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ABSTRACT  

Multi-atlas based image segmentation in conjunction with pattern recognition based label fusion strategies has achieved 
promising performance in a variety of image segmentation problems, including hippocampus segmentation from MR 
images. The pattern recognition based label fusion consists of image feature extraction and pattern recognition 
components. Since the feature extraction component plays an important role in the pattern recognition based label fusion, 
a variety of feature extraction methods have been proposed to extract image features, including texture features and 
random projection features. However, these feature extraction methods are not adaptive to different segmentation 
problems. Following the success of convolutional neural networks in image feature extraction, we propose a feature 
extraction method based on convolutional neural networks for multi-atlas based image segmentation. The proposed 
method has been validated based on 135 T1 magnetic resonance imaging (MRI) scans and their hippocampus labels 
provided by the EADC-ADNI harmonized segmentation protocol. We also compared our method with state-of-the-art 
pattern recognition based MAIS methods, including Local Label Learning and Random Local Binary Patterns. The 
experimental results have demonstrated that our method could achieve competitive hippocampus segmentation 
performance over the alternative methods under comparison.  
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1. INTRODUCTION 
Medical image segmentation is an important component for delineating regions of interest in medical image analysis. For 
instance, delineation of the hippocampus from magnetic resonance imaging (MRI) scans has received much attention in 
studies of Alzheimer’s disease [1]. Multi-atlas based image segmentation (MAIS) is one of the most successful strategies 
for the hippocampus segmentation problem [2, 3]. The MAIS methods segment images based on a set of atlases 
consisting of different images and their corresponding segmentation label images in following 2 steps. First, all the atlas 
images including their corresponding segmentation label images are registered to the image to be segmented using image 
registration algorithms, and then a segmentation label fusion strategy is adopted to fuse the registered atlas label images 
to generate a segmentation result. Particularly, the label fusion strategy plays an important role in the MAIS methods.  

A variety of label fusion strategies have been developed and most of them can be categorized as voting based 
methods, image representation based methods, and pattern recognition based methods. The voting based methods fuse 
the registered atlas label images using voting strategies, such as majority voting [4] and simultaneous truth and 
performance level estimation (STAPLE) [5]. The image representation based methods fuse the registered atlas label 
images by learning an image representation to characterize the image to be segmented based on the registered atlas 
images and applying the learned representation to the registered atlas label images to generate a segmentation label 

                                                 
Δ Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As 
such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis 
or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 
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image. The image representation can be learned using methods, such as sparse representation [6] and dictionary learning 
[7]. The pattern recognition based methods build voxel-wise classifiers by using the registered atlas images and label 
images as training data and apply the classifiers to the image to be segmented to generate a segmentation label image [2, 
3, 8-13]. A variety of pattern recognition methods have been used to build such classifiers, including support vector 
machines [2, 3], random forests [14], and linear regression [10].  

In the MAIS methods that are built upon pattern recognition based label fusion strategies, image feature 
extraction used in the classification plays an important role. In particular, most existing pattern recognition based MAIS 
methods use nonlocal patch-based (NLP) strategy [15] to generate local training samples for each voxel of images to be 
segmented. To build local classifiers for segmenting images, a variety of feature extraction techniques have been 
proposed to extract image features from image patches. Besides using original image intensity values as image features, 
the most frequently used image features are texture image features, such as those extracted using first and second order 
difference filters, Hyperplane filters, Sobel filters, Laplacian filters and range difference filters [2, 3], Haar features [16], 
and random local binary patterns [10]. All these feature extraction methods extract image features independent on the 
segmentation problems under study, and therefore they are not necessarily the best for the image segmentation problem 
under study.  

Deep learning techniques, particularly convolutional neural networks (CNNs), can adaptively learn image 
features for a specific image segmentation problem under study [17]. Particularly, a deep CNN model is an integrated 
model of both feature generators and classifiers, and it could adjust weights of CNNs to optimize image feature 
extraction and classification. By integrating multiple convolutional layers in a single deep learning model, hierarchical 
image features can be extracted to capture spatial contextual information of images and therefore improve discriminative 
power of the images features.  

In this study, we propose a pattern classification based MAIS method to segment the hippocampus from MRI 
scans by building voxel-wise classifiers upon image features extracted by CNNs. Our method first trains a global CNN 
model to extract image features from image patches and then builds voxel-wise classifiers based on nonlocal image 
patches of atlas images as training data. The proposed method has been validated based on 135 T1 MRI scans and their 
hippocampus labels provided by the EADC–ADNI (European Alzheimer's Disease Consortium and Alzheimer's Disease 
Neuroimaging Initiative) harmonized segmentation protocol (www.hippocampal-protocol.net) [18]. We also compared 
our method with state-of-the-art pattern recognition MAIS methods, including local label learning (LLL) [2] and RLBP 
[10]. The experimental results have demonstrated that our method could achieve competitive hippocampus segmentation 
performance over the alternative methods under comparison.  

