
A novel stacked regression algorithm based on slice transform for small sample size
problem in spectroscopic analysis

Yifan Wu1,2, Silong Peng1,2∗, Qiong Xie1, Quanjie Han1,2

1.Institute of Automation, Chinese Academy of Sciences
100190 Beijing, China

2.University of Chinese Academy of Sciences, 100190 Beijing, China
Email:Yifan Wu: yfwu5216@ia.ac.cn, Silong Peng: silong.peng@ia.ac.cn

Abstract—In spectroscopic data analysis, small sample size
(SSS) problem occurs. A solution is to perform variable
selection, which has been proved to be critical to improve
the performance of the regression model, such as partial least
squares (PLS) regression. Stacked moving window partial least
squares (SMWPLS) aims to combine variable sets instead of
selecting a subset to improve the model robustness. In this
study, we proposed a novel weighting strategy to calculate the
combination weights. Slice transform (SLT) is used to map the
cross-validation (CV) weights to new weights in a piecewise
linear manner. The parameters of SLT are optimized with
the least-square criterion. Experiments on two near-infrared
(NIR) data sets demonstrated the efficiency of the proposed
SLT weighting.
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I. INTRODUCTION

Spectroscopic dataset usually contains hundreds to thou-

sands of variables, while the number of samples is less than a

hundred [1]. Such data is characterized as ”high-dimension

small-sample size (SSS)” or ”large p small n” for that it

has a much larger dimension p than the sample size n [2].

Using spectroscopic data to perform quantitative analysis has

become an important tool for modern analytical chemistry.

In terms of machine learning, the task of the quantitative

analysis is to build regression model, with the spectral

variables as predictors and the concentration variable of

target analyte as response. The regression model will be used

to predict the concentration of the future sample. Usually

there are redundant and irrelevant variables in spectral data

and they will deteriorate the predictive performance of the

regression [3], [4]. Dimension reduction techniques such as

principle component analysis (PCA) or partial least squares

(PLS) was often used because of the ability of overcoming

both the dimensionality and the collinear problems [5], [6],

[7]. However, there are still a number of obstacles with these

methods, such as how to eliminate noise interference during

use and how to interpret the reduced data.

In order to solve SSS problem, one approach is based on

variable selection [8], [9], [10], [11]. The goal of variable

selection is to obtain a small set of variables that permits less

regression error and more interpretability than the original

set of variables. Moving window strategy combined with

PLS (MWPLS) is an efficient way for variables selection

[12], [13]. In MWPLS, a series of PLS models in every

window that moves over the whole spectral region are built,

and then useful spectral intervals, i.e., informative regions,

in terms of the least complexity of PLS models reaching a

desired error level are located. Improvement may be seen in

many variable selection methods, however, there is the risk

that eliminating most of the variables may result in the loss

of useful information.

Another approach to the SSS problem is to use a strategy

termed stacked regression, which relies on the idea of

combining variable sets instead of selecting the best one to

improve the model robustness [14], [15]. In stacked moving

window PLS (SMWPLS) [16], [17], a moving window is

used to establish a set of overlapping intervals for building

PLS sub-models. It is well known that combining sub-

models is able to give better or at least not worse perfor-

mance than selecting the single best. The remaining problem

is how to combine given a finite data set. An efficient method

is to use the reciprocal of the square cross-validation error

[16], [18] as combination weights, which is intuitionistic

and easy to compute but not necessarily optimal. Breiman

et al. [19] proposed to use least-square linear regression to

learn the combination weights under the constraint that all

regression coefficients are non-negative. This non-negativity

constraint was found to be crucial to guarantee that the

stacked regression has good generalization.

