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Abstract. It is widely accepted that appropriate network topology should
be empirically predefined before training a specific neural network learn-
ing task. However, in most cases, these carefully designed networks are
easily falling into two kinds of dilemmas: 1) When the data is not e-
nough to train the network well, it will get an underfitting result. 2)
When networks have learned too much patterns, they are likely to lead
to an overfitting result and have a poor performance on processing new
data or transferring to other tasks. Inspired by the synaptic pruning
characteristics of the human brain, we propose a brain-inspired develop-
mental neural network (BDNN) algorithm by adaptive synaptic pruning
(BDNN-sp) which could get rid of the overfitting and underfitting. The
BDNN-sp algorithm adaptively modulates network topology by pruning
useless neurons dynamically. In addition, the evolutional optimization
method makes the network stop on an appropriate network topology
with the best consideration of accuracy and adaptability. Experimental
results indicate that the proposed algorithm could automatically find the
optimal network topology and the network complexity could adaptively
increase along with the increase of task complexity. Compared to the tra-
ditional topology-predefined networks, trained BDNN-sp has the similar
accuracy but better transfer learning abilities.

Keywords: brain-inspired developmental neural network, brain-inspired
pruning rules, structural plasticity, network adaptability, synaptic prun-
ing

1 Introduction

Recently, neural network models, such as deep neural networks (DNN), have
been widely used in many different domains including computer vision (CV) and
natural language processing (NLP)[1, 2], etc. Inspired by the hierarchical infor-
mation processing mechanism in the brain, DNN has achieved big improvements
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on the tasks of image classification[3], face recognition[4] and video prediction[5].
However, there are still many opportunities to improve the models. Firstly, it is
hard to measure the complexity of data before processing by the model. There
is no criterion to evaluate the complexity of the data, for example, the data
with simple pattern types but large number of samples, or complex patterns and
small number of samples. Secondly, the huge number of hyper-parameters on
DNN leads the model time-consuming and easier to overfit. More importantly,
the topologies of DNN are usually empirically set for given tasks which may not
be suitable for other task complexities [6]. Thirdly, the training time of DNN
mostly depends on the personal settings of specific variables such as iteration
time, patch size or learning rate, and these variables are usually set by experi-
ences or training tricks. The network usually could not be predefined at the best
network state.

For the traditional DNNs, they only depend on the integration of lost function
minimization and weights regulations[7] to avoid overfitting. As shown in Fig.
1(A), the precision error differences between training sample and test sample
could be used to find the best fitting point, and the weights regulations will
make the differences smaller. However, these methods are still with predefined
network topology and even need more tricks to train a network well.

Some existing pruning neural network methods make the dynamical opti-
mization possible, such as evolutionary artificial neural network (EANN). These
kinds of methods usually calculate a fitness value to evaluate the performance
of the network, and the fitness values usually include the descriptions of clas-
sification accuracy (e.g. the reciprocal of error, the mean square error[8, 9] or
the cross entropy error[10]) and network scales (e.g., the number of neurons
or connections[11, 12]). These methods focus on finding an appropriate model
complexity which has the best balance between the network size and the test
accuracy. However, the test accuracy is actually acceptable among a wide range
of network size, as the solid black line shown in Fig. 1(B). The maximal accuracy
could not reflect the comprehensive performance of network such as adaptability.

From information processing perspective, a complex neural network is con-
sidered to be a major part of the brain. In human brain, the process of e-
liminating synapses is important during the development period. Research has
evidenced that the development period contains synaptic overgrowth in infant
brain, then surplus synapses are gradually eliminated throughout childhood and
adolescence[13]. Synapses that are rarely used are more likely to be eliminated
during the pruning process[14]. The process of overgrowth first and then elimi-
nation is actually an efficient way for brain to achieve optimal development[13,
15].

Inspired by the pruning mechanism in human brain, we propose a version
of brain-inspired developmental neural network algorithm to optimize network
topology structure by iteratively pruning useless neurons until the fitness func-
tion reaches the peak (BDNN-sp for short). The most appropriate network size
is the red dashed line in Fig. 1(B). The network could automatically find the
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optimal topology and the network complexity could adaptively increase along
with the increase of the task complexity, as shown in Fig. 1(C).
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Fig. 1: Underfitting and overfitting in traditional DNN(A) and BDNN-sp(B).
The optimal network(C) has the very model complexity which is complex enough
for the data complexity and will not cause overfitting or underfitting.

