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Multiplicative light scattering has posed great challenge in near-infrared (NIR) quantitative analysis. When
estimating the scattering parameters, uninformative variables for scattering effects may bias the estimation.
Weighted least squares (WLS) can be used to avoid the influence of the uninformative variables. In this work, we
proposed an improved weighted multiplicative scatter correction algorithm with the use of variable selection
(WMSCVS). Baseline is removed first and then variable selection is used to obtain the optimal weights of WLS in
estimating multiplicative parameters. The variable selection algorithm, which is designed based on model pop-
ulation analysis (MPA), implements an iterative optimization process. In each iteration, weighted bootstrap
sampling (WBS) is used to generate variable subsets and exponentially decreasing function (EDF) is used to
control the number of sampled variables. The interpretability and stability of the variable selection results as well
as the predictive performance of the corrected spectra were investigated by using two NIR datasets. The exper-
imental results showed that the proposed WMSCVS could give better predictive performance than the state-of-art

correction methods.

1. Introduction

In recent years, near-infrared (NIR) spectroscopy has been more and
more widely used [1,2]. Partial least squares (PLS) is usually used to
build calibration model for quantitative analysis [3]. When the samples
to be analyzed are solid or emulsions and dispersions, multiplicative light
scattering effects due to the variations of optical path lengths deteriorate
the performance of PLS model. Multiplicative scatter correction (MSC)
[4] and standard normal variate (SNV) [5] are the most widely-used
scatter correction methods for NIR spectra. MSC attempts to estimate
the coefficient which describes the scattering by regressing the spectrum
to correct onto a reference spectrum while SNV subtracts the spectrum
mean from each spectral variable and subsequently dividing that value
by the standard deviation of the spectrum. However, when the raw
spectra contain large chemical variations, the correction performance of
MSC and SNV is poor.

The basic MSC model has been extended to include new parameters to
account for the physical and chemical factors that affect the measured
absorbance spectra, the reputed extended multiplicative signal

correction (EMSC) [6,7]. The inverse MSC models are termed inverted
scatter correction (ISC) [8] and extended inverted signal correction
(EISC) [9]. The linear and quadratic terms of wavelengths and a
quadratic term relating to the spectrum are involved in EISC model. The
prior of pure spectra of sample components is also involved to extend the
EISC model. When the prior is available, the EMSC and EISC can show
good performance of scatter correction [10]. However, if the pure com-
ponents spectra information is not available, the parameter estimation of
the above methods tends to be biased [11].

A solution to the biased estimation is to use some of the variables, or
wavelengths, for parameter estimation instead of using the whole spec-
trum. The reason is that the influence of uninformative variables for
scattering effects can be avoided. Based on the framework of SNV, Bi
et al. [12] proposed interference dominant region correction (IDRC),
which selected a region dominated by scattering effects for estimating
the SNV parameters. The selection of the interference dominant region is
based on trial-and-error and the root mean square error of
cross-validation (RMSECV) of PLS model is used as the measurement of
the goodness of the selection. Based on the framework of EMSC,
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Gallagher et al. [13] proposed to use weighted least squares (WLS) for
parameter estimation, which sets the weights of spectral regions known
to contain interesting features to zero. However, the prior of the location
of interesting features is usually not available. Therefore, an automatic
way of setting the weights is in urgent need.

Variable selection has been popular in chemometrics [14-16].
Model population analysis (MPA) is a general framework for designing
new chemometrics algorithms and it can be employed to design variable
selection algorithms [17-19]. MPA emphasizes that information should
be extracted by analyzing a number of sub-models statistically since the
results or parameters of one single model are not always reliable. In
detail, MPA usually contains three stages: (1) sub-datasets generation
procedure, where random sampling method is applied to obtain a series
of sub-datasets from variable or sample space, such as jackknife sam-
pling, weighted bootstrap sampling (WBS) [18] and binary matrix
sampling (BMS) [20]; (2) modeling procedure, where a series of
sub-models are established based on sub-datasets generated in the
previous step; (3) statistical analysis procedure, where interested out-
puts (e.g., RMSECV value) of all these sub-models are analyzed
statistically.