In the task of quantitative analysis with spectroscopic

data, the number of samples is small and the response

vector y usually contains unexpected noise. Therefore, least-

squares tends to fit the noise. In this study, we proposed

an improved SMWPLS with a novel weighting rule. The

proposed weighting rule is based on least-square linear

regression with a constraint that the regression coefficient

is a nonlinear mapping of the CV weights. Slice transform

(SLT) is employed to perform the nonlinear mapping in a

piecewise linear manner. Two near-infrared (NIR) spectra

dataset were used to demonstrated the efficiency of the

proposed weighting rule.
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II. METHOD

A. Stacked moving window partial least square

Firstly, a window with fixed size is moved along the full

spectra to generate overlapping intervals. Then, PLS sub-

model is built on each interval. Finally, all PLS sub-models

are combined linearly with different weights:

βstacked =

K∑
k=1

wkβk (1)

where βstacked is the stacked regression coefficient, wk and

βk is the weight and the regression coefficient of the k-th

sub-model.

B. Slice transform

SLT is a linear representation of a signal x ∈ �K×1 where

the basis functions are linear splines [20]. Let xi ∈ [a, b), i =
1, ...,K be one of the elements of x, the interval [a, b) is

divided into M equidistant bins and the endpoint vector is

denoted as q = [q0, q1, · · · , qM ]ᵀ(q0 = a < q1 < q2 <
· · · < qM = b).
Apparently, xi must fall and can only fall in one of the bins,

we denote it as:

r(xi) =
xi − qπ(xi)−1

qπ(xi) − qπ(xi)−1
(2)

where r(xi) ∈ [0, 1). At the same time, xi can be expressed

as:

xi = r(xi)qπ(xi) + (1− r(xi))qπ(xi)−1 (3)

Therefore, the SLT of x can be defined as:

x = Sq(x)q (4)

where Sq(x) is a matrix with K rows and M +1 columns.

The critical property of SLT is the substitution property.

That is, the piecewise linear mapping of x to z can be

implemented by substituting a new node vector p for q in

Eq.(4):

z = Sq(x)p (5)

Figure 1 illustrates the substitution operation [20].

Figure 1: Illustration of the substitution property of SLT.

C. SLT based weighting strategy

To calculate the combination weights for SMWPLS, a

simple but efficient approach is to use cross-validation error

as a sign to measure the contributions of each sub-interval

model:
wcv = 1

m

[
1
s21
, ..., 1

s2k
, ..., 1

s2K

]
m =

K∑
k=1

1
s2k

(6)

where sk is the cross-validation error of the k-th sub-

model. The CV weights are optimal under the condition that

the sub-models are uncorrelated [21]. However, in practice,

the uncorrelated condition is hard to fulfill since the sub-

model are used to predict the same target. The CV weights

are widely used because they are easy to compute. More

importantly, they are consistent with our intuition that the

better performance, the higher weight.

Considering both the advantage and disadvantage of the

CV weights, a reasonable solution is to modify the CV

weights. With the substituting property, the SLT can describe

a family of nonlinear mapping functions in a matrix form.

This, in turn, enables a simple optimization of the mapping

functions as a solution to a linear set of equations. Therefore,

we can obtain the optimal (piecewise linear) map to approx-

imate general nonlinear maps. In this study, the substitution

property of SLT is utilized to map the CV weight vector to

a new one:

wslt = Sq(wcv)p (7)

In this study, the optimal piecewise mapping function is

obtained by minimizing the following least squares:

p̂ = argmin
p

‖y −Lp‖2

L = Y Sq(wcv)

Y =

⎡
⎢⎢⎢⎣

ŷ11 ŷ21 · · · ŷK1

ŷ12 ŷ22 · · · ŷK2

...
...

...
...

ŷ1n ŷ2n · · · ŷKn

⎤
⎥⎥⎥⎦

(8)

where ŷki is the cross-validation prediction of the i-th sample

from the k-th regression sub-model, y is the response vector.

The explicit solution of Eq.(8) can be derived:

p̂ = (LTL+ λI)−1LTy (9)

For λI in Eq. (9), this additional term is added to avoid

the singularity of matrix inversion operation where I , an

identity matrix, and λ, a small scale value, provide robust

computation. The λ is configured to 10−6 in all of the

experiments. With the new node vector obtained, the SLT

weights can be calculated by Eq. (7). On the basis of the

flexibility of SLT, the weight can handle some nonlinear

situations. When we restrict the mapping function to a

piecewise linear mapping, the optimal mapping function

80



can be solved by the matrix of the predictions Y and the

response vector y adaptively.

