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Abstract—Cryptocurrency is a rapid developing financial tech-
nology innovation which has attracted a large number of peo-
ple around the world. The high-speed evolution, radical price
fluctuations of cryptocurrency, and the inconsistent attitudes of
monetary authorities in different countries have triggered panic
and chain reactions towards the application and adoption of
cryptocurrency and have caused public security related events. So
far, a lot of researches and analyses have focused on just one or
only a few number of cryptocurrencies, a comprehensive analysis
of the whole cryptocurrency market and its systemic risk is still
lacking. In this paper, we analyze the dynamics and systemic
risk of the cryptocurrency market based on the public available
price history. We first validated that the correlation matrix and
asset tree are good tools to analyze the risk and stability of the
cryptocurrency market. Furthermore, consistent with public per-
ception, our quantitative analysis reveals that the cryptocurrency
market is relatively fragile and unstable. Our work is the first to
investigate the systemic risk of the whole cryptocurrency market
and may shed some light on cryptocurrency related investment
decision, regulation, and legislation.

Index Terms—cryptocurrency, blockchain, financial market,
correlation matrix, asset tree, systemic risk

I. INTRODUCTION

Cryptocurrency is a special digital currency which uses
blockchain to build a decentralized public ledger without the
central authority to secure transactions and control the creation
of new units of currency. Since the first cryptocurrency Bitcoin
emerged in 2009 [1], cryptocurrencies have now formed a
complex system implemented through exchanges, wallets,
payments, and coin mining [2]. According to the website Cryp-
tocurrency Market Capitalizations 1, in April 2018, there are
over 1600 active currencies in the cryptocurrency market with
a total market cap of more than $268 billion, indicating that
the cryptocurrency market has already become an important
part of the international financial market.

Nonetheless, the cryptocurrency market is still under rapidly
developing and transforming, experiencing dramatic price fluc-
tuations, and facing inconsistent regulation rules announced
by monetary authorities of different countries [3]. All of these
pose a great challenge towards a comprehensive understanding

1http://coinmarketcap.com/currencies/views/all/

of the cryptocurrency market and its systemic risk. Besides
financial related security issues, investment loss caused by mis-
leading information, unfamiliar with the nature of cryptocur-
rency, and governmental regulation also causes public security
related events. So far, most of the current researches focus
on the following two directions, one is the basic blockchain
and other relevant technologies [4], [5], and the other is the
analysis that focused on a single or several cryptocurrencies,
including descriptive statistics [6], [7], network evolution [8]–
[10], price bubbles and determinants [11]–[13].

It should be noted that very little work has been carried out
on the whole cryptocurrency market. Gandal and Halaburda
[14] analyzed the competition of seven cryptocurrencies by
examining their exchange rates over time and interpreted their
findings with the help of network effects. ElBahrawy et al.
[15] investigated the evolutionary dynamics of cryptocurrency
market using statistical methods. In contrast, there exists a
large number of literatures that analyze traditional financial
assets, such as stock [16]–[20] and foreign exchange [21]–
[25]. Among which, correlation matrix and asset tree are
widely adopted as they provide a unified framework to system-
atically investigate the dynamics of various financial markets
and provide key information for a series of financial activities.

In this paper, based on price data from January 1, 2015
to April 20, 2018, we use the framework of the correlation
matrix and the asset tree to analyze the dynamics of the cryp-
tocurrency market. In addition, based on the global minimum
variance (GMV) portfolio, we adopt the overall portfolio risk
to measure the systemic risk. We find that the correlation
matrix and the asset tree are good tools to investigate the
cryptocurrency market. We also show that the cryptocurrency
market is relatively fragile through quantitative analysis, which
is consistent with the public perception on the cryptocurrency
market. Our work may shed some light on the nature of
price fluctuations in the cryptocurrency market and provides
guidance for investing, regulation, and legislation.