Inspired by variable selection's powerful ability to detect informa-
tive variables for a specific task, we proposed to use variable selection to
obtain the weights of WLS in estimating multiplicative parameters,
termed as weighted multiplicative scatter correction with variable se-
lection (WMSCVS). The variable selection was performed on baseline-
removed spectra. The variable selection algorithm was designed
based on MPA. WBS was used to sample variable and exponentially
decreasing function (EDF) [21] was used to control the number of
sampled variables. There are two advantages when considering using
variable selection based on MPA to set the weights of WLS. One is that
the variable selection can ensure the optimality of the performance of
scatter correction. The other is that MPA extracts information from a
large number of sub-models, which is beneficial for the stability of
variable selection.

2. Method
2.1. Multiplicative light scattering

For relatively simple systems, the effects of light scattering can be
approximated by the following EMSC model [7]:
X, = a,‘l + b,’x,“dwm + d,l + e,~/12 + €& (1)
where the row vectors x; and X; . are the measured absorbance spec-
trum and the theoretical spectrum of the ith sample respectively. 1 is a
row vector with its elements equal to unity. The parameters a; and b;
denote the additive and multiplicative effects of light scattering. d; and e;
are introduced to account for the smooth wavelength-dependent spectral
variations. The wavelength row vector A is a linear function of the
wavelength, and the entries lie between —1 and +1. ¢; captures the un-
known sources of spectral variation.

2.2. Baseline removal

The influence of the baseline offset (a;) and the smooth wavelength-
dependent spectral variations (d; and e;) can be removed by projecting
the measured spectrum x; onto the orthogonal complement of space
spanned by the row vectors of P = [1;4; 112] [11]:

% =x(I-P'P)
= bizi,chem + 8;(
Zichem = Xichem (I - P+P) ’ 8? =& (I - P+P)

(2)

where 2; is the orthogonal-projection preprocessed spectrum of the ith
sample.
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2.3. Weighted multiplicative scatter correction

If the multiplicative parameter b; in Eq. (2) had been known theo-
retically, or estimated perfectly, then the following correction would
remove the multiplicative scaling effect:

Z;

b 3)

Zicorr =

where 2; .o is the scattering-corrected spectrum of the ith sample.

In terms of the estimation of b;, if we assume that the spectral vari-
ations only result from multiplicative effects and ignore the other factors
such as the chemical variations between samples, the mean spectrum
m = "1 .2 can be used as the reference spectrum of an “ideal” sample
and each sample's spectrum is then corrected so that all samples appear to
have the same scatter level as the “ideal” [4]. Therefore, an estimation of
b; can be obtained by regressing m onto 2;:
b = z;m'(mm')"' “4)
where 1 denotes the matrix transposition operation.

However, in practice, the variations of the other factors are usually
not ignorable. In some variables the variations of multiplicative effects
are dominant and we term these variables as informative variables for
multiplicative effects. While in some variables the variations of the other
factors are dominant and we term these variables as uninformative var-
iables for multiplicative effects. In order to avoid the influence of the
uninformative variables, WLS is used to estimate the multiplicative pa-
rameters [13]:

b; = z;Wm'(mwm')™' 5)
where W is a diagonal matrix with elements O or 1. Element 1 means that
the corresponding variable is selected for estimation while element
0 means that it is eliminated.

2.4. Variable selection for weights setting

The critical problem is the setting of the weighting matrix W, that is,
the selection of informative variables for multiplicative parameters
estimation. One may try to select the variables by visual inspection with
the principle that the selected variables should not contain spectral shape
change since multiplicative effects will not cause spectral shape change.
However, there are two disadvantages. One is that the selection result is
subjective, which varies from people to people. The other is that the
selection result is not necessarily optimal.