In addition, another view for interpreting the SLT weight-

ing is:
wslt = argmin ‖y − Y w‖2
s.t. w = Sq (wcv)p

(10)

In the task of quantitative analysis in analytical chemistry,

the response vector y may contain unexpected noise due to

factors such as the complexity of the mixture, the experience

of the operator and so on. In this case, least-square solution

without any prior (such as NNLS) tends to fit the noise. The

least-square optimization of Eq.(10) can be viewed as using

the CV weights as prior, which reduce the risk of fitting

noise .

III. MATERIALS

The first dataset was Corn data collected in Cargill, which

can be downloaded from http://www.eigenvector.com/data/

Corn/index.html. The dataset consisted of 80 corn samples.

The spectra of corn samples were corrected with a wave-

length range of 1100-2498 nm at 2 nm resolution, which

results in 700 variables. In this study, the spectra data of mp5

and the concentration data of starch were used. After two

outlier samples were removed, both the training set and the

test set consisted of 39 samples . Detail of sample division

can be found in [22].

The second dataset was Ternary Mixture data, which was

described by Wulfert et al. [23]. Near-infrared spectra were

measured with a ternary mixture of ethanol, water and iso-

propanol. In this study, iso-propanol was selected as the

target component. Wavelength range of 850-1049 nm at 2

nm resolution were used, resulting in 100 variables. The

training set consisted of 65 spectra and the test set consisted

of 30 spectra.

For the two NIR training data, the condition number of

the spectra matrixes were very large due to multicollinearity,

which indicated that the original feature space is not suitable

for linear least-squares. Table I shows the properties of the

spectra matrixes.

Table I: Properties of the spectra matrix of the training set.

Data set Variables Samples Condition number

Corn 700 39 1.06× 105

Ternary Mixture 100 65 1.73× 104

IV. EXPERIMENTAL RESULTS

The programs are written in house in Matlab Version

R2015a and run in a personal computer with a 2.20 GHz

Intel Core 2 processor, 4 GB RAM, and a Windows 7

operating system.

A. Evaluation measures

In this study, the root mean square error of prediction

(RMSEP) from the test set was used as the criterion of

evaluating different models. RMSEP is defined as follows:

RMSEP =

√
(

∑
(ypred − ytrue)2

Ntest
) (11)

where Ntest is the number of samples in the test set, ytrue is

the reference value, and ypred is the predicted value provided

by different models.

B. Experimental results and discussion

PLS with full variables, MWPLS with the best variable in-

terval, SMWPLS with CV weights (SMWPLS CV), SMW-

PLS with NNLS weights (SMWPLS NNLS) and SMWPLS

with the proposed SLT weights (SMWPLS SLT) were in-

vestigated in this study. Three parameters should be tuned,

which are the number of latent variables for PLS, the

window size for moving-window (MW) strategy and the

number of bins for SLT. The number of latent variables

was selected automatically with a statistical test [24]. The

window size influences the performance of the sub-model.

If the window size is too large, redundant variables or noise

variables may be included. If the window size is too small,

the information will not be sufficient for multi-component

discrimination. The number of bins of SLT controls the

flexibility of SLT. The greater the number of bins, the

more flexible the generated mapping functions are, but at

the same time, the risk of overfitting is increased. The

parameters for MW and SLT were tuned manually with

multiple experiments, which are shown in Table II.

Table II: Parameter settings for MW and SLT.

Data set Window size No. of bins
Corn 61 4

Ternary Mixture 61 5

We implemented the moving-window strategy by finding

the center of each window. That is, if K sub-models, or

windows, were desired, the full variable length was divided

into (K + 1) equal segmentations with the K middle

endpoints as the window centers. For SMWPLS, different

ensemble sizes (number of sub-models) were tested.

