. The
Bayesian tactical model eventually accomplishes prediction of
opponent tactics and self decision-making under constraints
and uncertainty easily and usefully.

C. Macromanagement

For professional players, the most crucial factor to win the
game is to select the suitable macromanagement or strategy.
It is significant to recognize the opponent’s strategy, which
usually is expressed in the form of build order. Replay data are
used to predict the strategy and detect the change of build order
in [16]. It adopts feature-expanded decision trees to predict the
strategy, and it employs an equation to calculate the winning
ratio from the replays to detect the change of build order.
In [17], the authors investigate a probabilistic framework to
learn the strategy behaviors. Based on hidden Markov models,
the behavior models are trained by 331 expert-level StarCraft
games and demonstrate the capability of predicting opponent
behaviors and inferring the likely strategic state sequence. [18]
presents a Bayesian model for opening prediction in StarCraft.
This model only predicts the openings of the opponent, and
learns its parameters through labeling replays. While [19]
proposes a generic Bayesian model for long term strategic
planning with noisy observations. They apply this model to
StarCraft, and it performs a high quality and robust prediction
which can form an adaptive AI.

Since deep learning has achieved great success in many
application scenarios, [20] uses deep learning to learn macro-
management decisions in StarCraft directly from replays that
include 789,571 state-action pairs. After integrating the trained
network in UAlbertaBot, which is an open source bot written
by Dave Churchill, the new bot can play competitively against
the original UAlbertaBot that uses a fixed rush strategy, and
significantly outperform the built-in Terran bot in StarCraft.

Fog of war is a crucial characteristic for StarCraft which
means players cannot see their opponent behaviors if they fail
in sending scout units or exploring the region. Professional
players usually can assess the situation by scouting in the early
phase of the game according to their experience. However,
it seems difficult and infeasible to code all their experience
into a bot. In order to investigate the effect of fog of war,
[21] uses Random Forest (RF), Muti-Layer Perception, K-
Nearest Neighbor for strategy prediction by replay data. The
experiment results show that the rule-set approach performs
worse than these machine learning approaches especially in
the fog of war.

D. Winner Prediction

An interesting and challenging topic of game AI research
is to predict which player will win. [22] investigates the
individual and mixed models for combats between different
races to predict winner in a StarCraft match. They use Gradient
Boosting Regression Trees and Random Forest approaches,
and address the problem as a binary classification. Their work
shows that economic is the most important feature across all
match types and achieves an improved accuracy (above 63%)
compared to the previous works [23], [24]. It is well to be
reminded that [25] uses influence maps, which are numerical
matrices representing the influence of each player’s military
or combat units in the map, to model the game states. This

IEEE Symposium Series on Computational Intelligence SSCI 2018 1169

approach has reached an impressive level of precision similar
to the human recognition.

IV. EVOLUTIONARY COMPUTATION

Evolutionary Computation (EC) refers to a family of algo-
rithms that are inspired by biological evolution when solving
optimization problems. It relies on the evolution of a popula-
tion, in which each individual represents a candidate solution
to the problem. Through selection and mutation operators, the
population gradually evolves to increase in fitness, so that
the current best solution is continually improved. Because of
the capability of producing highly optimized solutions in a
wide range of problem settings, EC has attracted considerable
attention from CI, also including the interest from StarCraft
AI.

A. Build Order

Due to the sequentiality of building commands, build-order
list is naturally suitable for EC applications. Each individual
of population can be defined as the list of building com-
mands. Based on proper fitness, the list can be optimized to
achieve certain optimizing purpose. One difficulty exists in
the problem is the validity of the list. Due to the limitation of
technology, production, and resources, the candidate solutions
must fulfill the hard requirement to be valid for game run. It
makes EC must pay attention to the initialization, crossover,
mutation, and other processes, during the evolution. Another
difficulty is the definition of fitness. Because of the diversity
of unit types in StarCraft and advantage of each type over the
other, it is hard to give a comprehensive fitness function that is
capable of determining which solution is superior to the other.
Sometime AI has to choose its strategy (here refers to build
order) according to the current game state as well as enemy
strategy.

