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A B S T R A C T

When using spectroscopic instrumentation for quantitative analysis of mixture, spectral intensity non-
linearity and peak shift make it challenging for building calibration model. In this study, we investigated
the performance of a nonlinear model, namely nonlinear least squares with local polynomial interpolation
(NLSLPI). In NLSLPI, the parameters to be optimized are the concentrations of the components. Levenberg-
Marquardt (L-M) method is used to solve the nonlinear-least-squares optimization problem and local
polynomial interpolation is used to generate the nonlinear function for each component. We tested the
robustness of NLSLPI on a computer-simulation dataset. We also compared NLSLPI, in terms of RMSEP, to
partial least squares (PLS), classical least squares (CLS) and piecewise classical least squares (PCLS) on a
real-world dataset. Experimental results demonstrate the effectiveness of the proposed method.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Infrared (IR) spectroscopic analysis, whose advantages are no
requirement for sample preparation, fast response and high accu-
racy, has been used for the quantitative analysis of mixture in wide
applications [1-3]. In order to estimate the concentration of an
interesting component from a mixture spectrum which usually con-
tains hundreds of measurement values, chemometric algorithms are
developed.

Usually, two situations will be met when dealing with IR spec-
troscopy. The first one is that only one or more components among
the mixture are interested and most information (such as the refer-
ence spectrum of the interested component) are not obtainable. To
deal with this case, a large amount of representative samples of mix-
ture together with the concentrations of the interested component
are needed. Inverse modeling methods such as principle component
regression (PCR) [4] and partial least squares (PLS) [5] are usually
applied to predict the concentrations of the future samples. The sec-
ond case is that the mixture contains several major components
and the reference spectra of these components are known. In this
case, classical least squares (CLS) [6,7] is usually applied to simulate
the spectrum of the mixture. Assuming that the mixture spectrum

* Corresponding author.
E-mail address: silong.peng@ia.ac.cn (S. Peng).

is a linear combination of reference spectra, CLS works by finding
the concentrations that minimizes difference between the measured
spectrum and the simulated spectrum. When the linear assumption
failed, the piecewise classical least squares (PCLS) was used [8,9].
In PCLS, there are multiple reference spectra for each target com-
ponent and then multiple CLS sub-models are generated. The two
sub-models that predict concentrations in the measured spectrum
nearest to those of specific reference spectra included in the set of
sub-models are selected. The prediction value of PCLS is a weighted
sum of the values of the selected sub-models. Even though CLS is
widely used in commercial chemometric software, the investigation
of its nonlinear extension is rare.

In this study, we focus on the second case with nonlinear
assumption. The nonlinearity is presented in two aspects [10,11]. The
first is a nonlinear relationship between spectral intensity and con-
centration. The second is peak shift with increasing concentration.
In our point of view, CLS can still be used after some mathemati-
cal transformation when only the first nonlinearity presents. When
the second nonlinearity or a combination of them present, nonlinear
least squares with local polynomial interpolation (NLSLPI) is intro-
duced to deal with quantitative analysis. Nonlinear least squares
(NLS) has been proved to be a powerful tool for handling nonlin-
ear systems [12,13]. In this study, NLS was employed to estimate
the concentrations of the interested components. The Levenberg-
Marquardt (L-M) method was used to solve the NLS problem. When
using L-M, a difficulty is to estimate the function value together with
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its derivative, which are unknown usually. In this study, local poly-
nomial interpolation is used to generate the nonlinear function for
each component.

In the following, we will discuss the nonlinear system and intro-
duce NLSLPI in Section 2. Experimental data and results are pre-
sented in Sections 3 and 4 respectively. Finally, we make conclusions
of NLSLPI in Section 5.

2. Methodology

2.1. Nonlinear Model of Quantitative Analysis

Given that the mixture is composed of J components, whose spec-
tral responses are linear to the concentrations, CLS can be used to
predict the concentration of each component from the spectrum of
the mixture:

x̂ = argmin
x

∥∥∥∥∥∥s −
J∑

j=1

xj f j

∥∥∥∥∥∥
2

2

(1)

where the mixture spectrum s is row vector of length p. xj and fj rep-
resent the concentration and the reference spectrum for component
j. x = [x1, x2, . . . , xj]ᵀ is the concentration vector.