II. DATASETS

Among the complete list of cryptocurrencies, we investigate
the daily close price data of N = 50 currencies. We choose
them for the following two reasons. First, in April 2018, they
accounted for more than 90% of the total capitalization and978-1-5386-7848-0/18/$31.00 ©2018 IEEE



TABLE I
THE SET OF CRYPTOCURRENCIES

Currency Symbol Currency Symbol Currency Symbol
Bitcoin BTC OmiseGO OMG Populous PPT
Ethereum ETH Qtum QTUM Waves WAVES
XRP XRP Zcash ZEC Status SNT
EOS EOS ICON ICX RChain RHOC
Litecoin LTC Lisk LSK Hshare HSR
Stellar XLM Bytecoin BCN Stratis STRAT
Cardano ADA 0x ZRX Ardor ARDR
IOTA MIOTA Aeternity AE Komodo KMD
NEO NEO Decred DCR Ark ARK
TRON TRX BitShares BTS Gas GAS
Monero XMR Augur REP PIVX PIVX
Dash DASH Steem STEEM Nano NANO
NEM XEM Siacoin SC Verge XVG
Dogecoin DOGE Vechain VEN Basic

Attention
Token

BATBitcoin
Cash BCH Bitcoin

Gold BTG

Ethereum
Classic ETC KingN

Coin KNC Veritaseum VERI

Binance
Coin BNB Kucoin

Shares KCS Waltonchain WTC

each market share is fairly stable during the analysis period,
this indicates that these currencies are more important than
others. Second, the cryptocurrency market is changing over
time, new currencies are released and some old currencies
no longer have a trading volume on the exchange markets.
To ensure the reliability of the analysis, we thus discard the
currencies whose data period is less than six months.

We obtained the historical close daily price from the web-
site Cryptocurrency Market Capitalizations. In particular, the
dataset consists of cryptocurrencies from January 1, 2015 to
April 20, 2018. Here each price is calculated by taking the
volume weighted average of all prices reported at each market,
and we should mention that these markets contain the majority
of the markets, but not all of them. The currencies and the
respective symbols are listed in Table I.

III. METHODOLOGY

In this section, we first construct the correlation matrix
and asset tree using synchronized time series of different
cryptocurrencies, which provide a basis for the subsequent
analysis. Then we introduce the indicators that measure the
cryptocurrency market from three aspects: volatility, centrality
structure, and systemic risk.

A. Correlation Matrix and Asset Tree

The price of an asset is often affected by many factors,
including inflation, economic growth or economic recession,
and fluctuations in the global financial market [26]. We use
the logarithmic return, which is by far the most widely used
variable in econophysics, to investigate the price changes. Let
Pi (t) be the close price of cryptocurrency i on day t, the daily
logarithmic return ri is then

ri (t) = ln
Pi(t)

Pi(t− 1)
= lnPi(t)− lnPi(t− 1). (1)

A sequence of logarithmic returns for consecutive trading days
over a window with width T constitutes a return vector ri. For
example, if T is set to 3 months, then the return vector includes
90 elements, each corresponding to the return of that day.

In order to quantify the correlation of price changes between
cryptocurrencies over the same period, we use the correlation
coefficient. Specifically, the correlation coefficient between
cryptocurrency i and j is calculated by the cross-correlation
function

Cij =
E(rirj)− E(ri)E(rj)

σiσj
, (2)

where E(·) denotes the expectation operator and σi is the
standard deviation of currency i’s return vector ri. By defi-
nition (2), Cij is symmetric and varies from -1 (completely
linear anti-correlated) to 1 (completely linear correlated). For
a set of N cryptocurrencies, we can then form a symmetric
correlation matrix C with N(N − 1)/2 different coefficients.

Based on the relationship between price changes among
cryptocurrencies, we can introduce a metric to visually rep-
resent the relative distance between cryptocurrencies by con-
verting the correlation coefficient Cij to a distance coefficient
[17] Dij by transformation

Dij =
√

2 (1− Cij), (3)

where 0 ≤ Dij ≤ 2, since −1 ≤ Cij ≤ 1. After applying
this transformation, the distance coefficient meets the axiom:
Dij = 0 if and only if i = j; Dij = Dji; Dij ≤ Dik +Dkj .

Using the distance matrix D obtained from the distance co-
efficient Dij , a fully connected undirected graph G = (V,E)
with N nodes and N(N − 1)/2 edges can be constructed,
where the node represents the cryptocurrency and the weight
of the edge between cryptocurrencies i and j represents the
distance between them.