The first attempt of applying EC in StarCraft build-order
optimization is the AI system of [26]. To fight against dif-
ferent enemies, the system searches to find a set of goals
that best satisfy the needs at the current time. Authors use
priority profile (PP) to determine which goal is preferred when
conflicts arise. In addition to manually designed PP, they also
use Genetic Algorithm (GA) to optimize the values, with each
PP in the population to play games against build-in AI. The
in-game scores define fitness. After a large number of game
runs, which take three weeks even in distributed evaluation, the
system with optimized PP is able to outperform the version
based on hard-coded knowledge. Instead of optimizing goal
priority, [27] directly applies GA to evolve a complete strategy
for StarCraft, from the building plan to the composition of
squads. They try two fitness metrics for the evaluation: victory-
based fitness that is the vector of victory numbers against
different opponents, and report-based fitness that is based
on in-game metrics to give a smoother slope towards good
solutions. The results show both fitness metrics are able to
learn to defeat human-coded strategies and even a complete
complex bot (OpprimoBot), but the first fitness has better
winning rate. Both the above works use in-game scores or

results for evaluation, so it is hard to give a direct evaluation
to the build-order performance due to the influence from
other modules like micromanagement and tactical strategies.
Besides, the evaluation are given only at the end of each game
run, which makes it impossible for real-time implementation.

In [28], authors consider multi-objective optimization with
the target of producing most units of one or more types up to
a certain time. They build a simulator so that it mimics the
original StarCraft II characteristics but significantly reduces
overall computational time. They use NSGA-II algorithm
to solve the multi-objective problem, and Pareto fronts are
produced by non-dominant sorting. Their method is able to
produce a variety of build orders within the same game time,
but they fail to further provide the best solution in terms
of current game state and enemy strategies. In [29], authors
also build a forward model to simulate outcome of build
order. It can run continually in parallel, making it suitable
for real-time and in-game implementation. To evaluate the
candidate solutions, they define a unit makeup table and
combine technology and upgrade bonus to assess both side
forces. The proposed online evolutionary planning for in-game
build order adaptation is capable of evolving diverse unit
combination that clearly depends on combination of enemy
units.

B. Micromanagement

Another wide application of EC in StarCraft AI is micro-
management. In contrast to the sequentiality of build order,
micromanagement has to promptly react to the change of game
state and enemy unit behaviors. Motivated by that, AI systems
usually use certain micromanagement policies and apply EC
to optimize policy parameters. These policies include potential
fields, neural networks, script policies, and so on.

In [30], authors first try to combine EC with potential fields
to optimize the micromanagement for StarCraft. The fields on
the enemy untis decide who to attack and which direction to
retreat, while the fields placed at the center of the group direct
the unit towards other friendly units when retreating. Parame-
ters of field functions are tuning parameters. They define four
objectives in the fitness and use the NSGA-II algorithm to
optimize them at once. Compared to single objective, NSGA-
II has a better learning curve. Unfortunately, the results are not
satisfactory because they fail in outperforming other manually
designed AI. The main reason authors give is due to the
improper selection of potential functions and parameter ranges.

Both [31] and [32] use neuroevoluation to learn micro-
management. Their main difference exists in the structure of
neural network. There are two types of inputs and three output
nodes in [31]. Its input includes internal input that gives unit
surroundings, as well as external input that represents overall
game and combat information. The output neurons give unit
decisions, advance or retreat, right or left, engage enemy or
not. The network of [32] collects enemy and friendly unit
information and takes unit own health, weapon cooldown as
input. Its output nodes are simple, just fight and retreat com-
mands. Both of these works use rtNEAT to evolve networks

1170 IEEE Symposium Series on Computational Intelligence SSCI 2018

and consider four types of unit combat configurations, melee
vs melee, melee vs range, range vs melee, and range vs range.
The results are quite promising and demonstrate the methods
are suitable for fast adaptation in real time. But authors in [32]
also point out that it is hard to establish acceptation criteria
and tell when to preserve winning behavior.

