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Abstract— We present a multi-view convolutional neural
networks (MV-CNN) for lung nodule segmentation. The MV-
CNN specialized in capturing a diverse set of nodule-sensitive
features from axial, coronal and sagittal views in CT images
simultaneously. The proposed network architecture consists of
three CNN branches, where each branch includes seven stacked
layers and takes multi-scale nodule patches as input. The three
CNN branches are then integrated with a fully connected layer
to predict whether the patch center voxel belongs to the nodule.
The proposed method has been evaluated on 893 nodules from
the public LIDC-IDRI dataset, where ground-truth annotations
and CT imaging data were provided. We showed that MV-CNN
demonstrated encouraging performance for segmenting various
type of nodules including juxta-pleural, cavitary, and non-
solid nodules, achieving an average dice similarity coefficient
(DSC) of 77.67% and average surface distance (ASD) of 0.24,
outperforming conventional image segmentation approaches.

I. INTRODUCTION

Automated lung nodule segmentation from Computed
Tomography (CT) images provides valuable information for
lung cancer computer-aided diagnosis. Given the fact of
growing volumes of lung nodule CT images, developing
robust automated segmentation model is of great clinical
importance to avoid tedious manual processing and reduce
inter-observer variability from human experts.

Despite the development of different approaches for lung
nodule segmentation in recent years [1]–[4], achieving accu-
rate segmentation performance continues to require attention
because of the following two primary challenges. First,
intensity-based methods with morphology operations [1], [2]
and region growing [3] perform well on isolated nodules but
fail to segment nodules in challenging locations, especially
for nodules attached to surroundings that usually appear
in CT. Second, sophisticated model-based methods [4], [5]
often involve shape hypothesis or user-interactive parameters
that can be sensitive to different type of lung nodules.

Our study is motivated by recent success of applying con-
volutional neural networks (CNN) for medical image analy-
sis and pattern recognition [6]–[9]. As opposed to traditional

This paper is supported by the National Natural Science Foundation of
China under Grant No. 81227901, 81527805.

+S. Wang (wangshuo2014@ia.ac.cn), ∗D. Dong, ∗Z. Liu and ∗J. Tian
(tian@ieee.org) are with the CAS Key Laboratory of Molecular Imaging,
Institute of Automation, Chinese Academy of Sciences; Beijing Key Labo-
ratory of Molecular Imaging; University of Chinese Academy of Sciences,
Beijing 100190, China. ∗ are corresponding authors. + are co-first authors.

+M. Zhou and O. Gevaert are with the Stanford Center for Biomedical
Informatics Research (BMIR), Department of Medicine, Stanford Univer-
sity, CA 94305, USA.

Z. Tang is with the School of Mechanical, Electrical & Information
Engineering, Shandong University, Weihai, Shandong Province, 264209,
China.

morphology operation and region growing methods, CNN
learns discriminative features that are adaptive to specific
tasks automatically [10]. For instance, Havaei et al. [9]
applied a CNN model for brain tumor segmentation, showing
improved performance over hand-crafted image features. In
our study, instead of involving lung nodule shape hypothesis
or tuning model-based parameters, we propose a multi-view
convolutional neural networks (MV-CNN) [11] to distinguish
nodule voxels from background voxels in CT imaging.
Our model has learned nodule-sensitive features from 0.34
million voxel patches automatically and revealed appealing
segmentation results for various type of lung nodules.

Overall, our contributions are as follows: 1) The proposed
MV-CNN can segment lung nodules in CT images without
any shape hypothesis or user-interactive parameter settings,
and it learns discriminative nodule-sensitive features auto-
matically from a large amount of image data; 2) We propose
a multi-scale patch strategy as the input of the MV-CNN to
capture both detailed textures and nodule shape information;
3) The MV-CNN integrates three branches that can learn
deep features from three orthogonal image views in CT
(Fig. 1).

This paper is organized as follows. A detailed description
of the MV-CNN is presented in Section II. Experimental
datasets and evaluation criteria are introduced in Section III.
Section IV provides the quantitative performance. Finally,
conclusion and further discussions are presented in Sec-
tion V.

II. METHOD

Our MV-CNN is designed to be an efficient CNN-based
architecture for lung nodule segmentation. It aims to con-
vert lung nodule segmentation into CT voxel classification
(Fig. 1). Given a voxel in CT image, we extract three multi-
scale patches centered on this voxel as the input to the CNN
model and predict if this voxel belongs to the nodule.