This paper is organized as follows. Section 2 introduces the detailed method-
ology of the proposed BDNN-sp algorithm. Section 3 verifies the adaptability
and transfer learning ability of the BDNN-sp algorithm on various complexities
of tasks. A conclusion is provided in Section 4.

2 Methodology of the BDNN-sp Algorithm

The BDNN-sp algorithm is a member and a branch of a series of Brain-inspired
Developmental Neural Networks (BDNN). It mainly contains two parts, the first
part is the brain inspired neuron pruning method on dynamically modulating
network topology, and the second part is the main developmental learning pro-
cess of the BDNN-sp network.

2.1 Brain-inspired Neural Network Pruning Rules

When learning a new task, a proportion of synapses are strengthened with
increase of the volume of dendritic spines, and a proportion of synapses are
weakened. Critically, these enlarged dendritic spines play an important role in
performing this task, and they persist for a long time despite the subsequent
learning of other tasks[16]. Meanwhile, the useless dendritic spines even neurons
are gradually eliminated during the learning process, as shown in Fig. 2(A).

There are lots of synapses eliminated during the development process of the
brain. The reasons can be summarized as the following hypotheses, such as
saving spaces for storing new knowledge, or reducing the number of variables
for better satisfying the outside environment, or increasing the response speed
to some specific stimulus. The pruning process of the brain plays a main role
during the procedure of brain and cognitive function development[13, 17, 18]. In
this paper, inspired by the pruning mechanism of the human brain, in which the
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more weaker synapses even neurons are easier to be eliminated, we optimize the
topology of artificial neural network (ANN) by pruning unimportant neurons for
simplification. The basic process of pruning ANN is shown in Fig. 2(B).

Learning process

cell body

axon

dendrite spines

strengthened/weakened
synapses

pruned
spines/synapse

pruned neuron

Initialize
network

Prune
network

Fitness
Retrain
network

no

Output

yes

Start End

(A)
(B)

Fig. 2: The pruning process in human brain(A) and in BDNN-sp(B).

We firstly build a three-layer ANN as initial network and ensure that the
network is with enough variables (or enough complexity). Then, we shrink the
complexity of the network by pruning the least important neurons. The reason is
that unimportant neurons have little effect on the output. Then, we iteratively
retrain the remaining network and prune unimportant neurons until the fitness
function reaches the peak.

On the neuron level, every time we eliminate a proportion of the most unim-
portant neurons through pruning all the input and output connections of these
neurons. We sum the total input and output weights of each neuron to evaluate
its importance. Since presynaptic neuron may have both excitatory and inhibito-
ry effects on postsynaptic neuron, then the importance degree of each neuron
is calculated as shown in Equation (1), where Nin is the number of connections
sent to neuron j, and Nout is the number of connections sent from neuron j. wij

is the weight from neuron i to j, and wjk is the weight from neuron j to k.

Ij =

Nin∑
i

|wij |+
Nout∑
k

|wjk| (1)

After pruning the proportion of unimportant neurons, we retrain the re-
maining network through back propagation (BP) method to update remaining
weights. Then, we evaluate the adaptability of network by fitness function which
is introduced in Section 2.2. This process will be iteratively executed until the
network reaches the best fitness. The framework of BDNN-sp algorithm is shown
in Algorithm 1.

2.2 Fitness Function in BDNN-sp

This subsection introduces the fitness function which is the criteria of the adapt-
ability for the network. This fitness function contains some evaluative conditions
of network stated as the following:
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Algorithm 1 The framework of the BDNN-sp algorithm.

Input: Initial neural network with enough complexity;
Output: Pruned neural network;
1: Calculate the importance degree Ij for each neuron j;
2: Prune a proportion of the most unimportant neurons;
3: Retrain the remaining neural network by BP;
4: Calculate the fitness function F ;
5: Repeat Step 1 to Step 4 until fitness function F reaches the peak;

(1) Classification Performance.
We measures the classification performance of network by test accuracy.
It is calculated by the ratio of accurate number to the total number of
test samples, as shown in Equation (2), where Nc represents the number
of test samples that are correctly classified, and Ns is the total number
of test samples. Classification accuracy is the benchmark to evaluate the
classification performance, as well as the adaptability of the network.