 

 
Figure 1. Flowchart of the multi-atlas based image segmentation framework. 
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2. METHODS 
2.1 Multi-atlas based image segmentation 

Given a target image	ܫ  to be segmented and ܰ pairs of atlases images and their corresponding segmentation label masks 
that have been already registered to the target image, ܣ௜ = ,௜ܫ) ,(௜ܮ ݅ = 1,2, … ,ܰ, where ܫ௜ is the ݅-th atlas image and ܮ௜ is 
its segmentation label, a local classifier for each voxel ݌ of the target image is to be built upon its neighboring voxels of 
the atlas images and their segmentation label images. Particularly, as shown in Figure 1, for each voxel ݌௜,௝,௞ of an image 
to be segmented, where (݅, ݆, ݇) is its 3D coordinates, we first build a training dataset by collecting each atlas image’s 
voxels that are located within a cubic neighborhood of (݅, ݆, ݇) with a neighborhood size of (2ݎ௦ + 1)ଷ, and each of these 
voxels, including the voxel ݌௜,௝,௞ to be segmented, is characterized by a cubic image patch with a radius ݎ௣. Then, we 
build a CNN based deep learning model to extract CNN features and build classifiers to classify the image patches into 
foreground and background classes based on the training data. Finally, the learned CNN feature extractors are used to 
extract image features for building local classifiers to segment images in a MAIS framework. It is worth noting that the 
CNN based deep learning model is built upon a separate set of atlases and used to extract image features for the pattern 
recognition based MAIS method.  
 

 
 

Figure. 2. Flowchart of the CNN based image feature extractors. Convolution layer is abbreviated as conv. 
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2.2 Feature extraction using CNNs 

In this study, we build a CNN based deep learning model to extract image features within the MAIS framework. 
Particularly, we explore 2 different architectures of CNNs to extract image features, as shown in Figure 2. Specifically, 
the first network architecture, referred to as architecture A, consists of one convolutional layer, one max pooling layer, 
one fully connected layer, and one two-class softmax classification layer. The second network architecture, referred to as 
architecture B, consists of three convolutional layers, one fully connected layer, and one two-class softmax layer. There 
are 3 parameters in each of network architectures, including size of input image patches, kernel size of the convolutional 
layers, and the number of kernels. The max pooling layer’s kernel size and stride are set to 2 × 2 × 2 and 2 respectively 
for all the models. The number of nodes of all the fully connected layers is set to 512. Activation functions of all 
convolutional layers are implemented by rectified linear units (ReLUs). The convolution kernels’ weights and biases are 
initialized based on uniform distribution U(-1,1) and are updated to optimize image features guided by a softmax 
classifier with a cross-entropy loss [19]. The input image patches of all networks are preprocessed by taking the 
following steps: 1) normalizing voxels of each image patch by subtracting their mean value and dividing by their 
standard deviation; and 2) subtracting value of center voxel from all voxels of the image patch.  

To train the deep learning model with different architectures, we construct a training set with image patches 
randomly sampled from the training images. Once the deep learning models are trained, they are used to extract image 
features from image patches and output values of the max pooling layer in architecture A or the third convolutional layer 
in architecture B are used as image features, referred to as CNN features, for the MAIS based image segmentation. Once 
the CNN features are extracted for image patches, we build a local classifier on them to predict segmentation label of 
each voxel of images to be segmented using the pattern recognition based label fusion strategy [2, 3]. 

2.3 Voxel-wise image classification 

Following the pattern recognition based label fusion strategy [2, 3], we build a local classifier for each voxel of images to 
be segmented based on non-local image patches of the atlas images [15]. Therefore, for each voxel ݌ to be segmented, 
we first identify its neighboring voxels in the atlas images and segmentation label images from atlas images to build a 
training dataset, then extract CNN features from image patches of all image voxels of the training dataset and the voxel 
to be segmented, and finally build a linear regression model to segment the voxel under consideration based on the CNN 
features. Given a local training dataset of voxel ݌ with ݊ training samples, ܦ௣ = ൛൫ ௜݂,௣, ,௜,௣൯ܮ ݅ = 1,… , ݊ൟ, where ௜݂,௣ and ݈௜,௣ are CNN features and segmentation label of the i-th training sample respectively, a linear regression model is built by 
optimizing  

ߚ  = argmin ଵଶ ଶଶ‖ߚ‖ + ܥ ଵଶ∑൫݈௜,௣ − ௜݂,௣ߚ൯ଶ,                                                    (1) 
where ߚ is a coefficient vector to be learned, and ܥ is a regularization coefficient.  