In this study, we proposed to use variable selection to set the weights
of WLS to obtain an optimal and objective solution in estimating multi-
plicative parameters, which is termed as WMSCVS. The variable selection
algorithm is designed based on the framework of MPA. It is an iterative
algorithm where WBS is used to generate variable subsets and EDF is
used to control the number of sampled variables in each iteration. In
terms of the modeling procedure of MPA, we build PLS model with the
corrected spectra and the RMSECV value of the PLS is analyzed statisti-
cally. The details of the variable selection algorithm are introduced in the
following.

2.4.1. Weighted bootstrap sampling

WBS is used for random sampling with replacement [22], which is
derived from bootstrap sampling. The goal of WBS is to select a number
(say R) of objects from a pool of objects with certain selection probability
for each object. R trials will be conducted and one object will be selected
in each trial. The probability of being selected for each object is deter-
mined by the sampling weights. The objects with larger weights have
higher probabilities to be selected. It is noted that after one run of WBS,
the selected objects are not necessary to be unique, that is, there may be
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some objects being selected for more than once while some not being
selected at all. In this study, the objects selected more than once are
included only once in the estimation step.

2.4.2. Exponentially decreasing function

In order to ensure the efficiency of the optimization process, EDF [21]
is used to control the number of sampled variables in each iteration. In
the ith iteration, the ratio of variables to be kept is computed using an
EDF defined as:

r;=ae™

(6)
where a and k are two constants determined by specific conditions, which
are calculated as:

u <[_)>1/(N*1)k _ In(p/2)
2

N—1

where p is the number of wavelengths, N is the number of iterations, In
denotes the natural logarithm. The advantage of EDF is that the process
of variable reduction can be roughly divided into two stages. In the first
stage, variables are eliminated rapidly which performs a ‘fast selection’,
whereas in the second stage, variables are reduced in a very gentle
manner, which is instead called a ‘refined selection’ stage. Therefore, the
variables with large chemical information can be removed in a stepwise
and efficient way because of the advantage of EDF.

)

2.4.3. Procedure of the proposed variable selection algorithm

Assume that the number of iterations is set to N, in each iteration, the
procedure of the proposed variable selection algorithm can be summa-
rized in the following steps:

(1) WBS is performed K (e.g., 500) times on the variable space so that

K variable subsets are generated. The number of variables for each

subset is calculated by EDF (Eq. (6)). Note that the initial weight of

each variable is set to be equal with each other.

For each variable subset, the multiplicative parameters are esti-

mated with the selected variables (Eq. (5)) and the corrected

spectra were obtained (Eq. (3)). PLS model is built with the cor-

rected spectra and RMSECV value of the PLS is calculated by five-

fold cross-validation.

(3) Extract a ratio a (e.g., 10%) of best variable subsets with lowest
RMSECV values.

(4) Weights updating for WBS. Count the appearance frequency of
each variable in the best variable subsets and the new weight of
variable m can be calculated as following:

@

W, = ﬁn
=
kbesz

®

where f, is the appearance frequency of the m-th variable in the best
variable subsets, kpes; is the number of best variable subsets.

In each iteration, the variable subset with the lowest RMSECV value is
recorded. After all iterations, the subset with the lowest RMSECV value
among all recorded ones will be considered as the optimal variable
subset. Fig. 1 shows the flowchart of the variable selection algorithm.

3. Experimental
3.1. Dataset

The first data set (meat data set), termed Tecator, originated from the
food industry [23] (available from http://lib.stat.cmu.edu/datasets/
tecator). It consisted of 215 near infrared absorbance spectra of meat
samples, recorded on Tecator Infratec food and feed analyzer working in
the wavelength range of 850-1050 nm with an interval of 2 nm by the
NIR transmission principle. Each sample contained finely chopped pure
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While i<=N iterations

YES

v

Generate variable
subsets with WBS and
EDF

:

Weighted multiplicative
scatter correction + PLS
model building

v

Model extraction

A 4

Weights updating for
WBS

N variable subsets and
corresponding N RMSECV
values are recorded

v

Choose the subset with
the lowest RMSECV as
the optimal subset

End

Fig. 1. Flowchart of the variable selection of WMSCVS.

meat with different contents. The contents of moisture (39.3-76.6%), fat
(0.9-49.1%) and protein (11-21.8%) were investigated in the following
analysis. As indicated by data owner, the calibration set contains 129
samples and other 86 samples were selected as the prediction set.