If the linearity condition can not be guaranteed, for example,
the concentration falls outside the linear range, Eq. (1) should be
modified:

x̂ = argmin
x

∥∥∥∥∥∥s −
J∑

j=1

f̃ j(xj)

∥∥∥∥∥∥
2

2

(2)

where the spectral response function f̃ j(xj) can be any function of the
concentration, not necessarily linear one. When spectral response
function exhibits the first nonlinearity, we only need to use a nonlin-
ear function gj(xj) to represent the nonlinear relationship:

f̃ j(xj) = gj(xj) f j (3)

In practice, gj(xj) can be generated by interpolating to the refer-
ence spectra with various concentrations of component j. There-
fore, instead of estimating true concentration directly, we estimate
pseudo-concentration first:

ĝ = argmin
g

∥∥∥∥∥∥s −
J∑

j=1

gj f j

∥∥∥∥∥∥
2

2

(4)

where g = [g1, g2, . . . , gJ]ᵀ is the pseudo-concentration vector. Then
the true concentration can be obtained by:

x̂j = g−1
j

(
ĝj

)
, j = 1, 2, . . . , J (5)

where g−1
j is the inverse function of gj.

When the mixture exhibits the combination of two nonlinear-
ity, the above linear squares method fails. Then the nonlinear least
squares method must be developed to predict the components of
the mixture. In this study, Levenberg-Marquardt (L-M) method is
employed.

2.2. Levenberg-Marquardt Method

L-M method is a classical method for solving nonlinear least
squares, which is based on the trust-region framework [14]. In this

study, L-M method is used for minimizing the following objective
function:

l(x) =
∥∥s − F(x)

∥∥2
2 (6)

where F(x) =
∑J

j=1 f̃ j(xj) is the sum of the pure component spectra.
L-M method performs optimization in a stepwise manner. Sup-

pose that in iteration k, the estimation is xk, according to L-M method
the solution for updating xk can be calculated as following:

d =
(

Jkᵀ Jk + kI
)−1

Jkᵀ
(

s − Fk
)

(7)

where d is the solution for updating xk and Fk = F(xk). J(x) = ∂F
∂x is

first derivative matrix and Jk = J(xk). k is the regularization param-
eter and it is critical to the convergence speed of the optimization.

When k is large enough,
(

Jkᵀ Jk + kI
)−1 ≈ 1/k and d can be regarded

yielded by Steepest Decent method. In this case, d guarantees the
reduction of the objective function but with slow convergence speed.
When k = 0, d can be regarded yielded by Quasi Newton method. In
this case, Jkᵀ Jk is not necessarily invertible and does not guarantees
the reduction of the objective function. However, when the reduction
condition is fulfilled, Quasi Newton method converges to the mini-
mum much faster than Steepest Decent method. In practice, k usually
decreases from a relatively large value and we check the reduction
condition after each decrease. The smallest value which fulfills the
reduction condition is selected as the final solution of k.

After obtaining d, we update xk by:

xk+1 = xk + d (8)

2.3. Local Polynomial Interpolation

In order to implement L-M method in our study, F(x) and J(x) are
obtained by interpolating to reference spectra with various concen-
trations. Polynomial interpolation is a common method for interpo-
lation [15]. Suppose that (n + 1) reference spectra are available, then
polynomial interpolation with degree of n can be obtained:

f̃ j(xj) = aj0 + xjaj1 + x2
j aj2 . . . + xn

j ajn, j = 1, 2, . . . , J (9)

where aj0, aj1, . . . , ajn are the polynomial coefficients for component
j. The derivative of Eq. (9) is:

∂ f̃ j

∂
xj = aj1 + 2xjaj2 + . . . + nxn−1

j an, j = 1, 2, . . . , J (10)

Therefore, we can obtain:

F(x) =
∑ J

j=1 f̃ j
(
xj

)
J(x) =

∂F
∂x

=

[
∂ f̃ 1

∂x1
,
∂ f̃ 2

∂x2
, . . . ,

∂ f̃ J

∂xJ

]
(11)

Local polynomial interpolation (LPI) aims to find the closest data
points to perform interpolation with low degree polynomial. For
example, when three is set to be the polynomial degree, four pure

component samples,
(

x(1)
j , f̃

(1)
j

)
,
(

x(2)
j , f̃

(2)
j

)
,
(

x(3)
j , f̃

(3)
j

)
,
(

x(4)
j , f̃

(4)
j

)
,

which satisfy the condition of x(1)
j ≤ x(2)

j ≤ xj ≤ x(3)
j ≤ x(4)

j are located,
and then Eqs. (9) and (10) are employed. If xj is close to the endpoints,
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linear extension is used to generate virtual data points. The advan-
tage of LPI is that it can model the local feature of the data well and
avoid Runge’s phenomenon [15] at the same time.