Once the linear regression model is built, voxel ݌’s segmentation label ݈௣ can be inferred directly by thresholding 
the regression model’s output 

 ݈௣ = ൜1, ௣݂ߚ ≥ 0.50, ௣݂ߚ < 0.5	,                                                                           (2)  

where ௣݂ is CNN features of the voxel ݌ and ߚ is the learned linear regression model’s coefficient vector. 

3. EXPERIMENTAL RESULTS 
3.1 Imaging data 

Two sets of MRI scans with manual hippocampus segmentation labels were used in our study. Particularly, the first set 
of MRI scans and their hippocampus labels were obtained from our previous study [2], including 57 3T MRI scans of 
different subjects obtained from a local hospital and 1.5T and 3T MRI scans of 30 subjects obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu/). The ADNI was launched in 2003 as 
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been 
to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). The ADNI MRI scans were acquired using a sagittal 3D MP-
RAGE T1-w sequence (TR = 2400 ms, minimum full TE, TI = 1000 ms, FOV = 240 mm, voxel size of 1.25 × 1.25 ×1.2mmଷ) [20]. For up-to-date information of the ADNI project, see www.adni-info.org. The second set of MRI scans 
and their hippocampus labels were obtained from the EADC-ADNI harmonized segmentation protocol, including MRI 
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scans of a preliminary release with 100 subjects and a final release with 35 subjects [18]. All the MRI scans were 
preprocessed using a standard protocol, including bias field correction and spatial normalization to the standard Montreal 
Neurological Institute (MNI) space using affine image registration [2]. 
 The first set of MRI scans was used to train the CNN based deep learning models and tune parameters of the 
pattern recognition based MAIS method. Particularly, 95360 image patches and their corresponding hippocampus 
segmentation labels were randomly generated based on MRI scans of the first set and the final release of the second set. 
A validation dataset, consisting of 5 1.5T MR images and 5 3T MR images randomly selected from the first set of MR 
scans, was used to tune parameters of the pattern recognition based MAIS method to optimize its segmentation 
performance. The atlases used in the MAIS method were other MRI scans of the first set.  

The segmentation performance of our method was finally evaluated based on the second set of MRI scans. 
Particularly, the MRI scans of the preliminary release part were used as testing data and the MRI scans of the final 
release part were used as atlas images. We also compared our method with 2 state-of-the-art pattern recognition based 
hippocampus segmentation methods, namely LLL and RLBP [2, 3, 10], based on the same testing data and atlas images.  
 To reduce computational cost of the MAIS methods under comparison, bounding boxes of bilateral hippocampi 
were determined using the same procedure used in our previous study [2], and the MAIS methods were applied to MRI 
scans within the bounding boxes for segmenting the hippocampi. To segment each testing MRI scan, top 20 most similar 
atlas images were selected based on max mutual information between the atlas images and the testing MRI scan within 
the bounding box [2], and the top 20 most similar atlas images were registered to the testing MRI scan using a non-grid 
image registration algorithm, namely ANTs [21]. The same strategy was used in all the MAIS segmentation experiments, 
including the experiment for tuning parameters of our method based on the validation dataset.  

We adopted 3 metrics to evaluate the automatic segmentation results, including Dice coefficient, Mean Distance 
(MD), and Average Symmetric Surface Distance (ASSD), defined as  Dice = 2 V(A ∩ B)V(A) + V(B),		 MD = mean௘∈డ஺ ቀ݉݅݊௙∈డ஻݀(݁, ݂)ቁ,		 

ASSD = ൬mean௘∈డ஺ ቀ݉݅݊௙∈డ஻݀(݁, ݂)ቁ + mean௘∈డ஻ ቀ݉݅݊௙∈డ஺݀(݁, ݂)ቁ൰2 , 
where ܣ is the manual segmentation result, ܤ is the automatic segmentation result, ܸ(ܺ) is the volume of segmentation ܺ, ߲ܺ as boundary voxels of ܺ, and ݀(∙,∙) is the Euclidian distance. 

3.2 Parameter settings of the deep learning models 

Table 1 summarizes parameters of the deep learning models used in our experiments. Specifically, the deep learning 
model of network architecture A was trained with 2 different settings for the image patch size: 7 and 9; 3 different 
settings for the number of convolutional kernels: 128, 256, and 512; and 2 different settings of the kernel size: 3 and 5. 
The deep learning model of network architecture B was trained with the image patch size set to 7, the number of 
convolutional kernels set to 128, and the kernel size set to 3. In total, there were 6 CNN based deep learning models were 
trained based on the training image atlases.  
 

