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ABSTRACT   

Fluorescence molecular tomography (FMT) is a promising imaging technique in applications of preclinical research. 

However, the complexity of radiative transfer equation (RTE) and the ill-poseness of the inverse problem limit the 

effectiveness of FMT reconstruction. In this research, we proposed a novel Deep Convolutional Neural Network (DCNN), 

Gated Recurrent Unit (GRU) and Multiple Layer Perception (MLP) based method (DGMM) for FMT reconstruction. 

Instead of establishing the photon transmission models and solving the inverse problem, the proposed method directly fits 

the nonlinear relationship between fluorescence intensity at the boundary and fluorescent source in biological tissue. For 

details, DGMM consists of three stages: In the first stage, the measured optical intensity was encoded into a feature vector 

by transferring the VGG16 model; In the second stage, we fused all encoded feature vectors into one feature vector by 

using GRU based network; In the last stage, the fused feature vector was used to reconstruct the fluorescent sources by 

MLP model. To evaluate the performance of our proposed method, a 3D digital mouse was utilized to generate FMT Monte 

Carlo simulation samples. In quantitative analysis, the results demonstrated that DGMM method has comparable 

performance with conventional method in tumor position locating. To the best of our knowledge, this is the first study that 

employed DCNN based methods for FMT reconstruction, which holds a great potential of improving the reconstruction 

quality of FMT.  
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1. INTRODUCTION  

Fluorescence molecular imaging (FMI) can visualize the occurrence and development process of diseases on molecular 

and cellular levels [1]. Although, FMI is used to obtain the two-dimensional (2D) surface fluorescence, it cannot provide 

in-depth and quantitative information of inner light sources. This problem severely limits its application for quantitative 

studies in oncology. Thus, fluorescence molecular tomography (FMT) technology was proposed to acquire the 3D and 

quantitative information of the in vivo fluorescence distribution [2].  

The conventional FMT reconstruction depends on the nonlinear radiative transfer equation (RTE) to model the propagation 

of photons in biological tissues [3]. To reduce the computational complexity of RTE, the approximation model of RTE 

such as diffusion equation (DE) [2] and the higher-order simplified spherical harmonics approximation (SPN) [4] were 

proposed. With the application of Finite Element Method (FEM) or Finite Difference Method (FDM) [5], the 

approximation model can be transformed to a linear relationship between the photon density on the object surface and the 

fluorescent source inside the imaging object. Thus, the conventional FMT reconstruction is the inverse problem of this 

linear relationship. However, the ill-poseness of the inverse problem limits the quality of FMT reconstruction. Thus, many 

researchers have focused on this problem and proposed different methods. In order to overcome the underdetermined 

problem of FMT, the measurement with various angles were used widely in FMT reconstruction. Furthermore, anatomical 

information from X-ray Computer Tomography (CT) or Magnetic Resonance Imaging (MRI) was utilized to build the 

approximation model of RTE [6]. Besides, the L2-norm regularization (also known as Tikhonov regularization) method 

was used widely for its convenient implementation [2, 7]. However, the result acquired from L2-norm regularization turned 

out to be over smoothed. In order to tackle the over-smooth problem, sparse prior has been adopted [8, 9]. Based on the 

sparse prior, sparse regularization (L0, L1, Lp etc.) [9-12] or greedy strategies have been used to ensure sparsity of solutions 

[13-15]. 



 

 
 

 

 

 

Although these methods have gradually improved the reconstruction quality of FMT, they still have not achieved 

satisfactory results for FMT reconstruction. In the conventional FMT reconstruction, the nonlinear RTE is extensively 

approximated by DE or SPN, which inevitably causes errors in FMT reconstruction [12, 16, 17]. This fundamental problem 

has not been solved well. 