2.4. NLSLPI Algorithm

The framework of NLSLPI algorithm is described in the following.
Given the spectra of pure components with various concentrations
and the measured spectrum of the mixture s, the goal is to estimate
the concentrations of each component x = [x1, x2, . . . , xJ]ᵀ. Set the
initial value of the regularization parameter k0 and the stopping tol-
erance of L-M iteration e. Step 1: Initiate the value of the solution
x0; Step 2: In the k-th iteration, use local polynomial interpolation to
calculate Fk and Jk; Step 3: Calculate d according to according to Eq.
(7). When k decreases from k0 to 0, the smallest value which fulfills
the condition of reduction of objective function is selected. Step 4:
Update the estimated concentrations by xk+1 = xk + d; Step 5: Set
k = k + 1 and return to Step 2 until ‖d ‖< e satisfies.

3. Experimental

3.1. Dataset

In this study, two datasets, one is the simulation data and the
other is gas mixture data, are applied to validate the proposed
method. The simulation data is applied to demonstrate the robust-
ness of the proposed method while the gas mixture data is applied
to demonstrate the advantage of the proposed method for a real
dataset.

3.1.1. Simulation Data
There are four components in the simulation study, whose spec-

tra are generated by the following equation:

f (xj) = aj(xj)e
− (t−lj(xj))2

s2
j (12)

where xj is the concentration of component j, t represents the range
of spectra. aj(xj) is a nonlinear function of xj, which leads to nonlin-
ear spectral intensity. l j(xj) is a linear function of xj, which leads to
peak shift. s j represents the width of spectral peak. For the param-
eters setting, we set t = 1 : 200; xj increases from 0 to 1 with the
interval of 0.1 and thus there are eleven reference spectra for each
component. The details are shown in Table 1.

The mixture spectra are composed of all combinations of the pure
spectra of concentrations of 0.25, 0.55 and 0.85 of each component.
Therefore, there are 81 mixture spectra in the test set. We add Gaus-
sian noise with different level to the mixture spectra. The influence
of spectral overlap and spectral intensity to the robustness of NLSLPI
is studied.

3.1.2. Gas Mixture Data
In this study, the gas samples were prepared and the spectra

were measured in the laboratory. There were seven gases involved in
this experiment, which were methane, ethane, propane, iso-butane,
normal butane, iso-pentane and normal pentane. Pure gases with

Table 1
The generation parameters of the reference spectra of different components in simu-
lation study.

a x l s

Comp. 1 log10(9x + 1) 0:0.1:1 45 + 5x 30
Comp. 2 log10(9x + 1) 0:0.1:1 60 + 5x 30
Comp. 3 log10(9x + 1) 0:0.1:1 105 + 5x 30
Comp. 4 0.4log10(9x + 1) 0:0.1:1 155 + 5x 30

standard concentrations (100%, 10%, 5%, 1%) were blended with nitro-
gen to generate the designed concentrations. The process of gas
mixing was controlled by a multichannel automated gas divider
(GAINWAY GW-5000).

The calibration set was composed of pure gases at different
concentrations. To ensure that the calibration samples were rep-
resentative, the concentration of each gas varied from zero to an
empirical value determined by practical situation. For methane, we
observed that the nonlinearity in the low concentration range was
obvious. The spectral areas of three different wavelength intervals
were calculated and the scatter plots of spectral area-concentration
were drawn (Supporting Information, Fig. S1). Therefore, the den-
sity of samples in the low concentration range was higher than the
density in the high concentration range. The median of the calibra-
tion concentrations of methane favored low concentration. For other
component gases, the responses of the spectra were linear. There-
fore, the calibration concentrations were set to even-spacing. The
concentrations of the pure gases are listed in Table 2. The test set was
composed of nine samples of gas mixture and the concentrations of
the component gases are listed in Table 3. The concentrations were
carefully chosen so that the concentration ranges were inside of the
calibration concentrations.