The second data set was a four-component suspension system pro-
vided by Steponavicius and Thennadil [24]. The data composed of three
fully miscible absorbing species of water, deuterium oxide (D, 0), ethanol
and a species that both absorbed and scattered light (that is, a particulate
species of polystyrene). A total of 45 samples were prepared using
various combinations of the concentrations of the four components and
spectral data were collected in the wavelength region of
1500-1880nmat 2nm intervals with an integration time of 10s,
resulting in measurements at 191 discrete wavelengths per spectrum. The
concentrations of the water (32.6-76.9vol%) and deuterium oxide
(20.1-58.0 vol%) were investigated in the following analysis, and the
total diffuse transmittance spectra were transformed into absorbance
spectra before modeling. For dataset division, the Kennard-Stone (KS)
algorithm [25] was used, resulting in 33 (75%) calibration samples and
12 (25%) prediction samples.
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3.2. Computation

The proposed WMSCVS was compared with other scattering correc-
tion methods including MSC, SNV, EMSC, EISC and IDRC. The PLS
method was used to train calibration model with the use of the corrected
spectra. Five-fold cross-validation was performed to the calibration set to
calculate the RMSECV value of PLS. An F-test based on RMSECV was
involved to select the optimal number of latent variables [26]. The sig-
nificance level was set to 0.25 as suggested previously. The EMSC and
EISC without the terms of pure component spectra were used for com-
parison. For IDRC, the maximum number of regions for equal segmen-
tation was set to 10. For WMSCVS, the number of iterations of EDF was
set to 50. In each iteration, 500 variable subsets were generated by WBS.
The ratio of the model extraction, a, was set to 10%.

3.3. Evaluation of the methods

In this work, the root mean square error of prediction (RMSEP) from
the test set was used as a measure of model performance. RMSEP is
defined as follows:

2 (e — yref)z

RMSEP =
Nf(.’SI

©)]

where y,r. is the predicted value, yys is the reference value, and Ny is the
number of samples in the test set.

The stability of the variable selection of WMSCVS is measured by the
similarity of the variable sets selected in 50 runs [27,28]. First, the
similarity of any two different selections is calculated as follows:

_ [vinv| = E(Jvinw]) 10)

! [v|; x |v|j7E(}v[ﬂv/-|)

where v; and v; denote the variable sets in ith and jth runs of variable
selection respectively. [v; Nv;](0 < |[vi Nv;| < y/|vi| x |vj|) represents the
number of common variables between v; and v;. Then, the stability of the
variable selection method is calculated with the average of the pair-wise
similarity for all possible pairs as follows:

=1
2 DS

=1 j=i+l

stability = ﬁ an
rx (r—

where r is the total number of runs. The greater the value of stability, the
more stable is the method.

Absorbance

; " 2
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3.4. Software implementation

All computations were performed in Matlab 2015a (Mathworks, Inc.,
Natick, MA, USA) and run on a personal computer with 2.20-GHz Intel
Core 2 processor, 4 GB RAM, and Windows 7 operating system. The
programs were written in-house using Matlab language. The Matlab
codes for implementing WMSCVS have been made public, which can be
downloaded from https://github.com/jkk544/WMSCVS.