Other researchers also use simulators to mimic StarCraft
micromanagement scenarios, so that squad or unit commands
can be evolved in simulation and superior solutions are yield-
ed. In [33], authors design a modular framework for simulating
AI vs. AI conflicts through an XML specification. The real-
valued behavioral parameters (28 in total) are evolved and
finally the system achieves a success rate of 68% against
the original version. But due to the large search space, each
generation takes hours and a complete run takes approximately
three days. To deal with that, [34] proposes a novel method
by evolutionary search in the space of assignments of scripts
to individual units. They combine Portfolio Greedy Search
with online evolution, and use JarCraft, an open-source combat
simulator to evaluate fitness. At last, it outperforms three other
state-of-the-art algorithms for playing different StarCraft micro
scenarios.

C. Gameplay

In addition to designing AI systems, EC is used to in-
crease StarCraft gameplay. In [35], multi-objective evoluation
algorithm is used to generate StarCraft maps. Each map is
represented by indirect representation for searching and fitness
testing, and direct representations for visualization. Multiple
fitness functions are defined based on the measurement of
playability, fairness, sill differentiation and interestingness.
The output is Pareto front, such that each point corresponds
to a viable map. Authors observe that fitness functions differ
each other and show interesting conflicts. Some objectives lead
to unsatisfied results, while some show nice features of the
generated maps.

Game balancing is another concerning factor for designers
and players. [36] uses genetic algorithm to change game
parameters to balance game. By altering the unit attack and
health parameters in the game, AI system evolves its strategies
to fight against human players, so that players will not find
it is too hard or too easy to play. Fitness is a multi-objective
function of the winning rate and the difference between de-
fault and newly evolved parameters. Results show significant
promise in improving game balancing.

V. REINFORCEMENT LEARNING

Reinforcement learning (RL) is an area of machine learning,
and is very suitable for sequential decision-making tasks. In
the last few years, deep learning has achieved remarkable
performances in various domains, including reinforcement
learning. The combination–deep reinforcement learning (DRL)
[37], can teach agents to make decisions in high-dimension
state space by an end-to-end framework, and has dramatically
improved the generalization and scalability of traditional RL

algorithms. To some extent, DRL is also a promising direction
in StarCraft AI [38].

A. Micromanagement

At present, many researchers focus on micromanagement
as the first step to study StarCraft AI, especially with DRL
methods. [39] establishes StarCraft micromanagement scenar-
ios as complex benchmarks for reinforcement learning. RL
agents have to tackle a lot of challenges, such as durative
actions, delayed rewards, and large action spaces. The authors
introduce the greedy MDP with episodic zero-order optimiza-
tion(GMEZO) algorithm that performs better than Deep Q
Networks and Policy Gradient. [40] introduces BiCNet to
play StarCraft combat games. BiCNet is a new deep multi-
agent reinforcement learning framework. It makes use of bi-
directional neural networks, and learns collaboration via a
vectorised actor-critic framework. The dependency of multiple
units is modeled by bi-directional RNNs in hidden layers, and
its gradient update is efficiently propagated through the entire
networks. BiCNet can successfully learn some coordination
strategies similar to these of professional StarCraft players.
Moreover, BiCNet is easily adaptable to various tasks with
different units. In the given scenarios, BiCNet shows better
performances than rule based methods and GMEZO.