In this paper, we propose a novel DCNN [18], GRU [19] and MLP [20] based method (DGMM) for fast and accurate FMT 

reconstruction. Instead of establishing the simplified photon transmission models and solving the ill-pose inverse problem, 

DGMM directly fits the nonlinear relationship between the measured fluorescence intensity at the boundary and the 

fluorescent source in biological tissue. Therefore, DGMM can essentially remove the deviation originated from the 

simplification of RTE and the ill-poseness of the inverse problem. These properties make it more suitable for fast and 

accurate FMT reconstruction. Simulation experiments show that our proposed method achieved accurate FMT 

reconstruction. 

This paper is organized as follows: Section II describes the reconstruction algorithm DGMM. Section III presents the 

results of the simulation experiments. At last, Section IV gives the conclusion and discussion. 

 

2. METHOLOGY 

In details, our proposed model DGMM consists of three stages: information encode stage, encoded information fuses stage 

and reconstruction stage. In the first stage, the measured optical intensities acquired from eight different excitation location 

were encoded into feature vectors by transferring the VGG16 model [21]: 

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗 = 𝑀𝑜𝑑𝑒𝑙𝑓𝑖𝑟𝑠𝑡−𝑠𝑡𝑎𝑔𝑒(Φ𝑗), 𝑗 = 1,2, … ,8 （1） 

Where Φ𝑗 denotes the density of surface photon and j represents the excitation location. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗 is the inferenced feature 

vector obtained from 𝑀𝑜𝑑𝑒𝑙𝑓𝑖𝑟𝑠𝑡−𝑠𝑡𝑎𝑔𝑒 . The architecture of 𝑀𝑜𝑑𝑒𝑙𝑓𝑖𝑟𝑠𝑡−𝑠𝑡𝑎𝑔𝑒, which contains 13 convolutional layers and 

5 max pooling layers is designed using the same principles inspired by VGG16 model. In order to overcome the overfitting 

problem, the parameters of the former 10 convolutional layers are transferred from the trained VGG16 model and freezed. 

The filters which have a 3 × 3 receptive field is used; the stride  of convolutional layer is fixed to 1 pixel; the spatial 

padding of convolution layer input is well designed in order to preserve the spatial resolution after convolution. Max-

pooling is performed over a 2 × 2 receptive window, with stride 2. The non-linear activation function following the 

convolution is called rectified linear unit (ReLU). In the second stage, we fused all encoded feature vectors that obtained 

from the same sample into one feature vector by using GRU recurrent neural network: 

 𝑧𝑗 = 𝜎(𝑈𝑧𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗 + 𝑊𝑧ℎ𝑗−1) （2） 

 𝑟𝑗 = 𝜎(𝑈𝑟𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗 + 𝑊𝑟ℎ𝑗−1) （3） 

 ℎ�̃� = 𝑡𝑎𝑛ℎ (𝑈𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗 + 𝑊(𝑟𝑗 ⊙ ℎ𝑗−1)) （4） 

 ℎ𝑗 = 𝑜𝑗 = (1 − 𝑧𝑗) × ℎ𝑗−1 + 𝑧𝑗 × ℎ�̃� （5） 

Where 𝑧𝑗 denotes the update gate, which decides how much the recurrent unit updates its activation or content; 𝑟𝑗 is a set 

of reset gates, which is used to control the extent to which to forget the previous state; ℎ�̃� represents a candidate activation 

calculated similarly to that of the traditional recurrent unit and ⊙ is an element-wise multiplication operator. ℎ𝑗, ℎ𝑗−1 is 

unit state and previous unit state respectively; 𝑜𝑗 is the output of the recurrent unit. For the sequence 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗 , 𝑗 = 1,2, … ,8 

the gated recurrent unit perform the same task for every element, with the output depended on the previous computations. 