Firstly, we investigated the advantage of SLT weighting

at a specific ensemble size. The ensemble sizes of 60

and 30 were selected for Corn data and Ternary Mixture

data respectively. Table III summarizes the RMSECV and

RMSEP results of different models. For Corn data, the the

root mean square error of cross-validation (RMSECV) of

PLS is larger than RMSEP, which seemed abnormal. With

variable selection, the RMSECV of MWPLS was smaller

than its RMSEP. Moreover, the RMSEP of MWPLS was
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smaller than that of PLS. The above results demonstrated

that variable selection helped to improve model interpretabil-

ity as well as predictive performance. SMWPLS solves the

problem by using all the information of sub-models instead

of choosing the best one. The NNLS weighting yielded

larger RMSEP than the CV weighting. The reason might be

that NNLS weighting assigned high weights to sub-models

with poor performance mistakenly (upper part of Figure 2).

It can be seen that NNLS assigned the highest weights to the

18th and the 51th sub-models, whose weights were low in

the CV weighting. In contrast, the SLT weights seemed more

reasonable since they were modified from the CV weights

with nonlinear mapping. It can be seen that SMWPLS SLT

yielded the lowest RMSEP among all models.

For Ternary Mixture data, MWPLS yielded lower RMSEP

than PLS due to variable selection. However, SMWPLS CV

yielded higher RMSEP than MWPLS since the CV weight-

ing was empirical instead of optimal. With least-squares

optimization, both NNLS weighting and SLT weighting

enhanced the weight of the 13th sub-model (lower part of

Figure 2), which was the best sub-model in terms of RM-

SECV. It can be seen that the RMSEPs of SMWPLS NNLS

and SMWPLS SLT were smaller than that of MWPLS.

Table III: Predictive results of different models on the test set.

Model Corn Ternary Mixture
RMSECV RMSEP RMSECV RMSEP

PLS 0.328 0.253 1.250 1.382
MWPLS 0.216 0.229 1.012 1.122
SMWPLS CV - 0.224 - 1.308
SMWPLS NNLS - 0.258 - 1.083
SMWPLS SLT - 0.170 - 0.962

Bold means the lowest RMSEP value of the corresponding data set

Secondly, we investigated the predictive performance of

SMWPLS with different weightings at different ensemble

sizes. Results of Corn are shown in the upper part of Figure

3. It can be seen that the proposed SLT weighting yielded the

lowest RMSEPs at all the ensemble sizes. The RMSEPs of

the NNLS were similar to those of the CV in this data, except

the size of 60, the reason of which has been explored in the

previous discussion. Results of Ternary Mixture (lower part

of Figure 3) also demonstrated the efficiency of the proposed

SLT weighting. It can be seen that the performance of the

CV weighting was relatively stable with the increase of the

ensemble size. With optimization, both the NNLS and the

SLT achieved lower RMSEPs than the CV. However, the

performance of the SLT was less stable than the CV. For

the SLT, it can be seen that the RMSEPs of ensemble sizes

25 and 40 were much larger than the other ensemble sizes.

V. CONCLUSION

In this paper, we have addressed the problem of high-

dimension small-sample size regression. To achieve better

predictive performance, we proposed the SLT weighting

for SMWPLS. Experimental results on two NIR data sets

Figure 2: Illustration of weights for SMWPLS. Upper part: Corn data at the ensemble
size of 60, lower part: Ternary Mixture data at the ensemble size of 30. Blue Square
: CV weighting, diamond line: NNLS weighting, star line: SLT weighting.

Figure 3: Predictive performance of SMWPLS at different ensemble sizes. Upper part:
Corn data, lower part: Ternary Mixture data. Square line: CV weighting, diamond line:
NNLS weighting, star line: SLT weighting.
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demonstrated the efficiency of the SLT weighting. It can

also be seen that different ensemble sizes led to different

performance for SMWPLS SLT. Therefore, we will focus

on the optimization of the ensemble size in the next study.
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