In [39] and [40], the authors focus on developing centralized
controllers to play micromanagement. [41] proposes a multi-
agent actor-critic method to tackle decentralized microman-
agement tasks. In order to stabilize experience replay in
deep multi-agent reinforcement learning, the authors present
fingerprints and importance sampling methods. The experience
replay with fingerprints and importance sampling(XP+FP/IS)
can help DRL agents to disambiguate between episodes from
different training process. XP+FP/IS can also partially recover
performance on account of nonstationarity, and improve the
performance over centralized RL controllers. [42] dedicates to
explore more efficient state representation to break down the
complexity caused by the large state space in micromanage-
ment. The authors propose the parameter sharing multi-agent
gradient descent Sarsa(𝜆) (PS-MAGDS) algorithm to solve the
multi-agent decision making problem [43]. In addition, they
introduce curriculum transfer learning to extend the RL model
to various micromanagement scenarios. This helps to improve
the sample efficiency, and shows a competitive performance
with GMEZO and BiCNet. [44] proposes a new multi-agent
actor-critic method called counterfactual multi-agent (COMA)
policy gradients. COMA uses a centralised critic to estimate
the Q-function and decentralised actors to optimise the agents’
policies. In addition, it uses a counterfactual baseline to
address the challenges of multi-agent credit assignment. In
decentralised StarCraft micromanagement with partial observ-
ability, COMA significantly improves average performance
over other multi-agent actor-critic methods. [45] revisits the
idea of the master-slave architecture by incorporating both
perspectives within one framework, and proposes master-slave
multi-agent reinforcement learning (MS-MARL) method. MS-
MARL highlights three key ingredients, i.e. composed action

IEEE Symposium Series on Computational Intelligence SSCI 2018 1171

representation, learnable communication and independent rea-
soning. With network designed to facilitate these explicitly,
MS-MARL outperforms latest competing methods in challeng-
ing StarCraft micromanagement tasks.

Based on SC2LE, [46] proposes QMIX, a novel value-based
DRL method that trains decentralised policies in a centralised
end-to-end way. QMIX estimates joint action-values as a
complex non-linear combination of per-agent values. These
values condition only on local observations through a neural
network. The authors evaluate QMIX on a set of difficult
StarCraft II micromanagement tasks, and show that QMIX
significantly outperforms existing value-based deep multi-
agent reinforcement learning methods.

B. Build Order

Apart from micromanagement, DRL method is also used to
optimize the build order in StarCraft. This problem concerns
the order of buildings and units based on current game
situation. In contrast to hand-craft methods, [47] proposes
two DRL models: neural network fitted Q-learning (NNFQ)
and convolutional neural network fitted Q-learning (CNNFQ).
NNFQ and CNNFQ are used to build StarCraft II bots to fight
against the built-in AI in simple maps. Experimental results
show that these two models are capable of finding the most
effective production sequences to defeat opponents.

C. Navigation

In StarCraft, units need to move efficiently from one
position to another. Sometimes they have to avoid certain
obstacles and unwalkable areas. To solve this problem in
StarCraft, [48] presents value propagation (VProp), which
is a parameter-efficient differentiable planning module based
on value iteration. VProp can successfully be trained using
reinforcement learning, and scale to larger maps. Based on
VProp, units learn to navigate in dynamic StarCraft environ-
ments. Furthermore, the module enables units learning to plan
when the environment includes stochastic elements, providing
a cost-efficient learning system to build effective planners for
a variety of navigation problems.

D. Mini-games

In [3], DeepMind researchers present initial baseline results
for classical DRL agents applied to the StarCraft II do-
main. In mini-games, fully convolutional advantage actor-critic
(FullyConv-A2C) agents learn to achieve a level of beginners.
However, these agents are unable to make significant progress
on the main game. [49] proposes asymmetric self-play to build
Marine units, which greatly speeds up learning, and surpasses
the count-based approach. [50] introduces the relational DRL,
which uses self-attention to iteratively reason about the re-
lations between entities in a scene and to guide a model-free
policy. Through structured perception and relational reasoning,
this method improves the efficiency, generalization capacity,
and interpretability of conventional approaches. In SC2LE, the
relational DRL agent achieves state-of-the-art performance on
six mini-games, and surpasses human experts on four.

TABLE I
COMPARISONS OF DRL METHODS IN STARCRAFT AI.