4. Results and discussion
4.1. Tecator data

Firstly, we presented the result of variable selection of WMSCVS. The
variable selection result of IDRC was used for comparison. Fig. 2 shows
the results of variable selection of IDRC and WMSCVS, with the raw
spectra of Tecator data and the baseline-removal spectra as background
respectively. It can be seen that the raw spectra suffered from serious
additive baseline shift and multiplicative effects (left part of Fig. 2).
Though the additive baseline effects and possible wavelength-dependent
spectral variations could be readily removed by orthogonal projection
preprocessing (right part of Fig. 2), the removal of multiplicative effects
was more than orthogonal projection. It was obvious that variables of
900-940 nm contained large spectral shape change, which indicated that
these variables contained information mostly not of multiplicative
effects.

Therefore, they were uninformative for estimating the multiplicative
parameters and they might bias the estimation since they represented
information from other factors of spectral variations. WLS could mini-
mize the influence of the uninformative variables by setting their weights
to zero. The problem was that an optimal solution of weights for WLS was
more than visual inspection. In this study, the proposed WMSCVS used a
variable selection algorithm designed based on the framework of MPA to
determine the optimal solution. The black bars in Fig. 2 indicate the lo-
cations of the selected variables for both IDRC and WMSCVS. There are
two key differences between IDRC and WMSCVS. One is that IDRC is
based on region search while WMSCVS is based on combination opti-
mization of individual variables. The other is that IDRC performs variable
selection on the raw spectra while WMSCVS performs variable selection
on the baseline-removed spectra. It was difficult to interpret the selection
result of IDRC since various factors of spectral variations were mixed
together in the raw spectra. In contrast, the selection result of WMSCVS
was more interpretable. It could be seen that WMSCVS selected variables
of three different locations containing small spectral variations. In
addition to variables of 900-940 nm, variables such as 960-1000 nm

1000

900 950
Wavelength (nm)

Fig. 2. The results of variable selection on Tecator (moisture) data. Left part: IDRC with the raw spectra as background, right part: WMSCVS with the baseline-

removed spectra as background.
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were also considered to be uninformative for WMSCVS, which was not
obvious with visual inspection.

Secondly, we investigated the process of the variable selection.
Moisture was used for illustration and the results of fat and protein were
similar. Fig. 3 shows the changing trend of the number of sampled var-
iables and five-fold RMSECV values with the increasing of iterations. As
expected, the number of sampled variables decreased fast at the begin-
ning and became more and more slowly. Such characteristic was due to
EDF and it guaranteed the efficiency of the selection process. The
RMSECYV values first descend quickly from iterations 1-25 which should
be ascribed to the elimination of the uninformative variables, then
changes in a gentle way from sampling runs 26-50 corresponding to the
phase that the sampled variables do not change obviously. In this study,
the variable subset with the lowest RMSECV value was selected as the
best subset for WLS.

Thirdly, the proposed WMSCVS was compared with other correction
methods (MSC, SNV, EMSC, EISC and IDRC) on PLS performance (RMSEP
from test set). We conducted WMSCVS 50 runs independently and
calculated the mean and the standard deviation of the PLS results. The
number of latent variables (LVs) used in PLS model and the RMSEP
values of various methods are summarized in Table 1.

It can be seen that the PLS model with raw spectra could not provide
satisfactory predictive performances primarily due to the existence of
scattering effects on the spectra. MSC and SNV gave better predictive
performance than PLS with no scatter correction. However, the correc-
tions were considered to be at low efficiency. The RMSEP values of EMSC
were significantly large. The poor performance of EMSC was due to the
bias in estimating the correction parameters. This occurred when the
pure component spectra were unavailable. Conversely, the EISC method
provided good performance for moisture and fat. The results also showed
that these methods were unstable without the pure component spectra. In
consideration that the information of pure component spectra was usu-
ally not available in practice, both IDRC and the proposed WMSCVS tried
to select part of the variables to estimate the scattering parameters so that
the influence of the uninformative variables could be reduced. IDRC used
the region selection strategy while WMSCVS used the individual variable
selection strategy. Therefore, WMSCVS was more flexible in terms of
combination optimization. For each component, it could be seen that
WMSCVS achieved the lowest RMSEP among all methods for the three
components. Moreover, the standard deviations of different runs of
WMSCVS were almost negligible in relative to the corresponding means.
The RMSEP-LV plot of the comparison methods are shown in Fig. 4. The
results for baseline correction (BC), but no multiplicative treatment was