A =
Nc

Ns
= 1− error (2)

(2) Network Stability.
Information entropy is one of the most widely used measurement theory of
information [19]. Generally, entropy represents uncertainty or disorder. If
the outcome of an event has big probability, the entropy is small because
it gives little new information. If the outcome of an event is unpredictable
(small probability), the entropy will be large because it may contain some
new information[20]. This paper proposes an entropy-like measurement to
calculate the stability of the neural network.
Firstly, we define the difference between un-retrained weights and retrained
weights as probabilities distribution, as shown in Equation (3), where wp

represents the weights after pruning the most unimportant neurons in the
network, and wr represents the weights after retraining this pruned network.
p represents the variation of the remaining weights. If the pruned neurons
play little role in the network, then the p will be small and entropy will be
large. After pruning to a certain extent, the remaining network is greatly
influenced by the pruned neurons, then p will be fluctuant greatly and the
entropy will be small. The equation of the entropy is shown in Equation (4),
where Nc is the number of remaining connections.

p = |wr − wp| (3)

H (p) = −
Nc∑
i

pi log2 pi (4)

Then we normalize the H (p) as stability function, as shown in Equation
(5). S is effective for representing the stability of the network because it
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can reflect the change of overfitting and underfitting. At the beginning, the
initial network complexity is so excess that it is easier to overfit. With the
pruning of unimportant neurons, the network becomes smaller and the S will
gradually increase until the network reaches the best stability. After that, if
we go on pruning the network, it will be too small to learn the training data
well. Then underfitting occurred, the S will start to decrease.

S =
H (p)

maxi (|pi log2 pi|) ∗Nc
(5)

(3) Mean of Weights.
The mean of weights is calculated by Equation (6), where n is the number of
neurons in input layer, and m is the number of neurons in hidden layer, wij

is the connection weight from neuron i to neuron j, wjk is the connection
weight from neuron j to neuron k. Mean of weights could reflect the change
of connection weights. The more information it needs to represent, the larger
weight value it will be with. Hence the mean of weights increases along with
the increase of pruning ratio and task’s complexity. Mean of weights is useful
to balance the distribution of weights. When the network is complex enough,
the mean of weights will be small, which leads the network easier to overfit.

E =

∑n
i=1 |wij |+

∑m
j=1 |wjk|

n+m
(6)

Fitness function is a trade-off among the conditions introduced above, as
shown in Equation (7), where α, β and γ are the learning rates. Fitness function
plays the most important role in measuring the adaptability of network and will
help to prune the neural network to appropriate network size. Supervised by
this fitness function, the network will be minimized as much as possible, and the
network after pruning will make the best use of the remaining connections for
the best adaptability.

F = αA+ βS + γE (7)

3 Experimental Results

The performance of the proposed BDNN-sp algorithm, especially the adaptabil-
ity, will be verified and tested on different complexities of the Mixed National
Institute of Science and Technology classification datasets (MNIST). To verify
the adaptability of our BDNN-sp algorithm, we test it on different complexities
of tasks. For example, different number of training samples or different groups
of classes are tested. Besides, we also compare the transfer learning ability of
pruned network with un-pruned network on another different complexities of
tasks. The activation function of neuron is sigmoid function, and the learning
rate η is equal to 1. Here, we set α = β = γ = 1

3 .
The MNIST dataset contains 10 classes of hand written digits from 0 to 9.

The total number of images contains 60,000 training samples and 10,000 test
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samples. Each image is represented by a 28∗28 length of vector. As a result, the
initial ANN is with 784 neurons in its input layer, and the number of neurons in
output layer is equal to the class number. We give 1,000 neurons in the hidden
layer at the beginning of the ANN training.

Here we test 600, 1200, 2400, 4800, 9600, 19200 training samples with 10
classes. Then we calculate the accuracy A, the stability S, the mean of weights
E and the fitness F as shown in Fig. 3.

As Fig. 3(A) shows, the classification accuracy on different number of training
samples are changing with the iterative hidden neuron pruning process. Accuracy
represents the test accuracy with the 10,000 test samples for testing. From the
Fig. 3(A), when the network is too small (i.e. 0 to 50 neurons are left) or too
big (400 to 500 neurons are left), underfitting or overfitting occurred and the
accuracy is low. The range of acceptable network size with proper accuracy is
different from different number of training samples. As shown in Fig. 3(B), the
performance of stability has clear peak which is corresponding to the network
size with the best stability, and underfitting and overfitting are corresponding
to the left and right side of the peak respectively. Fig. 3(C) shows the change of
means of network weights. It falls sharply at first and then keeps steady with the
pruning of the network, and with more number of training samples, the higher
mean of weights will be. The overfitting occurred when the network is too large
and the mean of weights is small. Fig. 3(D) shows the change of fitness F , it has
clear peak and the most appropriate network size has the best fitness. The more
training samples are involved, the larger size of the network will be required.