Methods Scenarios Testbeds

GMEZO Micromanagement TrochCraft

BiCNet Micromanagement GymCraft

XP+FP/IS Micromanagement TorchCraft

PS-MAGDS Micromanagement BWAPI

COMA Micromanagement TorchCraft

QMIX Micromanagement SC2LE

(C)NNFQ Build order SC2LE

Reinforce+selfplay Build order TrochCraft

VProp Navigation TrochCraft

FullyConv-A2C Mini-games SC2LE

Relational DRL Mini-games SC2LE

VI. CONCLUSION

In this paper, we review the development of CI in StarCraft
AI. Different methods and their successful applications in
StarCraft AI are introduced. It is obvious that it is difficult if
not impossible to use a uniform framework to design an intelli-
gent system. Different tasks represent different abstraction and
involves different time spans. Upper and lower tasks mutually
interact with each other. As a consequence, a highly intelligent
StarCraft AI system requires a combination of multiple CI
techniques so that different advantages can be maximally
utilized. It also encourages a novel framework to be efficiently
implemented in the real-time environment.

REFERENCES

[1] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game AI research and com-
petition in StarCraft,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 5, no. 4, pp. 293–311, 2013.

[2] G. Synnaeve, N. Nardelli, A. Auvolat, S. Chintala, T. Lacroix, Z. Lin,
F. Richoux, and N. Usunier, “TorchCraft: a library for machine learning
research on real-time strategy games,” CoRR, vol. abs/1611.00625, 2016.

[3] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan,
S. Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt,
D. Silver, T. P. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. W.
Lawrence, A. Ekermo, J. Repp, and R. Tsing, “StarCraft II: A new
challenge for reinforcement learning,” CoRR, vol. abs/1708.04782, 2017.

[4] M. Stanescu, N. A. Barriga, and M. Buro, “Hierarchical adversarial
search applied to real-time strategy games,” in Proceedings of the
Tenth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-14), 2014, pp. 66–72.

[5] D. Churchill and M. Buro, “Incorporating search algorithms into RTS
game agents,” in Proceedings of the Eighth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-12),
2012, pp. 2–7.

[6] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for RTS
game combat scenarios,” in Proceedings of the Eighth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-
12), 2012, pp. 112–117.

[7] D. Churchill and M. Buro, “Portfolio greedy search and simulation
for large-scale combat in StarCraft,” in 2013 IEEE Conference on
Computational Intelligence and Games (CIG), 2013, pp. 1–8.

[8] N. A. Barriga, M. Stanescu, and M. Buro, “Puppet search: Enhancing
scripted behavior by look-ahead search with applications to real-time
strategy games,” in Proceedings of the Eleventh AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15),
2015, pp. 9–15.

1172 IEEE Symposium Series on Computational Intelligence SSCI 2018

[9] D. Churchill, M. Preuss, F. Richoux, G. Synnaeve, A. Uriarte, S. On-
tañnón, and M. Čertický, “StarCraft bots and competitions,” Encyclope-
dia of Computer Graphics and Games, no. 1, pp. 1–18, 2016.

[10] N. A. Barriga, M. Stanescu, and M. Buro, “Game tree search based
on non-deterministic action scripts in real-time strategy games,” IEEE
Transactions on Games, vol. 10, no. 1, pp. 69–77, 2018.

[11] A. Uriarte and S. Ontañnón, “Combat models for RTS games,” IEEE
Transactions on Games, vol. 10, pp. 29–41, 2018.

[12] D. Churchill and M. Buro, “Build order optimization in StarCraft,” in
Proceedings of the Seventh AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE-11), 2011, pp. 14–19.

[13] Z. Lin, J. Gehring, V. Khalidov, and G. Synnaeve, “STARDATA: A
StarCraft AI research dataset,” CoRR, vol. abs/1708.02139, 2017.

[14] G. Synnaeve and P. Bessiere, “A Bayesian model for RTS units control
applied to StarCraft,” in Computational Intelligence and Games, 2011,
pp. 190–196.