0or 1

variables

Number of sampled

Iterations

RMSECV

KoK K K K K K K ¥ ¥

Iterations

Fig. 3. The changing trend of the number of sampled variables (upper part) and
RMSECV values (lower part) with the increasing iterations on Tecator (mois-
ture) data. The vertical asterisk line denotes the optimal point where the
RMSECV values achieve the lowest.
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Table 1

Results of PLS models with different scatter correction methods on Tecator
data.The number in parentheses is the standard deviation of results in 50 inde-
pendent runs.

Method Moisture Fat Protein
LVs RMSEP LVs RMSEP LVs RMSEP
RAW 13 2.70 13 2.81 12 0.72
BC 10 2.44 10 2.76 9 0.88
MSC 5 2.05 6 2.23 10 0.60
SNV 7 1.85 4 1.98 12 0.61
EMSC 4 3.98 8 4.67 9 1.08
EISC 8 1.31 13 0.95 7 0.94
IDRC 11 1.08 8 1.07 11 0.55
WMSCVS  11(0) 0.62 10(0) 0.54 10(0) 0.53
(< 0.001) (0.009) (0.001)

Bold means the lowest value among all methods.

also provided in Table 1 to demonstrate the improved performance due
to the proposed variable selection strategy.

Finally, the stability of the variable selection of WMSCVS was
investigated. For each component, the variable selection results of 50
WMSCVS runs were shown in Fig. 5. It can be seen that WMSCVS showed
good stability on Tecator data. For each component, WMSCVS selected
the variables from the same three locations in each run. Especially for
moisture and protein, WMSCVS almost selected the same variables in
each run. Moreover, different components offered the same selection
result, which demonstrated the robustness of WMSCVS. Table 2 shows
the quantitative index of the stability of the variable selection.

4.2. Four component data

Firstly, we investigated the result of the variable selection of
WMSCVS. IDRC was used for comparison. Fig. 6 shows the selected
variables of IDRC and WMSCVS respectively. The total transmittance
spectra of the four-component suspension samples are presented in the
left part of Fig. 6. Baseline shift and multiplicative effects can be observed
because of the variation of polystyrene particle and concentration. The
broad peak in the wavelength region of 1600-1750 nm because of the
formation of H,O — D,0 dimers is a nonlinear spectral response [24],
which leads to more latent variables used when PLS modeling on the
target components. After orthogonal-projection preprocessing (right part
of Fig. 6), the baseline effect was readily removed. It can be seen that
variables of 1760-1820 nm contained large spectral shape change and
they should not be included when estimating multiplicative parameters.
The black bars in Fig. 6 indicate the locations of the selected variables for
both IDRC and WMSCVS. The selection result of IDRC was difficult to
interpret. However, it was readily interpretable that WMSCVS selected
variables from four different locations and avoided the variable region of
1760-1820 nm which contained large spectral shape change. In addition,
variable regions such as 1560-1600 nm and 1650-1690 nm were also
considered to be uninformative for WMSCVS.

Secondly, the variable selection process of WMSCVS was investigated
with the use of water as example. WMSCVS implemented variable se-
lection in an iterative manner based on the framework of MPA. Fig. 7
shows the changing trend of the number of sampled variables and the
five-fold RMSECV value with the increasing of sampling runs. With the
elimination of the uninformative variables, the RMSECV value decreased
at the beginning and then increased because of the elimination of some
essential variables. The weights of WBS during the iterations are shown
in Fig. 8. It can be seen that the optimal variable subset was searched in a
soft shrinkage manner. In detail, uninformative variables were not
eliminated directly, but were assigned to smaller sampling weights,
which can help to lower the risk of removing informative variables by
mistake. The optimal variable subset is obtained in iteration 39. There-
fore, the informative variables for estimating multiplicative parameters
are thus obtain around 1506 nm, 1610 nm, 1700 nm and 1850 nm.