Then the most appropriate network size on different number of training sam-
ples will be obtained. Fig. 4(A) depicts the number of neurons in hidden layers
after neural network pruning. With the increase of training samples, the number
of neurons in hidden layer increases. The red line in Fig. 4(A) represents the
training samples in 10 classes, and the black line represents the training samples
in 5 classes. From the result, we could see that the network sizes of 5 classes are
smaller than the ones in 10 classes which is consistent with the prediction. The
result indicates that the pruned network complexity will increase along with the
increase of task’s complexity. In all, the model could automatically modulate
network size for different complexities of tasks through the BDNN-sp algorithm.

Besides, we also test the transfer learning ability on another different com-
plexities of tasks. We first train the initial network and pruned the network on
9,600 training samples. Then, we take out the pruned network and un-pruned
network which both have been trained to the same accuracy 88.72%. Finally,
we test pruned network and un-pruned network on untrained 1,200 and 19,200
samples. Fig. 4(B) depicts the change of error on 19,200 samples, and Fig. 4(C)
depicts the change of error on 1,200 samples. The black line in Fig. 4(B) and Fig.
4(C) represents the error of pruned network, and the red line represents the error
of initial un-pruned network. Obviously, pruned network performs better than
un-pruned network on both simple and complex tasks. Thus we can conclude
that the pruned network has better transfer learning ability than un-pruned
network.
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Fig. 3: The accuracy(A), the stability(B), the means of weights(C) and the
fitness(D) of BDNN-sp on different number of MNIST training samples. The x
axis shows the remaining number of neurons after pruning.
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4 Conclusion

This paper proposes a neuron pruning method to adaptively modulate the topol-
ogy structure of neural networks. Pruning process iteratively eliminates unim-
portant neurons and retrains the remaining network until its fitness reaches the
peak. In order to determine the most appropriate network topology, we propose
a new BDNN-sp algorithm with fitness function which integrates classification
performance, stability and mean of weights. The experimental results show that
the BDNN-sp model could reflect the network states of overfitting and underfit-
ting. In addition, to verify the adaptability of BDNN-sp, we test it on different
complexities of MNIST classification tasks. The experimental results show that
the network complexity increases along with the increase of the task complexity.
By comparing with the initial network, the size of network could be greatly re-
duced while the accuracy is with little reduction. On the transfer learning tasks,
the BDNN-sp model performs better than un-pruned network.
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12. Ileanǎ Ioan, Corina Rotar, and Arpad Incze. The optimization of feed forward
neural networks structure using genetic algorithms. In Proceedings of the Inter-
national Conference on Theory and Applications of Mathematics and Informatics
(ICTAMI), volume 8, pages 223–234, 2004.

13. Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Synaptic pruning in development:
A computational account. Neural Computation, 10(7):1759–1777, 1998.

14. Michael Van Doren Johnston, Akira Ishida, Wako Nakajima Ishida, Hiroko Baber
Matsushita, Akira Nishimura, and Masahiro Tsuji. Plasticity and injury in the
developing brain. Brain & Development, 31(1):1–10, 2009.

15. Alvaro Pascual-Leone, Amir Amedi, Felipe Fregni, and Lotfi B. Merabet. The
plastic human brain cortex. Annual Review of Neuroscience, 28(28):377–401, 2005.

16. Akiko Hayashi-Takagi, Sho Yagishita, Mayumi Nakamura, Fukutoshi Shirai, Y-
i Wu, Amanda L. Loshbaugh, Brian Kuhlman, Klaus M. Hahn, and Haruo Kasai1.
Labelling and optical erasure of synaptic memory traces in the motor cortex. Na-
ture, 525(7569):333–338, 2015.

17. Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Neuronal regulation: A biolog-
ically plausible mechanism for efficient synaptic pruning in development. Neuro-
computing, 26-27(98):633–639, 1999.

18. Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Synaptic pruning in development:
a novel account in neural terms. In Proceedings of Conference on Computational
Neuroscience : Trends in Research, pages 149–154, 1998.

19. Claude E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27(3):379–423, 1948.

20. C. E. Shannon. Prediction and entropy of printed english. Bell System Technical
Journal, 30:50–64, 1951.

10