[15] G. Synnaeve and P. Bessière, “Special tactics: A Bayesian approach
to tactical decision-making,” in Computational Intelligence and Games,
2012, pp. 409–416.

[16] H. C. Cho, K. J. Kim, and S. B. Cho, “Replay-based strategy prediction
and build order adaptation for StarCraft AI bots,” in 2013 IEEE
Conference on Computational Intelligence and Games (CIG), 2013, pp.
1–7.

[17] E. Dereszynski, J. Hostetler, A. Fern, T. Dietterich, T. T. Hoang, and
M. Udarbe, “Learning probabilistic behavior models in real-time strategy
games,” in Proceedings of the Seventh AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-11), 2011, pp.
20–25.

[18] G. Synnaeve and P. Bessiere, “A Bayesian model for opening prediction
in RTS games with application to StarCraft,” in Computational Intelli-
gence and Games, 2011, pp. 281–288.

[19] G. Synnaeve and P. Bessière, “A Bayesian model for plan recognition in
RTS games applied to StarCraft,” in Proceedings of the Seventh AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE-11), 2011, pp. 79–84.

[20] N. Justesen and S. Risi, “Learning macromanagement in StarCraft from
replays using deep learning,” in 2017 IEEE Conference on Computa-
tional Intelligence and Games (CIG), 2017, pp. 162–169.

[21] H. Cho, H. Park, C. Y. Kim, and K. J. Kim, “Investigation of the effect
of fog of war in the prediction of StarCraft strategy using machine
learning,” Computers in Entertainment, vol. 14, no. 2, 2016.

[22] Y. N. Ravari, S. Bakkes, and P. Spronck, “StarCraft winner prediction,”
in Proceedings of the Twelve AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE-16), 2016, pp. 2–8.

[23] G. Erickson and M. Buro, “Global state evaluation in StarCraft,” in
Proceedings of the Tenth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE-14), 2014, pp. 112–118.

[24] B. G. Weber and M. Mateas, “A data mining approach to strategy
prediction,” in 2009 IEEE Conference on Computational Intelligence
and Games (CIG), 2009, pp. 140–147.

[25] A. A. S�́�nchez-Ruiz and M. Miranda, “A machine learning approach to
predict the winner in StarCraft based on influence maps,” Entertainment
Computing, vol. 19, pp. 29–41, 2017.

[26] J. Young and N. Hawes, “Evolutionary learning of goal priorities in a
real-time strategy game,” in Proceedings of the Eighth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-
12), 2012.

[27] P. Garcı́a-Sánchez, A. P. Tonda, A. M. Garcı́a, G. Squillero, and J. J. M.
Guervós, “Towards automatic StarCraft strategy generation using genetic
programming,” 2015 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 284–291, 2015.

[28] H. Köstler and B. Gmeiner, “A multi-objective genetic algorithm for
build order optimization in StarCraft II,” KI - Künstliche Intelligenz,
vol. 27, pp. 221–233, 2013.

[29] N. Justesen and S. Risi, “Continual online evolutionary planning for in-
game build order adaptation in StarCraft,” in Proceedings of the Genetic
and Evolutionary Computation Conference, ser. GECCO ’17, 2017, pp.
187–194.

[30] J. B. Svendsen and E. A. Rathe, “Micromanagement in StarCraft using
potential fields tuned with a multi-objective genetic algorithm,” Master’s
thesis, Norwegian University of Science and Technology, 2012.

[31] I. Gabriel, V. Negru, and D. Zaharie, “Neuroevolution based multi-
agent system for micromanagement in real-time strategy games,” in

Proceedings of the Fifth Balkan Conference in Informatics, ser. BCI
’12, 2012, pp. 32–39.

[32] J. S. Zhen and I. Watson, “Neuroevolution for micromanagement in the
real-time strategy game StarCraft: Brood War,” in AI 2013: Advances
in Artificial Intelligence, S. Cranefield and A. Nayak, Eds., 2013, pp.
259–270.