Based on the fully connected graph G, we use the classic
Kruskal’s algorithm [27] to construct the asset tree Ĝ =(
V, Ê

)
, which is a loop-free connected graph, where all the

N nodes are connected with N − 1 edges and satisfy that the
sum of all edge weights is minimum. The Kruskal’s algorithm
consists of the following steps: 1) Construct a new graph Ĝ
with the same nodes as G but no edges; 2) Sort the edges in
G by weight to find the minimum weighted edge in a constant
time; 3) Add the edge with minimum weight to the graph Ĝ
provided that Ĝ after the edge intersection is still a forest or a
tree; 4) Repeat the Step 3 until all the nodes are connected in
the graph Ĝ. Using the asset tree, the number of valid edges
is reduced from N(N − 1)/2 to N − 1.

To capture the dynamics of the cryptocurrency market, we
further employ the method of rolling windows [28] as follows.
Suppose we have a daily return series of length n, we use the
first T (T < n) observations to form the first correlation matrix
and asset tree. Subsequently, we get an overlapping moving
window of length T from the second to (T+1)-th observation,
and form the second correlation matrix and asset tree. Slide
the window until the last observation is included. We then
obtain a series of correlation matrices and corresponding asset



trees, which serve as the basis of the evolutionary dynamics
to be discussed later. We explore a large number of values
for window width T , and find the optimal value is T = 90
days (3 months) when noise and smoothing factors are taken
into consideration [17]. By setting T = 90, a total of 1116
windows are applied.

B. Analysis indicators

In this part, we analyze the cryptocurrency market from
three aspects: temporal volatility, centrality structure, and
systemic risk.
1) Temporal Volatility

First, we use four elementary statistics to investigate the
distribution of all correlation coefficients and the length of
the asset tree, and we use the changes of these indicators
to characterize the temporal volatility of the cryptocurrency
market.

The first measure is the mean defined as

C(t) =
2

N (N − 1)

∑
Ct

ij∈Ct
Ct

ij . (4)

Because of the symmetry of the correlation matrix, we only
consider the non-diagonal elements Ct

ij(i 6= j) in the upper or
lower triangular matrix. In the context of financial market [17],
this measure is called the mean correlation coefficient when
the correlation matrix is used or the normalized tree length if
otherwise the asset tree is employed.

The second measure is the variance, which measures how
far the correlation coefficients are spread out from the mean
and is defined as

V (t) =
2

N(N − 1)

∑
Ct

ij∈Ct

(
Ct

ij − C(t)
)2

. (5)

The third measure is the skewness, which quantifies the
asymmetry of the correlation matrix with respect to the mean,
i.e., the peak of the distribution, defined by

S(t) =
2V (t)3/2

N(N − 1)

∑
Ct

ij∈Ct

(
Ct

ij − C(t)
)3

. (6)

In general, a negative value of skewness indicates that most of
the correlation coefficients are concentrated on the right side
of the distribution, while a positive value means concentrating
on the left. For symmetrical distributions, such as the normal
distribution, the value of skewness is zero.

The fourth measure is the kurtosis, which measures the
fatness of the distribution of the correlation coefficients, i.e.,
the tails of the distribution, defined by

K(t) =
2V (t)2

N(N − 1)

∑
Ct

ij∈Ct

(
Ct

ij − C(t)
)4

− 3. (7)

The kurtosis of a normal distribution is 0. If the value of
kurtosis is larger than 0, then the distribution has a fatter tail
than the normal distribution, meaning that the random variable
attains very large positive and negative values more than if it
were normal. Otherwise, the distribution will have a thin tail
when the kurtosis is negative.
2) Centrality Structure

The central node is considered to be the central and ref-
erence node of the tree, and it is important in the sense that
any change in its price can have a strong impact on the whole
market. Here we select the node with the highest influence
strength (the sum of correlation coefficients of edges) as the
central node. For an arbitrary node (or cryptocurrency) i in
the asset tree, let Γi be the set of all its neighbors, then its
influence strength is

ISi =
∑

j∈Γi

Cij =
∑

j∈Γi

(
1−D2

ij/2
)
. (8)

Further, we use the occupation layer to represent the relative
location of a specific node in the tree, which gauges the
distance between the node and the central node. The layers
of the asset tree are characterized by natural numbers 0, 1,
2, 3, · · · , where the occupation layer of the central node is
0, the layer of the child of the central node is 1, and so on.
To measure the average location of all nodes other than the
central node, we define the mean occupation layer [17] as

l(t, vc) =
1

N

∑N

i=1
L
(
vti
)
, (9)

where L (vti) denotes the occupation layer of the node vi.
3) Systemic Risk

The systemic risk is useful in a range of financial activities,
including portfolio optimization, risk management, and deriva-
tive pricing. In the cryptocurrency market, the systemic risk
can be used to measure the influence of occurrence of an event
on a certain number of cryptocurrencies [29]. Given a set of
N cryptocurrencies with average returns r̄ and the estimated
covariance Σr of returns which were calculated from historical
price data, we are interested in the global minimum variance
(GMV) portfolio. The risk at the GMV portfolio is the minimal
risk that can be obtained by adjusting the weights of all the
cryptocurrencies. Formally, this can be stated as minww