The mid-infrared (MIR) spectra of the gas samples, collected with
a fourier transform infrared spectrometer (Bruker Alpha), were mea-
sured from 4000 to 1000 cm−1 with 64 scans at the resolution of
4 cm−1. White cell with the pathlength of 2.4 m was used as mea-
suring accessory. A temperature controller was used to keep the
measuring temperature constant. Fig. 1 shows the process of gas
mixing and FITR measurements.

3.2. Calculations

In our experiment, four quantitative models, PLS, CLS, PCLS and
NLSLPI, were used for the determination of the gas mixture data. To
generate the calibration set for PLS, additional gas mixture samples
were prepared, from which the calibration spectra were collected.
The simplest model (fewest number of latent variables) such that
the predicted residual error sum of squares (PRESS) for this model
was not significantly greater than the minimum PRESS was adopted.
Therefore, a criterion [16] based on F-test was used to select the
number of latent variables. In this work, the significance level of the
F-test was set to 0.25 and PRESS was estimated for up to 10 factors by
5-fold cross-validation. For PCLS, since methane showed strong non-
linearity on the spectral response, eleven pure spectra were selected
as reference spectra. For the other component gases, one pure spec-
trum was selected as reference spectrum for each component since
they are linear systems. The concentrations of the reference spectra
for PCLS are listed in Table 4. CLS was used as benchmark model. The
reference spectra of CLS were the same as PCLS except that only one
reference spectrum was used for methane, whose concentration was
0.497.

Root mean square error of prediction (RMSEP) was used as index
of the quantitative performance for each model. RMSEP is calculated
by:

RMSEPj =

√√√√ N∑
i=1

(xij − x̂ij)2, j = 1, 2, . . . , J (13)

where xij and x̂ij are the reference concentration and the predicted
concentration of component j in sample i respectively. N is the
number of mixture samples.

All computations were performed in Matlab 2015a (Mathworks,
Inc., Natick, MA, USA)and run on a personal computer with 2.20-GHz
Intel Core 2 processor, 4 GB RAM, and Windows 7 operating system.
The programs were written in-house using Matlab language.
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Table 2
The concentrations of the pure gases samples (unit: %).

Methane Ethane Propane Iso- Normal Iso- Normal
butane butane pentane pentane

Number of samples 16 12 21 21 20 16 16
Minimum 0 0 0 0 0 0 0
Median 0.849 0.3007 0.2374 0.2373 0.104 0.1716 0.1646
Maximum 4.3362 0.5739 0.4841 0.5025 0.1946 0.3842 0.3838

Table 3
The component concentrations of gas mixture samples (unit: %).

Sample Methane Ethane Propane Iso- Normal Iso- Normal
number butane butane pentane pentane

1 0 0.4058 0 0.02 0.0189 0.0157 0.0115
2 0 0 0 0.0124 0.0217 0.0117 0.0191
3 0 0.2281 0.019 0 0.0087 0.018 0.02
4 0.2874 0.3017 0.0172 0 0.0095 0.0087 0.0127
5 0.4616 0 0.0334 0.0063 0 0.0064 0.007
6 0.5794 0 0.0575 0.0119 0.0085 0.0082 0.0091
7 0.8364 0 0 0.0274 0.0193 0.0175 0.0292
8 1.2594 0.2694 0 0.0145 0 0.013 0.0141
9 1.5668 0.2652 0 0.0146 0.0145 0.0132 0.0142

4. Results and Discussion

4.1. Simulation Data

In the simulation settings, the pure spectra of each component
contain both intensity nonlinearity and peak shift. The reference
spectra dataset for NLSLPI are shown in Fig. 2. Among the four com-
ponents, components 1 and 2 suffer from stronger spectral overlap
than components 3 and 4. The spectral intensity of component 4
is lower than those of the other components. The distribution of
the predictive errors of NLSLPI was analyzed under different noise
levels. The polynomial degree of NLSLPI was set to three for the sim-
ulated data. Gaussian noise was added to the mixture spectra and the
noise level was controlled by its standard deviation which denoted
as snoise. The value of snoise increased from 0 to 0.030 with an interval
of 0.005.

Firstly, RMSEP was used to present an overall description of the
predictive errors (Fig. 3). It could be seen that component (compo-
nent 3) suffered from weak spectral overlap was more robust to noise
than components (components 1 and 2) suffered from strong spec-
tral overlap. Moreover, component (component 3) with high spectral
intensity was more robust than component (component 4) with low
spectral intensity. Secondly, we analyzed the predictive errors by
assigning them to different intervals. Under each noise level, we

Gas outlet

Gas cell

Temperature 
controller

Thermocouple

FTIR spectrometer Computer

Gas inlet

Gas 1
...