Y. Wu et al.

RMSEP

Mqiﬁstu re

T

Number of LVs

>

Chemometrics and Intelligent Laboratory Systems 185 (2019) 114-121

RMSEP

Fat Protein
‘ —o— RAW
5 3- & 8— MSC 1
\ \ SNV
\ B— EMSC
\ ] 25+ 4— EISC 1
\ Ay DRC
\ ] —%— WMSCVS
. ;] 2 |
R X 2 2F
e ~
® ] 15+
P D
1Y
N 1
g ——— 6 O0—O——5u & [
y W i W —
e i
S~ g G —— A & oA L
[ S S S 0.3
5 10 15 0 5 10 15

Number of LVs Number of LVs

Fig. 4. The RMSEP vs LVs plot of PLS models with different scatter correction methods on Tecator data.
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Fig. 5. Variable selection results of WMSCVS in 50 runs on Tecator data.
Finally, we investigated the predictive performance of the corrected
spectra. Table 3 shows the results of PLS models with different scattering
Table ,2 L - . . correction methods. PLS of the raw spectra used more than four latent
Quantitative index of the stability of the variable selection of WMSCVS. . . .
variables because of both the scattering effects and response nonline-
Data set Component Stability arity. The scattering effects and the nonlinear response had become
Tecator Moisture 0.965 + 0.050 considerable challenges to the correction methods. The conventional
Fat 0.707 +0.150 scatter correction methods, MSC and SNV, which performed well for
Four G 5;0:6“1 g‘zigigigz Tecator data, failed to correct this data. After checking the corrected
our Lomp- D;)er 0.361 4 0.172 spectra, we found that baseline additive effects remained. EMSC and EISC

Absorbance

1500 1550 1600 1650 1700

1750

Wavelength (nm)

gave similar predictive performance since they gave similar corrected
spectra. Compared with IDRC, WMSCVS was more flexible due to the

Relative absorbance

1500 1550 1600 1650 1700 1750 1800 1850
Wavelength (nm)

1800

1850

Fig. 6. The results of variable selection on Four Component (water) data. Left part: IDRC with the raw spectra as background, right part: WMSCVS with the
orthogonal-projection preprocessing spectra as background.
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Fig. 8. The evolution of weights of WBS on the Four Component (water) data.

Table 3

Results of calibration models with different scatter correction methods on Four
Component data. The number in parentheses is the standard deviation of results
in 50 independent runs.

Method Water D,0
LVs RMSEP LVs RMSEP

RAW 6 1.69 6 3.60

MSC 1 3.65 4 3.73

SNV 4 2.64 5 2.37

EMSC 3 1.28 2 2.24

EISC 4 1.57 4 2.02

IDRC 5 1.34 6 1.55
WMSCVS 6.9(0.3) 0.71(0.127) 6(0) 1.35(0.104)

Bold means the lowest value among all methods.

individual variable selection strategy. It could be seen that WMSCVS
achieved the lowest RMSEP among all methods. However, the nonline-
arity also posed a challenge to the stability of the variable selection of
WMSCVS. It can be seen from Table 2 that, compared with Tecator data,
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the stability results of 50 independent runs were smaller (0.244 for water
and 0.361 for D,0).

5. Conclusion

In this paper, we proposed to use variable selection for setting weights
of WLS in estimating multiplicative parameters. From the experiments of
two NIR datasets, we could see that an optimal and easy-to-interpret
solution of the weights could be obtained by the proposed variable se-
lection algorithm. Moreover, WMSCVS could provided better predictive
performance compared with other correction methods. In this work, MSC
based correction was used in this study, however, the idea can also
extend to other methods. Our future work will include finding more
comprehensive measurement for variable selection and applying the
proposed method to wider applications.
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