T Σrw,
subject to

∑N
i=1 wi = 1 (full investment) and wi ≥ 0 (no

short selling), which is a constrained quadratic programming
problem.

As the magnitude of returns in the different market is
different, to enhance the reliability of the results, we replace
the covariance matrix with the correlation matrix, whose (i, j)
entry is changed from Cov(ri, rj) to Cij = Cov(ri, rj)/σiσj
as Cij scales from -1 to 1. So the final optimization problem
can be stated as

min
w

wTCw

s.t.
∑N

i=1 wi = 1
wi ≥ 0

. (10)

In order to investigate how the cryptocurrencies in the
optimal portfolio are located with respect to the central node,
we use the weighted portfolio layer as

l(t, vc) =
∑N

i=1
wiL

(
vti
)
. (11)

In the framework of the asset tree, we also compare the
behavior of the mean occupation layer and the weighted
portfolio layer.



Fig. 1. The temporal volatility of the correlation coefficients matrix (blue)
and asset tree (MST) path lengths (red).

IV. RESULTS

A. Temporal Volatility

Here we use the four descriptive statistics defined in the
above section to characterize the temporal volatility of the
correlation coefficients and the asset tree path lengths.

First, financial events in the cryptocurrency market have
a significant impact on the correlation coefficients as shown
in Fig. 1. From July to October 2016, the cryptocurrency
market has undergone the halving of Bitcoin production [30],
the hard fork of Ethereum [31], and the stolen incident of
the trading platform Bitfinex [32]. Correspondingly, we can
see that in the course of this period, the value of the mean
correlation coefficient reaches the lowest point, while the
values of skewness and kurtosis respectively reach the highest
points. Another evident period began in the second quarter
of 2017, during which all four indicators have experienced

dramatic fluctuations. A rising trend is observed in April
2017, roughly corresponding to the implementation of new
legislation in Japan that accepts the using of digital curren-
cies as a legal means of payment within the country [33].
When the US SEC issued the Investor Bulletin to announce
that the requirement for regulation of Initial Coin Offerings
(ICOs) and investors should be aware of potential risks of
participating in ICOs [34], the mean correlation coefficient
began to decline. Recovery is accompanied by an increase of
the mean correlation coefficient. A second larger downward
spike occurred when the People’s Bank of China announced
the illegality of ICOs and outlawed the use of cryptocurrencies
for trading within the country [35]. In accordance with the
release of bitcoin future contracts by CME and Cboe [36], the
cryptocurrency market began to recover with an increase in
the mean correlation coefficient. The above analysis illustrates
that the correlation coefficient was changing dramatically
during the uncertainty and turbulence of the cryptocurrency
market. Further, we investigate whether these four indicators
are correlated, as can be clearly seen in Fig. 1. For this, we
determine the Pearson’s correlation coefficient, and find that
there exists a strong negative correlation between mean and
variance, skewness, and kurtosis with -0.625, -0.930 and -
0.669 respectively.

We now move on to the asset trees and its correlation
relationship with the correlation matrix. As shown in Fig.
1, the asset tree maintains most of the characteristics of the
correlation matrix, including the lowest/highest point from
July to October in 2016, and the fluctuations starting from the
second quarter of 2017. Further evidence is the correlation
coefficient between the mean correlation coefficient and the
normalized tree length, -0.957 fully demonstrates the strong
negative correlation. In addition, we calculate the correlation
of these four indicators between correlation matrix and as-
set tree. We find that the correlation between variance and
kurtosis is positively correlated with 0.580 and 0.434, while
the correlation of mean and skewness is negatively correlated
with -0.957 and -0.828. Consequently, the asset tree can retain
salient, but not all, of properties of the correlation matrix and
is a good representation by reducing the information space
from N(N − 1)/2 correlation coefficient to N − 1 edges of
the asset tree.