Gas divider

Gas K

Fig. 1. The process of gas mixing and FTIR measurements.

counted the numbers of samples whose predictive errors fell into the
intervals of ±0.01, ±0.02, ±0.03, ±0.05 and ±0.07 respectively and
calculated the ratios of the interval-samples to all samples. These
intervals were called confidence interval and the ratios were called
confidence level. Tables 5–8 show the calculation results of the confi-
dence levels. We considered that the confidence interval was reliable
when its confidence level was larger than 0.95. In comparison, the
confidence intervals of component 3 were the most anti-noise. For
instance, to achieve a reliable interval of ±0.01, the largest noise
level of component 3 was 0.015, while it was smaller than 0.005 for
component 1, and it was 0.005 for both components 2 and 4.

4.2. Gas Mixture Data

Methane exhibited complex nonlinearity on the MIR spectra. In
this study, the range of 3300–2400 cm−1 was selected for analyzing
since all component gases had the strongest absorbance in this range.
Fig. 4 (a) shows the spectra of pure methane in the selected range.
Fig. 4 (b) shows that peak shift presents in the spectra of methane.
Fig. 4 (c) shows the absorbance vs concentration at 3014 cm−1,
where intensity nonlinearity presents. It was well known that each
wavenumber corresponded to a specific vibrational phenomena and
did not depend on concentration. In this case, the phenomenon of
peak shift might be due to the overlap of very similar energetic
transitions. Specially in gas phase, we expected observable “peak
shift” since the change in concentration might dramatically affect
intermolecular distances and promote overlapping signals.

NLSLPI performs spectrum decomposition because it determi-
nates a group of component spectra which minimize the difference
between the sum of the estimated spectra and the spectrum of
the mixture. The component spectra are obtained by interpolating
the reference spectra with local polynomial. The polynomial degree

Table 4
The concentrations of the reference spectra for PCLS in gas mixture data.

Methane Ethane Propane Iso- Normal Iso- Normal
butane butane pentane pentane

0.0935∼ 0.329 0.057 0.0526 0.025 0.0266 0.0288
2.1504
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Fig. 2. Representative reference spectra in the simulation study. Blue, red, green and
black curves represent the spectra of component 1, 2, 3 and 4 respectively. The dash
line denotes the center of the peak at concentration 0.1 for each component. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

of NLSLPI was set to one for the gas mixture data. Fig. 5 shows
the result of spectrum decomposition for sample 4 of gas mixture.
It can be seen that NLSLPI gave small residual of spectral fitting.
The peak at 3016 cm−1 of the mixture spectrum was due to the
spectrum of methane. Ethane made the largest contribution to the
mixture spectrum while iso-butane and normal butane made little
contribution.

Finally, we investigated the predictive results of NLSLPI of the gas
mixture data. The results of CLS, PLS and PCLS were used for compar-
ison. In this study, two combination rules were used for PCLS. One is
the simple average rule and the other is the weighted average rule
used in Ref. [8]. The RMSEP values for each component gas are listed
in Table 9. For methane, the RMSEP of CLS was the highest, which
was due to the highly nonlinearity of methane spectra and yet CLS

Fig. 3. The RMSEP of each component under different intensities of Gaussian noise.
Blue, red, green and black lines represent components 1, 2, 3 and 4 respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 5
The estimated confidence levels of different confidence intervals (CI) under different
noise levels (NL) for component 1.

NL CI

±0.01 ±0.02 ±0.03 ±0.05 ±0.07

0.005 0.93 1 1 1 1
0.010 0.84 0.95 0.99 1 1
0.015 0.69 0.88 0.93 0.98 0.99
0.020 0.64 0.86 0.94 0.98 0.99
0.025 0.59 0.81 0.89 0.96 0.96
0.030 0.53 0.78 0.90 0.98 0.99

The bold values indicate that the confidence level is larger than 0.95.

Table 6
The estimated confidence levels of different confidence intervals (CI) under different
noise levels (NL) for component 2.