The proposed MV-CNN incorporates three branches that
process voxel patches from axial, coronal and sagittal view
CT images respectively. The three branches share the same
structure that consists of six convolutional layers (C1 to C6),
two max-pooling layers (Max pooling 1, 2), and one fully
connected layer (F7). The six convolutional layers in each
CNN branch are divided into three blocks, where each block
shares the exact same structure including two convolutional
layers of kernel size 3×3. Between each block, max pooling
operation with pooling window 2× 2 and pooling step 2 is
applied for feature selection. At the end of the CNN model,
the three branches are merged through a fully connected
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Fig. 1. Illustration of MV-CNN architecture. This network contains three branches aiming at capturing features from axial, coronal and sagittal image
views and each branch takes a two-scale patch as input. Each CNN branch includes six convolutional layers (C1 to C6), two max-pooling layers,
and a fully connected layer (F7). The three branches are finally merged in a fully connected layer (F8). The convolutional kernel size is denoted as
filter number@filter width× filter height (i.e., 32@3× 3 represents 32 filters of kernel size 3× 3). The number below each layer indicates the
feature map size after convolution. The bottom figure shows the feature maps of the C1 layer on three branches, indicating that the learned filters can
capture different characteristics of nodules from input CT image (e.g., edge or solid part of a nodule).

layer (F8) to outcome the voxel label. A detailed architecture
is illustrated in Fig 1. After each convolutional layer and
the first fully connected layer (F7), a parametric rectified
linear unit (PReLU) [12] is used as nonlinear activation
function, and batch normalization is applied for training
acceleration [13].

The input to each CNN branch is a two-channel multi-
scale patch rather than a single-scale patch. The two scale
patches are of size 65 × 65 and 35 × 35, and are scaled to
35× 35 using third-order spline interpolation to form a two-
channel patch. The small scale patch contains detailed texture
information which is important for identifying voxel labels.
Meanwhile, the large scale patch provides a broad scope
of the nodule shape information. The multi-view structure
takes 3-D information into consideration without involving
much redundent image information compared with inputting
a whole 3-D volume [14].

In the case of the output layer (F8) consisting of two units,
the activation values are fed into a binary softmax function
that are converted into probability distributions over the class
labels. Namely, suppose that ok is the k-th output of the
network for a given input, the probability assigned to the
k-th class is the output of the softmax function:

pk = exp (ok) /
∑

h⊆{0,1}

exp (oh) (1)

where k = 0 and k = 1 represent non-nodule and nodule
voxels respectively.

The goal of network training is to maximize the probability
of the correct class. This is achieved by minimizing the cross-
entropy loss for each training sample. Suppose that y is the
true label for a given input patch that belongs to {0,1}, the
loss function is defined as:

L (W ) = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log (1− ŷn)]+λ|W |

(2)
where ŷn represents the predicted probability from MV-

CNN and N is the number of samples. To avoid over fitting,
the 1−norm regularization is used on the model weights W .
λ controls the regularization strength, and is set to 5×10−4 in
our model. The loss function is minimized during the model
training process by computing the gradient of L over the
network parameters W . During this process, the weights of
the CNN are initialized with the Xavier algorithm [15], and
they are updated by the stochastic gradient descent (SGD)
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algorithm using a momentum of 0.9, and a batch size of 128.
The learning rate is set to 6× 10−5 initially, and is reduced
by a factor of 10 after every four epochs.

III. EXPERIMENT

A. Dataset

We used the public Lung Image Database Consortium and
Image Database Resource Initiative (LIDC-IDRI) [16] for
experimental evaluation. All the nodules in this dataset are
annotated by up to four board-certified radiologists. Only the
nodules with annotations from all four radiologists are used
in our experiment (a total of 893 nodules). Nodule diameters
in this dataset range from 2.03 mm to 38.12 mm, and the
slice interval ranges from 0.45 mm to 5.0 mm. Because
of the variability among four different radiologists, a 50%
consensus criterion [1] is adopted to generate a single truth
boundary.

To perform a rigorous evaluation of our method, we
randomly partitioned the 893 nodules into three subsets
including training, validation, and testing sets that are com-
prised of 450, 50, and 393 nodules respectively. We train the
MV-CNN on the training set, and the validation set is used
for determining the CNN training epoch number. Finally, the
testing set is used for evaluating the model performance.