The above analysis demonstrates that the correlation matrix
and the asset tree can reflect the financial events in the
cryptocurrency market as such in the traditional financial
markets. The volatility of the four indicators of the correlation
matrix and the asset tree all reveal that the cryptocurrency
market is relatively unstable.

B. Centrality Structure

To establish a reference in the asset tree, we further analyze
the central nodes using the criteria with the largest sum of
correlation coefficients as defined in the last section. As shown
in Fig. 2, the central node is varying: Bitcoin(BTC) dominates
47.7% of the time windows, followed by Ethereum (ETH) at
7.7%, then Stellar (XLM) at 6.5%, and Ark (ARK) at 5.7%.
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Fig. 2. The changes of central nodes over time.

Overall, Bitcoin was the well-deserved dominant node in the
early days, as Bitcoin is the oldest and the most popular
cryptocurrency in the market. Almost all cryptocurrencies need
to use Bitcoin as a medium if they want to trade with fiat
currencies or other cryptocurrencies. But later, the central
position of Bitcoin weakened, and the central node diversified,
more than 20 out of 50 cryptocurrencies have taken the
position of central node.

In addition, we characterize the topology of the asset tree by
the mean occupation layer based on these central nodes. As
shown in Fig. 3, the mean occupation layer fluctuates with
the changes of the asset tree. Specifically, the two lowest
values in July 2016 and October 2016, located symmetrically,
correspond to the highest point of the normalized tree length.
Roughly starting from 2017, the mean occupation layer tends
to increase over time with fluctuations. The possible reason is
that the stability of the cryptocurrency market has improved
through the improvement of regulation and the enhancement
of investor concerns. Therefore, high values of the mean occu-
pation layer correspond to a stable market, while the extremely
low values are associated with financial events, when the price
changes of different cryptocurrencies are homogeneous, the
distance between other nodes from the central node shortens.

Consequently, the diversity of the central node and the
volatility of the mean occupation layer, both indicate the vary-
ing of the topology of the asset tree, thus the cryptocurrency
market is relatively fragile with respect to traditional financial
markets.

C. Systemic Risk

In this part, we adopt the minimum portfolio risk to measure
the systemic risk, i.e., the influence of occurrence of an event
on the cryptocurrency market.

First, we investigate how the cryptocurrencies included in
the minimum portfolio risk are located with respect to the
central node. From Fig. 3 we can see the behavior of the
weighted portfolio layer and its comparison with the mean
occupation layer. We find that the weighted portfolio layer
is higher than the mean occupation layer practically at all

Fig. 3. Plots of the weighted portfolio layer (red) and the mean occupation
layer (blue) with dynamic central nodes.

Fig. 4. Plots of the mean correlation coefficient (blue), the normalized tree
length (green), and the systemic risk (red) as functions of time.

times, specifically, the difference between the two layers is
0.31. Therefore, compared to the mean occupation layer, for
the most time, the cryptocurrencies included in the minimum
risk portfolio are consistently located further away from the
central node, i.e., distributed on the outskirts of the tree, to
eliminate risk.

Fig. 4 shows the curve of the minimum risk as the function
of time, we find it has remarkable similarities to the curve
of the mean correlation coefficient and the curve of the
normalized tree length. Specifically, the correlation coefficient
between the risk and the mean correlation coefficient is 0.906,
while the coefficient between the risk and the normalized
tree length is -0.788. Therefore, in the cryptocurrency market,
though not as strong as the mean correlation coefficient, the
normalized tree length can explain the diversification potential
of the market.

In conclusion, the volatility of the weighted portfolio layer
and the systemic risk further validate the relative instability of
the cryptocurrency market, which is consistent with the public
perception.



V. CONCLUSION

Based on the price history, this paper analyzed the cryp-
tocurrency market from temporal volatility, centrality struc-
ture, and the systemic risk. We validated that the correlation
matrix and the asset tree are good tools to investigate the
dynamics and systemic risk of the cryptocurrency market by
relating their dynamic changes to known financial events.
As an emerging and rapidly developing financial market, our
quantitative analysis reveals that the cryptocurrency market
is relatively fragile and unstable with respect to traditional
financial market which is consistent with public perception.
However, this paper only investigated the cryptocurrency mar-
ket, we will conduct a comparative analysis of cryptocurrency,
foreign exchange, and stock to make further understandings on
the nature of cryptocurrency in our future research.
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