NL CI

±0.01 ±0.02 ±0.03 ±0.05 ±0.07

0.005 1 1 1 1 1
0.010 0.89 1 1 1 1
0.015 0.67 0.94 1 1 1
0.020 0.67 0.93 0.98 1 1
0.025 0.63 0.85 0.90 0.99 1
0.030 0.59 0.77 0.93 0.99 1

The bold values indicate that the confidence level is larger than 0.95.

used only one reference spectrum. PLS was a linear method but many
researches found that it could deal with nonlinearity in some degree
by using more latent variables. It could be seen that the RMSEP of PLS
was much lower than CLS. The number of latent variables of methane
was 9, which was larger than the number of components, 7. Details
of the PLS could be referred to Supporting Information, Table S1. Both
PCLS and NLSLPI used multiple reference spectra for modeling non-
linearity and they yielded considerable drop in RMSEP values when
compared with CLS. Moreover, it could be seen that different com-
bination rules lead to different predictive performance for PCLS. The
advantage of NLSLPI over PCLS was that NLSLPI employed a single
model and thus it did not need to consider the problem of sub-model
combination. For the rest six component gases, the results of NLSLPI
were better than or comparable to those of CLS, PLS and PCLS.

Table 7
The estimated confidence levels of different confidence intervals (CI) under different
noise levels (NL) for component 3.

NL CI

±0.01 ±0.02 ±0.03 ±0.05 ±0.07

0.005 1 1 1 1 1
0.010 1 1 1 1 1
0.015 0.95 1 1 1 1
0.020 0.89 1 1 1 1
0.025 0.86 1 1 1 1
0.030 0.70 0.95 0.99 1 1

The bold values indicate that the confidence level is larger than 0.95.

Table 8
The estimated confidence levels of different confidence intervals (CI) under different
noise levels (NL) for component 4.

NL CI

±0.01 ±0.02 ±0.03 ±0.05 ±0.07

0.005 1 1 1 1 1
0.010 0.89 0.99 1 1 1
0.015 0.72 0.95 1 1 1
0.020 0.64 0.88 0.95 1 1
0.025 0.53 0.78 0.89 0.98 0.99
0.030 0.46 0.70 0.79 0.98 1

The bold values indicate that the confidence level is larger than 0.95.
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(a)

(b)

(c)

concentra�on 
increases

Fig. 4. Nonlinearity of methane spectra. (a) The spectra of pure methane in the region
of 3300–2400 cm−1; (b) the detail of the spectral peak, the red bold line represents
the peak position with the increase of concentration; (c) absorbance vs concentration
at 3014 cm−1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Normal 

Fig. 5. Spectrum decomposition result of NLSLPI for sample 4 of gas mixture. Dash
line denotes the position of 3016 cm−1.

Table 9
The RMSEP of different quantitative methods for each component gas.

Method Methane Ethane Propane Iso- Normal Iso- Normal
butane butane pentane pentane

CLS 0.3115 0.0414 0.0095 0.0041 0.0134 0.0018 0.0051
PLS 0.0845 0.0311 0.0067 0.0033 0.0077 0.0034 0.0060
PCLS_saa 0.0825 0.0357 0.0092 0.0038 0.0138 0.0018 0.0062
PCLS_wab 0.1295 0.0335 0.0097 0.0039 0.0132 0.0016 0.0069
NLSLPI 0.0416 0.0354 0.0053 0.0037 0.0070 0.0020 0.0048

Bold indicates the smallest value.
a PCLS with the simple average combination rule.
b PCLS with the weighted average combination rule.

5. Conclusion

In this study, we introduced a nonlinear-least-squares model for
quantitative analysis of the mixture. The goal of NLSLPI is to tackle
with the problem that the component spectra show complex nonlin-
earity including intensity nonlinearity and peak shift. We proposed
to use local polynomial interpolation to approximate such nonlin-
earity. The simulation study showed that the performance of NLSLPI
was related to spectral overlap and spectral intensity. The gas mix-
ture study showed that NLSLPI could give better performance than
PLS, CLS and PCLS in practice. Therefore, NLSLPI can be considered as
an alternative for modeling nonlinear system. Although NLSLPI was
evaluated on MIR spectra, it can be applied to analyze other types
of spectra data such as NIR spectra and Raman spectra. Some fac-
tors shall be considered to improve the performance of NLSLPI. For
example, the components may react with each other when they are
mixed; Baseline may exist when measuring spectra. Our future study
will focus on extending NLSLPI to tackle with these factors.
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