B. Evaluation criteria

Given the ground truth segmentation Gt and automated
segmentation result Auto, the dice similarity coefficient
(DSC) and average surface distance (ASD) are used as
the primary evaluation criteria for assessing the automatic
segmentation accuracy [17]. In addition, we also use the
sensitivity (SEN) and positive predictive value (PPV) to
demonstrate the voxel classification accuracy. Full definitions
are listed in Eq. 3 to Eq. 5:

DSC =
2 · V (Gt

⋂
Auto)

V (Gt) + V (Auto)
(3)

ASD =
1

2

(
mean
i∈Gt

min
j∈Auto

d (i, j) + mean
i∈Auto

min
j∈Gt

d (i, j)

)
(4)

SEN =
V (Gt

⋂
Auto)

V (Gt)
, PPV =

V (Gt
⋂
Auto)

V (Auto)
(5)

where V is the volume size counted in voxels and d(i,j)
denotes the Euclidean distance between voxel i and voxel
j measured in millimeters.

C. Model Training process

When generating training samples, we first identified the
3-D bounding cuboid for nodules in the training set, after
which we extended the size of the cuboid by adding eight
voxels along each axis to include additional non-nodule
tissues inside. Afterwards, one quarter of the number of
voxels in this expanded cubic were sampled uniformly.
Finally, equal numbers of nodule and non-nodule samples

were randomly selected to balance the training label. For
each sampled voxel, multi-scale patches as presented in
Section II were extracted from axial, coronal, and sagittal
view images. As a result, 0.34 million patches were used
for model training. We identified that DSC and ASD values
determined on the validation set stabilized after 20 epochs of
training, therefore we chose 20 epochs for MV-CNN training.
After the model training was completed through CAFFE
Toolkit [18], we reported segmentation results on the testing
set.

IV. RESULTS

A. Quantitative performance

To evaluate the performance of the proposed MV-CNN,
two widly used methods: level set and graph cut were
used for comparison which are provided in the public Fiji
software [19] and the parameters were optimized through
grid searching with this software. As listed in Table I, the

TABLE I
MEAN AND STANDARD DEVIATION OF QUANTITATIVE RESULTS FOR

VARIOUS SEGMENTATION METHODS. THE BEST PERFORMANCE IS

INDICATED IN BOLD FONT.

DSC (%) ASD (mm) SEN (%) PPV (%)

Level Set 60.09(16.83) 0.52(0.28) 65.55(21.61) 68.34(25.76)
Graph Cut 69.52(17.32) 0.47(0.31) 81.15(14.29) 65.43(25.18)
MV-CNN 77.67(15.71) 0.24(0.33) 83.72(20.71) 77.58(15.83)

proposed MV-CNN outperformed graph cut and level set
methods. Moreover, Fig. 2 shows the DSC score distribution
of the LIDC-IDRI testing set.

Fig. 2. DSC score distribution of the LIDC-IDRI testing set.

B. Visualization

The segmentation results are visualized to allow the com-
parison of different approaches. We demonstrate six repre-
sentative nodules from the LIDC-IDRI testing set (Fig. 3).
For isolated solid nodules (L1), both our method and the
state-of-the-art methods perform well. However, when ex-
amining nodules attached to surrounding tissues, the level
set and graph cut methods lead to reduced performance
because they are unable to identify nodules from pleura
(L2) or vessels (L3). In contrast, the proposed MV-CNN
remains robust when segmenting such nodules, which can
be probably attributed to the feature learning ability of the
MV-CNN in capturing discriminative features from different
image views. For cavitary (L4) and calcific (L5) nodules,
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Fig. 3. Segmentation visualization. From left to right: nodule with
ground truth, MV-CNN segmentation, level set segmentation, and graph cut
segmentation. L1-L6 are nodules of different types from the LIDC-IDRI
testing set.

level set and graph cut methods only identify part of the
nodules. However, the MV-CNN is able to reserve the
complete nodule shape. In addition, ground-glass opacity
(GGO) nodules (L6) present another challenge for the level
set and graph cut methods because they tend to show over-
segmentation due to the low contrast between nodules and
normal lung field, whereas the proposed method performs
reasonably well in capturing the nodule shape with GGO.

V. CONCLUSION

In this paper, we presented a deep learning model
MV-CNN for lung nodule segmentation, integrating three
branches to extract features from three orthogonal image
views in CT. An advantage of the proposed model is that
it does not involve any nodule shape hypothesis or user-
interactive parameter settings. After training on 0.34 million
voxel patches, MV-CNN achieved encouraging performance
on 393 nodules from the public LIDC-IDRI dataset (DSC =
77.67% and ASD = 0.24). In future work, we plan to train the
model with a larger amount of dataset and explore whether

the network depth will affect the model performance.
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