And the output 𝑜8 is used in the third stage to reconstruct the fluorescence target. In the last stage, the fused feature vector 

was used to reconstruct the position and shape of fluorescent sources by multiple layer perception model (MLP). Given 

that Multi-task Learning can exploit commonalities and differences across tasks and improve the learning efficiency and 

prediction accuracy, the output of MLP is designed not only to accurately locate the tumor barycenter �̂� but also to obtain 

the shape of fluorescence target �̂�. The tumor barycenter �̂� is acquired from MLP, with two hidden layers that have 1024 

and 64 channels respectively; the reconstructed fluorescence source �̂� is calculated directly from the output of gated 

recurrent unit (𝑜8). Rectified linear unit (ReLU) is used as the non-linear activation function. In the hidden layers, dropout 



 

 
 

 

 

 

(probability = 10%) is utilized to reduce the overfitting problem. The details of our proposed model is given in Fig. 1. In 

order to train our proposed method, the optimization function is given by: 

 𝐿𝑜𝑠𝑠 = ‖𝑃 − �̂�‖
1

+ 𝜆𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝑆, �̂�) （6） 

 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝑆, �̂�) = − (𝑆𝑙𝑜𝑔(�̂�) + (1 − 𝑆)𝑙𝑜𝑔(1 − �̂�)) （7） 

where P represents the true position; S denotes the true fluorescence target; λ is the regularization parameter used to balance 

the influence between the position error and the shape similarity. λ = 10 has been used in this study. 

 

Figure 1. The architecture and process scheme of our proposed method (DGMM). (a) The information encode stage, the 

input sequence is consisted by eight RGB images obtained from different excitation location. In the neural network, the grey 

block denotes traditional convolutional layers and the red block represents the max-pooling layers. Then the encoded 

information 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗 is inferenced by the neural network corresponding to the input Φ𝑗. (b) The encoded information fuse 

stage. (c) The reconstruction stage. 

 

3. EXPERIMENT AND RESULT 

In order to train the connection parameters and validate our proposed method DGMM, we first created the sample set. The 

sample set contains both surface photon density distribution  Φ𝑗 and true fluorescence target P and S. Obtaining a large 

sample set by gathering a huge number of real mouse models is extremely unpractical, which can be the major challenge 

of applying DGMM. Since Monte Carlo (MC) method can simulate the photon transport in biological tissues and obtain 

accurate and reliable results [22, 23], we adopted MC method to create the sample set for DGMM. Then, 3000 cases of 

FMT simulations with 375 types of single fluorescence source were collected to build the single source sample set by using 

MC method and MOSE 2.3 [23]. 

The simulation mouse model (46857 nodes and 258557 elements) used in MC method was acquired from a segmented X-

ray CT mouse imaging, which contained five different organs: liver, heart, lung, kidney and muscle. The corresponding 

optical absorption and scattering coefficients of different organs are listed in Table 1 [15]. The simulation mouse model is 

shown in Fig. 2(a). A spherical fluorescence sources S with 1.0mm diameter was placed in the liver. The white dots in Fig. 

2(b) represent the location of the different excitation light sources, which were modeled as isotropic point sources located 

one mean free path beneath the surface in the z = 12.5mm  plane. For each excitation location, the emitted surface 

fluorescence measurement with a 160 degree field of view was obtained from the opposite side of the excitation light 

source (shown in Fig. 2(b)). Parameters in DGMM were learned by minimizing the loss function mentioned above. The 

optimizer utilized in the network was stochastic gradient descent (SGD) with learning rate: 0.1, learning rate decay: 0.9 

and regularization rate: 0.0001. The DGMM network was implemented by Tensorflow 1.4.0 backend in python 2.7. It was 

trained with epochs = 50, batch size = 16. All computer process were accomplished by a desktop computer with a 3.40GHz 

Intel Core i7 CPU, 12GB RAM and GTX1080 Ti GPU. 



 

 
 

 

 

 

Table 1. Optical parameters of the heterogeneous model. 