[33] N. Othman, J. Decraene, W. Cai, N. Hu, M. Y. H. Low, and A. Gouail-
lard, “Simulation-based optimization of StarCraft tactical AI through
evolutionary computation,” in 2012 IEEE Conference on Computational
Intelligence and Games (CIG), Sept 2012, pp. 394–401.

[34] C. Wang, P. Chen, Y. Li, C. Holmgård, and J. Togelius, “Portfolio online
evolution in StarCraft,” in Proceedings of the Tweleveth AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE-16), 2016, pp. 114–120.

[35] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and
G. Yannakakis, “Multiobjective exploration of the StarCraft map space,”
in Proceedings of the 2010 IEEE Conference on Computational Intelli-
gence and Games (CIG), 2010, pp. 265–272.

[36] M. Morosan and R. Poli, “Automated game balancing in Ms PacMan
and StarCraft using evolutionary algorithms,” in Applications of Evolu-
tionary Computation, G. Squillero and K. Sim, Eds. Cham: Springer
International Publishing, 2017, pp. 377–392.

[37] D. Zhao, K. Shao, Y. Zhu, D. Li, Y. Chen, H. Wang, D. Liu, T. Zhou,
and C. Wang, “Review of deep reinforcement learning and discussions
on the development of computer Go,” Control Theory and Applications,
vol. 33, no. 6, pp. 701–717, 2016.

[38] Z. Tang, K. Shao, D. Zhao, and Y. Zhu, “Recent progress of deep
reinforcement learning: from AlphaGo to AlphaGo Zero,” Control
Theory and Applications, vol. 34, no. 12, pp. 1529–1546, 2017.

[39] N. Usunier, G. Synnaeve, Z. Lin, and S. Chintala, “Episodic exploration
for deep deterministic policies: an application to StarCraft micromanage-
ment tasks,” in International Conference on Learning Representations,
2017.

[40] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang,
“Multiagent bidirectionally-coordinated nets for learning to play Star-
Craft combat games,” CoRR, vol. abs/1703.10069, 2017.

[41] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-agent
reinforcement learning,” in International Conference on Machine Learn-
ing, 2017.

[42] K. Shao, Y. Zhu, and D. Zhao, “StarCraft micromanagemen-
t with reinforcement learning and curriculum transfer learning,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
DOI:10.1109/TETCI.2018.2823329, 2018.

[43] ——, “Cooperative reinforcement learning for multiple units combat in
StarCraft,” in IEEE Symposium Series on Computational Intelligence,
2017, pp. 1–6.

[44] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in The 32nd AAAI Con-
ference on Artificial Intelligence, 2018.

[45] X. Kong, B. Xin, F. Liu, and Y. Wang, “Revisiting the master-slave
architecture in multi-agent deep reinforcement learning,” CoRR, vol.
abs/1712.07305, 2017.

[46] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. N. Foerster, and
S. Whiteson, “QMIX: monotonic value function factorisation for deep
multi-agent reinforcement learning,” CoRR, vol. abs/1803.11485, 2018.

[47] Z. Tang, D. Zhao, Y. Zhu, and P. Guo, “Reinforcement learning for build-
order production in StarCraft II,” in The 8th International Conference
on Information Science and Technology (ICIST 2018), 2018.

[48] N. Nardelli, G. Synnaeve, Z. Lin, P. Kohli, P. H. S. Torr, and N. Usunier,
“Value propagation networks,” CoRR, vol. abs/1805.11199, 2018.

[49] S. Sukhbaatar, I. Kostrikov, A. Szlam, and R. Fergus, “Intrinsic mo-
tivation and automatic curricula via asymmetric self-play,” CoRR, vol.
abs/1703.05407, 2017.

[50] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin,
K. Tuyls, D. Reichert, T. Lillicrap, E. Lockhart et al., “Relational deep
reinforcement learning,” CoRR, vol. abs/806.01830, 2018.

IEEE Symposium Series on Computational Intelligence SSCI 2018 1173