Table 1. Parameters setting of the deep learning models 

CNN models Network architecture Image patch size Number of kernels Size of kernels 
Model 1 A 7 128 3 
Model 2 A 7 256 3 
Model 3 A 7 512 3 
Model 4 A 9 128 3 
Model 5 A 9 128 5 
Model 6 B 7 128 3 

3.3 Parameter settings of the linear regression model used in the MAIS method  

The linear regression model’s parameter ܥ was tuned based on the validation dataset for image features extracted by 
different CNN deep learning models based on the hippocampus segmentation performance measured using Dice index. 
As summarized in Table 2, the optimal parameter ܥ varied for image features extracted by the different deep learning 
models.  
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Table 2. Average Dice index values of the bilateral hippocampi of MRI scans of the validation data set and optimal values of C. 
C 1e-4 1e-3 1e-2 Optimal values 

Model 1 0.9163 0.9182 0.9080 0.001 
Model 2 0.9186 0.9183 0.9057 0.0001 
Model 3 0.9182 0.9151 0.9034 0.0001 
Model 4 0.9185 0.9173 0.9055 0.0001 
Model 5 0.9190 0.9137 0.8927 0.0001 
Model 6 0.9018 0.9176 0.9140 0.001 

 
3.4 Implementation details of the CNN deep learning models 

The CNN based deep learning models were implemented based on Tensorflow1 and MexConv3D2. The models were 
trained using Adam optimizer [22] with a learning rate of 0.0001. Specifically, no padding operation was applied to any 
convolutional layers and max pooling layer (padding = ‘VALID’ in Tensorflow code), and strides for all kernels of 
convolutional layers were set to 1. The models were trained for 750000 epochs based on 95360 training image patches, 
and for each epoch the models were trained with a batch size equal to 128. It took ~2 hours to train the model on a Tesla 
K80c GPU. 

3.5 Segmentation performance of the MAIS methods 

The segmentation performance of our method with different parameter settings and alternative methods under 
comparison was estimated based on the testing dataset, as summarized in Table 3. All the MAIS methods build upon 
image features extracted by different deep learning models achieved promising segmentation performance. Particularly, 
the deep learning model 6 with network architecture B achieved the overall best segmentation performance, indicating 
that the image features extracted with hierarchical CNNs could better capture spatial contextual information of images. 
Results of Wilcoxon signed-rank tests also indicated that model 6 had significantly better performance than LLL, RLBP, 
and other deep learning models in terms of Dice index and Jaccard index. However, the differences between model 6 and 
some of the alternative methods in terms of MD and ASSD values were moderate. Sample segmentation results obtained 
by different methods are shown in Figure 3.   

Table 3. Segmentation performance of all the methods under comparison. 

Methods Dice (left/right) Jaccard(left/right) MD (left/right) ASSD (left/right) 
LLL 0.8695/0.8771 0.7701/0.7820 0.3515/0.3233 0.3379/0.2885 

p-value 4.1e-17/1.3e-10 4.1e-17/8.7e-11 3.9e-18/2.6e-17 1.7e-15/4.0e-10 
RLBP 0.8749/0.8787 0.7784/0.7844 0.3080/0.2914 0.2804/0.2755 

p-value 2.0-07/3.6e-08 1.8e-07/3.3e-08 0.497/0.249 0.142/0.324 
Model 1 0.8766/0.8815 0.7811/0.7889 0.3081/0.2887 0.2898/0.2783 
p-value 0.012/0.411 0.011/0.374 0.942/0.293 0.003/0.942 
Model 2 0.8761/0.8813 0.7804/0.7887 0.3044/0.2850 0.2889/0.2773 
p-value 5.9e-07/0.001 5.5e-07/9.1e-04 5.6e-04/1.0e-05 0.038/0.827 
Model 3 0.8746/0.8795 0.7779/0.7856 0.3014/0.2841 0.2902/0.2813 
p-value 5.0e-11/2.9e-10 2.9e-11/2.4e-10 3.70e-05/2.2e-04 0.005/7.3e-04 
Model 4 0.8759/0.8808 0.7799/0.7877 0.3080/0.2911 0.2909/0.2761 
p-value 0.001/0.012 7.6e-04/0.010 0.858/0.310 0.064/0.215 
Model 5 0.8738/0.8780 0.7766/0.7833 0.3023/0.2871 0.2914/0.2789 
p-value 6.0e-08/5.0e-08 4.6e-08/4.1e-08 0.022/0.364 0.016/ 0.011 
Model 6 0.8778/0.8816 0.7830/0.7892 0.3078/0.2910 0.2800/0.2758 

4. CONCLUSIONS 
In this study, we demonstrated that image features extracted using CNN based deep learning models could improve 
image segmentation performance of the pattern recognition based MAIS methods. In particularly, our experimental 
results indicated that the CNN based deep learning models with multiple convolutional layers could extract image 
features with improved discriminative power than those extracted by the deep learning models with one convolutional 
                                                 
1  http://tensorflow.org 
2  https://github.com/pengsun/MexConv3D 
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