 

Material 𝜇𝑎𝑥(𝑚𝑚−1) 𝜇𝑠𝑥(𝑚𝑚−1) 𝜇𝑎𝑚(𝑚𝑚−1) 𝜇𝑠𝑚(𝑚𝑚−1) 

Muscle 0.0052 1.08 0.0068 1.03 

Lung 0.0133 1.97 0.0203 1.95 

Heart 0.0083 1.01 0.0104 0.99 

Liver 0.0329 0.70 0.0176 0.65 

Kidney 0.0660 2.25 0.0380 2.02 

 

 

Figure 2. The views of the heterogeneous mouse for numerical simulation. (a), (b) is the 3-D and axial sectional views of the 

model respectively. One target source S is implanted inside the liver and the center of the source is in the z = 12.5mm plane. 

In order to evaluate the performance of our proposed method DGMM, two simulation experiments were designed in this 

section. To evaluate the reconstruction results quantitatively, the barycenter error (BCE) between the reconstructed source 

and the true source was computed.  

Experiment 1: The positioning accuracy of DGMM in the single-source FMT simulation samples were evaluated by using 

the five-fold cross validation. The maximum BCE, mean BCE, and the number of test samples whose BCE is greater than 

0.3 mm was calculated to evaluate the DGMM performance. 

Experiment 2: To evaluate the robustness of network with different tumor depth and organ distribution, a mesh with a 

larger liver was generated and four single source samples with different source depths were simulated in this mesh. In this 

experiment, the simulated samples were only used as test samples and the single source sample set was used as the training 

set. Furthermore, the iterated shrinkage based method with the L1-norm (IS_L1) [10] was used for comparison and the 

reconstruction results are presented in Fig. 3. 

The quantitative analysis of Experiment 1 (Table 2) proved that DGMM achieved accurate positioning of the fluorescence 

source. The mean and maximum BCE of the single-source reconstruction in five-fold cross validation were only 0.263 mm 

and 0.332 mm, respectively. Furthermore, there were only 6 (8% in 75 test samples) DGMM reconstructions per 75 tests 

with BCE > 0.3 mm. These results revealed the feasibility and outstanding accuracy of DGMM in single-source 

reconstructions. Results of Experiment 2 demonstrated that DGMM still achieved accurate source reconstruction, when 

the depth of fluorescent target were varied from 1.8mm to 3.6mm (Fig. 3(b)-(e)). The reconstruction results in Fig.3 

revealed the good robustness of DGMM for the varied tumor depth and organ distribution. 

 



 

 
 

 

 

 

Table 2. Quantitative evaluation of DGMM for single source reconstruction. 

 

Quantitative Index Barycenter Error 

Mean 0.263mm 

Maximum 0.332mm 

Quantitative Index Average Sample Number Per 75 tests 

BCE > 0.3mm 6 (8% in 75 tests) 

 

 

Figure 3. Single source FMT reconstruction results in varied tumor depth and organ distribution. (a) The illustration of 

different organ distribution between the standard and organ varied meshes; (b) - (e) axial slices showing the IS_L1, DGMM 

reconstructed results and the true sources (black circles). The depths increase from 1.8 mm to 3.6 mm. 

 

4. DISCUSSION AND CONCLUSION 

In conclusion, we proposed a novel Deep Convolutional Neural Network (DCNN), Gated Recurrent Unit (GRU) and 

Multiple Layer Perception (MLP) based method (DGMM) to achieve accurate and fast FMT reconstruction. Instead of 

establishing the simplified photon transmission models and solving the ill-pose inverse problem, DGMM directly fits the 

nonlinear relationship between the measured fluorescence intensity at the boundary and the fluorescent source in biological 

tissue, which makes it different from all the other existing FMT reconstruction strategies. The parameters in DGMM were 

trained from thousands of simulated single source samples, and the designed simulated single-source experiments revealed 

that DGMM had comparable reconstruction results with the conventional IS_L1 method in tumor positioning accuracy. 

However, there are still obvious disadvantages of the proposed DGMM, such as different sample sets need to be established 

corresponding to different tumor types; it has cannot reconstruct the 3D tumor morphology besides the location; it yet not 

be utilized in two or more sources FMT reconstruction. Our future work will focus on solving these challenges and we 

believe that this novel strategy is of great potential to open a new gate for improving in vivo optical diffusion tomography. 
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